1
|
Marks de Chabris NC, Sabir S, Perkins G, Cheng H, Ellisman MH, Pamenter ME. Short communication: Acute hypoxia does not alter mitochondrial abundance in naked mole-rats. Comp Biochem Physiol A Mol Integr Physiol 2023; 276:111343. [PMID: 36379380 DOI: 10.1016/j.cbpa.2022.111343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
Abstract
Hypoxia poses a significant energetic challenge and most species exhibit metabolic remodelling when exposed to prolonged hypoxia. One component of this remodelling is mitochondrial biogenesis/mitophagy, which alter mitochondrial abundance and helps to adjust metabolic throughput to match changes in energy demands in hypoxia. However, how acute hypoxia impacts mitochondrial abundance in hypoxia-tolerant species is poorly understood. To help address this gap, we exposed hypoxia-tolerant naked mole-rats to 3 h of normoxia or acute hypoxia (5% O2) and measured changes in mitochondrial abundance using two well-established markers: citrate synthase (CS) enzyme activity and mitochondrial DNA (mtDNA) abundance. We found that neither marker changed with hypoxia in brain, liver, or kidney, suggesting that mitochondrial biogenesis is not initiated during acute hypoxia in these tissues. Conversely in skeletal muscle, the ratio of CS activity to total protein decreased 50% with hypoxia. However, this change was likely driven by an increase in soluble protein density in hypoxia because CS activity was unchanged relative to wet tissue weight and the mtDNA copy number was unchanged. To confirm this, we examined skeletal muscle mitochondria using transmission electron microscopy and found no change in mitochondrial volume density. Taken together with previous studies of mitochondrial respiratory function, our present findings suggest that naked mole-rats primarily rely on tissue-specific functional remodelling of metabolic pathways and mitochondrial respiratory throughput, and not physical changes in mitochondrial number or volume, to adjust to short-term hypoxic exposure.
Collapse
Affiliation(s)
| | - Soulene Sabir
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Hang Cheng
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Marc H Ellisman
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Alam MR, Kim DK. Alterations in telomere length and mitochondrial DNA copy number in human lymphocytes on short-term exposure to moderate hypoxia. Toxicol Rep 2020; 7:1443-1447. [PMID: 33163366 PMCID: PMC7600389 DOI: 10.1016/j.toxrep.2020.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Exposure to moderate hypoxia for 24 h significantly increased telomere length. Telomere elongation is related to the duration of hypoxia exposure. Mitochondrial DNA copy number was unaffected by hypoxia exposure. Mitochondrial DNA copy number is a more stable marker than telomere length alteration under hypoxia.
Hypoxia is related to a variety of diseases, such as cardiovascular and inflammatory diseases and various cancers. Telomere length (TL) may vary according to the hypoxia level and cell types. To the best of our knowledge, no study has investigated the effect of moderate hypoxia on TL and mitochondrial DNA copy number (mtDNAcn) in human lymphocytes. Therefore, in this study, we analyzed the effect of moderate hypoxia on TL in correlation with mtDNAcn. This study included 32 healthy male nonsmoker’s subjects; in this cohort, we had previously studied sister chromatid exchange and microsatellite instability. Blood samples from each subject were divided into three groups: a control group and two experimental groups exposed to moderate hypoxia for 12 or 24 h. Relative TL and mtDNAcn were measured by a quantitative real-time polymerase chain reaction. The TL in the control group did not significantly differ from that in the experimental group subjected to hypoxia for 12 h; however, the TL in the 24 h hypoxia–treated experimental group was significantly higher than that in the control group. The correlation between TL and mtDNAcn was not statistically significant in the two hypoxic states. The increase in TL was observed on exposure to hypoxia for 24 h and not for 12 h; thus, the findings suggest that telomere elongation is related to hypoxia exposure duration. The mtDNAcn in the two experimental groups did not significantly differ from that in the control group. These observations suggest that mtDNAcn alterations show more genetic stability than TL alterations. To the best of our knowledge, this is the first in vitro study on human lymphocytes reporting an increase in TL and no alteration in mtDNAcn after short-time exposure to moderate hypoxia.
