1
|
Desroches AJ, Aloui F, Deshayes TA, Goulet EDB. Assessment of the Omius™ cooling headband effectiveness during a 70-min submaximal running effort followed by a 5-km time-trial in hot/humid conditions. J Therm Biol 2024; 124:103964. [PMID: 39226790 DOI: 10.1016/j.jtherbio.2024.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
Exercise performed under hot/humid conditions can hinder endurance performance. The Omius™ headband (OH) is purported to reduce the perception of heat and improve performance. We examined the impact of OH on selected thermal and cardiovascular functions, subjective perceptions and running performance. Using a randomized crossover protocol, 10 trained male athletes (28 ± 4 years) completed two trials (OH and sham headband (SH), 35.0 ± 0.3 °C, 56 ± 3% relative humidity) comprising 70 min of running (60% V˙O2max) followed by a 5-km running time-trial (TT). Heart rate, perceived exertion and whole-body thermal comfort did not significantly differ between conditions during the submaximal running effort and TT. Rectal temperature was higher with OH (0.11 ± 0.16 °C, p = 0.052) than SH prior to the submaximal running effort, however, no significant differences were observed between conditions regarding the changes in rectal temperature from baseline during the submaximal running effort and TT. Forehead temperature was significantly lower with OH than SH during the submaximal running effort, but no significant differences were observed at the end of the TT. Scores of perceived forehead thermal comfort were only significantly lower with OH than SH during the submaximal running effort. TT performance did not significantly differ between OH (19.8 ± 1.2 min) and SH (20.2 ± 1.0 min). In conclusion, OH improves forehead thermal comfort and reduces forehead temperature but not rectal temperature, heart rate and perceived exertion during, nor 5-km TT performance following, 70 min of submaximal running in the heat.
Collapse
Affiliation(s)
| | - Fedi Aloui
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Thomas A Deshayes
- School of Kinesiology and Exercise Science, Université de Montréal, Montréal, Québec, Canada; Montreal Heart Institute, Montréal, Québec, Canada
| | - Eric D B Goulet
- Faculty of Physical Activity Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Research Centre on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
2
|
Silvino VO, Batista MCC, Neto MM, Ribeiro ALB, Nascimento PPD, Barros EML, Moura RCD, Sales KCG, Galvão LMV, Nunes LCC, Durazzo A, Silva AS, Pereira dos Santos MA. Effect of a cajuína hydroelectrolytic drink on the physical performance and hydration status of recreational runners. Curr Res Physiol 2024; 7:100119. [PMID: 38357495 PMCID: PMC10864873 DOI: 10.1016/j.crphys.2024.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Cajuína is a processed drink derived from cashew and is widely consumed in the northeast region of Brazil. This study evaluated the effect of a cajuína-based hydroelectrolytic drink on the aerobic performance and hydration status of recreational runners. Seventeen males (31.9 ± 1.6 years, 51.0 ± 1.4 ml/kg/min) performed three time-to-exhaustion running sessions on a treadmill at 70% VO2max, ingesting cajuína hydroelectrolytic drink (CJ), high carbohydrate commercial hydroelectrolytic drink (CH) and mineral water (W) every 15 min during the running test. The participants ran 80.3 ± 8.4 min in CJ, 70.3 ± 6.8 min in CH and 71.8 ± 6.9 min in W, with no statistical difference between procedures. Nevertheless, an effect size of η2 = 0.10 (moderate) was observed. No statistical difference was observed in the concentrations of sodium, potassium, and osmolality in both serum and urine between the three conditions. However, the effect size was moderate (urine sodium) and high (serum sodium, potassium, and osmolality). Urine specific gravity, sweating rate and heart rate were not significantly different between drinks. The cajuína-based hydroelectrolytic drink promotes similar effects compared to commercial hydroelectrolytic drink and water, considering specific urine gravity, heart rate, sweating, and time to exhaustion in recreational runners.