Collapse
Affiliation(s)
- Mohammad Rizwan Alam
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Dae-Kwang Kim
- Department of Medical Genetics, School of Medicine, Keimyung University, Daegu, Republic of Korea.,Hanvit Institute for Medical Genetics, Daegu, Republic of Korea
| |
Collapse
|
3
|
Chou PL, Chen KH, Chang TC, Chien CT. Repetitively hypoxic preconditioning attenuates ischemia/reperfusion-induced liver dysfunction through upregulation of hypoxia-induced factor-1 alpha-dependent mitochondrial Bcl-xl in rat. CHINESE J PHYSIOL 2020; 63:68-76. [PMID: 32341232 DOI: 10.4103/cjp.cjp_74_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Repetitive hypoxic preconditioning (HP) enforces protective effects to subsequently severe hypoxic/ischemic stress. We hypothesized that HP may provide protection against ischemia/reperfusion (I/R) injury in rat livers via hypoxia-induced factor-1 alpha (HIF-1α)/reactive oxygen species (ROS)-dependent defensive mechanisms. Female Wistar rats were exposed to hypoxia (15 h/day) in a hypobaric hypoxic chamber (5500 m) for HP induction, whereas the others were kept in sea level. These rats were subjected to 45 min of hepatic ischemia by portal vein occlusion followed by 6 h of reperfusion. We evaluated HIF-1α in nuclear extracts, MnSOD, CuZnSOD, catalase, Bad/Bcl-xL/caspase 3/poly-(ADP-ribose)-polymerase (PARP), mitochondrial Bcl-xL, and cytosolic cytochrome C expression with Western blot and nitroblue tetrazolium/3-nitrotyrosine stain. Kupffer cell infiltration and terminal deoxynucleotidyl transferase-mediated nick-end labeling method apoptosis were determined by immunocytochemistry. The ROS value from liver surface and bile was detected by an ultrasensitive chemiluminescence-amplification method. Hepatic function was assessed with plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. HP increased nuclear translocation of HIF-1α and enhanced Bcl-xL, MnSOD, CuZnSOD, and catalase protein expression in a time-dependent manner. The response of HP enhanced hepatic HIF-1α, and Bcl-xL expression was abrogated by a HIF-1α inhibitor YC-1. Hepatic I/R increased ROS levels, myeloperoxidase activity, Kupffer cell infiltration, ALT and AST levels associated with the enhancement of cytosolic Bad translocation to mitochondria, release of cytochrome C to cytosol, and activation of caspase 3/PARP-mediated apoptosis. HP significantly ameliorated hepatic I/R-enhanced oxidative stress, apoptosis, and mitochondrial and hepatic dysfunction. In summary, HP enhances HIF-1α/ROS-dependent cascades to upregulate mitochondrial Bcl-xL protein expression and to confer protection against I/R injury in the livers.
Collapse
Affiliation(s)
- Pei-Lei Chou
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsin Chen
- Department of Surgery, Division of General Surgery, Far-Eastern Memorial Hospital; Department of Electrical Engineering, Yuan Ze University, Taoyuan City, Taiwan
| | - Tzu-Ching Chang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chiang-Ting Chien
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
4
|
Niu L, Chen X, Xiao P, Zhao Q, Zhou J, Hu J, Sun H, Guo J, Li L, Wang L, Zhang H, Zhong T. Detecting signatures of selection within the Tibetan sheep mitochondrial genome. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:801-809. [PMID: 27937004 DOI: 10.1080/24701394.2016.1192614] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tibetan sheep, a Chinese indigenous breed, are mainly distributed in plateau and mountain-valley areas at a terrestrial elevation between 2260 and 4100 m. The herd is genetically distinct from the other domestic sheep and undergoes acclimatization to adapt to the hypoxic environment. To date, whether the mitochondrial DNA modification of Tibetan sheep shares the same feature as the other domestic breed remains unknown. In this study, we compared the whole mitogenome sequences from 32 Tibetan sheep, 22 domestic sheep and 24 commercial sheep to identify the selection signatures of hypoxic-tolerant in Tibetan sheep. Nucleotide diversity analysis using the sliding window method showed that the highest level of nucleotide diversity was observed in the control region with a peak value of π = 0.05215, while the lowest π value was detected in the tRNAs region. qPCR results showed that the relative mtDNA copy number in Tibetan sheep was significantly lower than that in Suffolk sheep. None of the mutations in 12S rRNA were fixed in Tibetan sheep, which indicated that there has been less artificial selection in this herd than the other domestic and commercial breeds. Although one site (1277G) might undergo the purifying selection, it was not identified as the breed-specific allele in Tibetan sheep. We proposed that nature selection was the main drive during the domestication of Tibetan sheep and single mutation (or locus) could not reveal the signature of selection as for the high diversity in the mitogenome of Tibetan sheep.
Collapse
Affiliation(s)
- Lili Niu
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Xiaoyong Chen
- b Institute of Animal Science and Veterinary of Hebei Province , Baoding , China
| | - Ping Xiao
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Qianjun Zhao
- c CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources , Institute of Animal Science, Chinese Academy of Agricultural Sciences , Beijing , China
| | - Jingxuan Zhou
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Jiangtao Hu
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Hongxin Sun
- b Institute of Animal Science and Veterinary of Hebei Province , Baoding , China
| | - Jiazhong Guo
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Li Li
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Linjie Wang
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Hongping Zhang
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Tao Zhong
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
5
|
Pastukh VM, Gorodnya OM, Gillespie MN, Ruchko MV. Regulation of mitochondrial genome replication by hypoxia: The role of DNA oxidation in D-loop region. Free Radic Biol Med 2016; 96:78-88. [PMID: 27091693 PMCID: PMC4912408 DOI: 10.1016/j.freeradbiomed.2016.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/18/2016] [Accepted: 04/14/2016] [Indexed: 02/04/2023]
Abstract
Mitochondria of mammalian cells contain multiple copies of mitochondrial (mt) DNA. Although mtDNA copy number can fluctuate dramatically depending on physiological and pathophysiologic conditions, the mechanisms regulating mitochondrial genome replication remain obscure. Hypoxia, like many other physiologic stimuli that promote growth, cell proliferation and mitochondrial biogenesis, uses reactive oxygen species as signaling molecules. Emerging evidence suggests that hypoxia-induced transcription of nuclear genes requires controlled DNA damage and repair in specific sequences in the promoter regions. Whether similar mechanisms are operative in mitochondria is unknown. Here we test the hypothesis that controlled oxidative DNA damage and repair in the D-loop region of the mitochondrial genome are required for mitochondrial DNA replication and transcription in hypoxia. We found that hypoxia had little impact on expression of mitochondrial proteins in pulmonary artery endothelial cells, but elevated mtDNA content. The increase in mtDNA copy number was accompanied by oxidative modifications in the D-loop region of the mitochondrial genome. To investigate the role of this sequence-specific oxidation of mitochondrial genome in mtDNA replication, we overexpressed mitochondria-targeted 8-oxoguanine glycosylase Ogg1 in rat pulmonary artery endothelial cells, enhancing the mtDNA repair capacity of transfected cells. Overexpression of Ogg1 resulted in suppression of hypoxia-induced mtDNA oxidation in the D-loop region and attenuation of hypoxia-induced mtDNA replication. Ogg1 overexpression also reduced binding of mitochondrial transcription factor A (TFAM) to both regulatory and coding regions of the mitochondrial genome without altering total abundance of TFAM in either control or hypoxic cells. These observations suggest that oxidative DNA modifications in the D-loop region during hypoxia are important for increased TFAM binding and ensuing replication of the mitochondrial genome.
Collapse
Affiliation(s)
- Viktor M Pastukh
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Olena M Gorodnya
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Mark N Gillespie
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Mykhaylo V Ruchko
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| |
Collapse
|
6
|
Evaluation of the visual analog score (VAS) to assess acute mountain sickness (AMS) in a hypobaric chamber. PLoS One 2014; 9:e113376. [PMID: 25405765 PMCID: PMC4236192 DOI: 10.1371/journal.pone.0113376] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/20/2014] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE The visual analog score (VAS) is widely used in clinical medicine to evaluate the severity of subjective symptoms. There is substantial literature on the application of the VAS in medicine, especially in measuring pain, nausea, fatigue, and sleep quality. Hypobaric chambers are utilized to test and exercise the anaerobic endurance of athletes. To this end, we evaluated the degree of AMS using the visual analog scale (VAS) in a hypobaric chamber in which the equivalent altitude was increased from 300 to 3500 m. METHODS We observed 32 healthy young men in the hypobaric chamber (Guizhou, China) and increased the altitude from 300 to 3500 m. During the five hours of testing, we measured the resting blood oxygen saturation (SaO2) and heart rate (HR). Using the VAS, we recorded the subjects' ratings of their AMS symptom intensity that occurred throughout the phase of increasing altitude at 300 m, 1500 m, 2000 m, 2500 m, 3000 m, and 3500 m. RESULTS During the phase of increasing altitude in the hypobaric chamber, the patients' SaO2 was 96.8 ± 0.8% at 300 m and 87.5 ± 4.1% at 3500 m (P<0.05) and their HR was 79.0 ± 8.0 beats/minute at 300 m and 79.3 ± 11.3 beats/minute at 3500 m. The incidence of symptoms significantly increased from 21.9% at an altitude of 1000 m to 65.6% at an altitude of 3500 m (P<0.05). The composite VAS score, which rated the occurrence of four symptoms (headache, dizziness, fatigue, and gastrointestinal discomfort), was significantly correlated with elevation (P<0.01). CONCLUSION Based on the experimental data, the VAS can be used as an auxiliary diagnostic method of Lake Louise score to evaluate AMS and can show the changing severity of symptoms during the process of increased elevation in a hypobaric chamber; it also reflects a significant correlation with altitude.
Collapse
|
7
|
Luo Y, Wang Y, Lu H, Gao Y. ‘Ome’ on the range: update on high-altitude acclimatization/adaptation and disease. ACTA ACUST UNITED AC 2014; 10:2748-55. [DOI: 10.1039/c4mb00119b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The main physiological challenge in high-altitude plateau environments is hypoxia.
Collapse
Affiliation(s)
- Yongjun Luo
- Department of Military Medical Geography
- Third Military Medical University
- Chongqing 400038, China
- Key Laboratory of High Altitude Medicine (Ministry of Education)
- Third Military Medical University
| | - Yuxiao Wang
- Department of Military Medical Geography
- Third Military Medical University
- Chongqing 400038, China
- Key Laboratory of High Altitude Medicine (Ministry of Education)
- Third Military Medical University
| | - Hongxiang Lu
- Department of Military Medical Geography
- Third Military Medical University
- Chongqing 400038, China
- Key Laboratory of High Altitude Medicine (Ministry of Education)
- Third Military Medical University
| | - Yuqi Gao
- Key Laboratory of High Altitude Medicine (Ministry of Education)
- Third Military Medical University
- Chongqing 400038, China
- Key Laboratory of High Altitude medicine (People's Liberation Army)
- Third Military Medical University
| |
Collapse
|
8
|
Luo Y, Yang X, Gao Y. Mitochondrial DNA response to high altitude: a new perspective on high-altitude adaptation. ACTA ACUST UNITED AC 2013; 24:313-9. [PMID: 23350576 DOI: 10.3109/19401736.2012.760558] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are the energy metabolism centers of the cell. More than 95% of cellular energy is produced by mitochondrial oxidative phosphorylation. Hypoxia affects a wide range of energy generation and consumption processes in animals. The most important mechanisms limiting ATP consumption increase the efficiency of ATP production and accommodate the reduced production of ATP by the body. All of these mechanisms relate to changes in mitochondrial function. Mitochondrial function can be affected by variations in mitochondrial DNA, including polymorphisms, content changes, and deletions. These variations play an important role in acclimatization or adaptation to hypoxia. In this paper, the association between mitochondrial genome sequences and high-altitude adaptation is reviewed.
Collapse
Affiliation(s)
- Yongjun Luo
- Department of High Altitude Disease, College of High Altitude Military Medicine, Third Military Medical University, Chongqing 400038, PR China
| | | | | |
Collapse
|