Collapse
Affiliation(s)
- Valmir Oliveira Silvino
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
- Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Piaui, Teresina, Brazil
- Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Brazil
| | | | - Manoel Miranda Neto
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | - Esmeralda Maria Lustosa Barros
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
- Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Piaui, Teresina, Brazil
| | | | | | - Luanne Morais Vieira Galvão
- Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Piaui, Teresina, Brazil
- Department of Technology in Gastronomy, Federal Institute of Piauí, Teresina, Brazil
| | - Lívio César Cunha Nunes
- Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Piaui, Teresina, Brazil
- Department of Pharmacy, Federal University of Piauí, Teresina, Brazil
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina, 546, 00178, Rome, Italy
| | | | - Marcos Antonio Pereira dos Santos
- Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
- Rede Nordeste de Biotecnologia (RENORBIO), Federal University of Piaui, Teresina, Brazil
- Nucleus of Study in Physiology Applied to Performance and Health (NEFADS), Brazil
| |
Collapse
|
3
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 3: Heat and cold tolerance during exercise. Eur J Appl Physiol 2024; 124:1-145. [PMID: 37796292 DOI: 10.1007/s00421-023-05276-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/04/2023] [Indexed: 10/06/2023]
Abstract
In this third installment of our four-part historical series, we evaluate contributions that shaped our understanding of heat and cold stress during occupational and athletic pursuits. Our first topic concerns how we tolerate, and sometimes fail to tolerate, exercise-heat stress. By 1900, physical activity with clothing- and climate-induced evaporative impediments led to an extraordinarily high incidence of heat stroke within the military. Fortunately, deep-body temperatures > 40 °C were not always fatal. Thirty years later, water immersion and patient treatments mimicking sweat evaporation were found to be effective, with the adage of cool first, transport later being adopted. We gradually acquired an understanding of thermoeffector function during heat storage, and learned about challenges to other regulatory mechanisms. In our second topic, we explore cold tolerance and intolerance. By the 1930s, hypothermia was known to reduce cutaneous circulation, particularly at the extremities, conserving body heat. Cold-induced vasodilatation hindered heat conservation, but it was protective. Increased metabolic heat production followed, driven by shivering and non-shivering thermogenesis, even during exercise and work. Physical endurance and shivering could both be compromised by hypoglycaemia. Later, treatments for hypothermia and cold injuries were refined, and the thermal after-drop was explained. In our final topic, we critique the numerous indices developed in attempts to numerically rate hot and cold stresses. The criteria for an effective thermal stress index were established by the 1930s. However, few indices satisfied those requirements, either then or now, and the surviving indices, including the unvalidated Wet-Bulb Globe-Thermometer index, do not fully predict thermal strain.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Cook C, Chen G, Hager WW, Lenhart S. Optimally controlling nutrition and propulsion force in a long distance running race. Front Nutr 2023; 10:1096194. [PMID: 37275649 PMCID: PMC10233029 DOI: 10.3389/fnut.2023.1096194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/18/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Runners competing in races are looking to optimize their performance. In this paper, a runner's performance in a race, such as a marathon, is formulated as an optimal control problem where the controls are: the nutrition intake throughout the race and the propulsion force of the runner. As nutrition is an integral part of successfully running long distance races, it needs to be included in models of running strategies. Methods We formulate a system of ordinary differential equations to represent the velocity, fat energy, glycogen energy, and nutrition for a runner competing in a long-distance race. The energy compartments represent the energy sources available in the runner's body. We allocate the energy source from which the runner draws, based on how fast the runner is moving. The food consumed during the race is a source term for the nutrition differential equation. With our model, we are investigating strategies to manage the nutrition and propulsion force in order to minimize the running time in a fixed distance race. This requires the solution of a nontrivial singular control problem. Results As the goal of an optimal control model is to determine the optimal strategy, comparing our results against real data presents a challenge; however, in comparing our results to the world record for the marathon, our results differed by 0.4%, 31 seconds. Per each additional gel consumed, the runner is able to run 0.5 to 0.7 kilometers further in the same amount of time, resulting in a 7.75% increase in taking five 100 calorie gels vs no nutrition. Discussion Our results confirm the belief that the most effective way to run a race is to run approximately the same pace the entire race without letting one's energies hit zero, by consuming in-race nutrition. While this model does not take all factors into account, we consider it a building block for future models, considering our novel energy representation, and in-race nutrition.
Collapse
Affiliation(s)
- Cameron Cook
- Research Triangle Institute (RTI) Health Solutions, Research Triangle Park, NC, United States
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - William W Hager
- Department of Mathematics, University of Florida, Gainsville, FL, United States
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
5
|
Badham L, Stern SE, O’Connor FK, Wijekulasuriya GA, Corcoran G, Cox GR, Coffey VG. Fluid intake is a strong predictor of outdoor team sport pre-season training performance. J Sports Sci 2023; 41:1-7. [PMID: 37002685 DOI: 10.1080/02640414.2023.2191093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Our aim was to characterize fluid intake during outdoor team sport training and use generalized additive models to quantify interactions with the environment and performance. Fluid intake, body mass (BM) and internal/external training load data were recorded for male rugby union (n = 19) and soccer (n = 19) athletes before/after field training sessions throughout an 11-week preseason (357 observations). Running performance (GPS) and environmental conditions were recorded each session and generalized additive models were applied in the analysis of data. Mean body mass loss throughout all training sessions was -1.11 ± 0.63 kg (~1.3%) compared with a mean fluid intake at each session of 958 ± 476 mL during the experimental period. For sessions >110 min, when fluid intake reached ~10-19 mL·kg-1 BM the total distance increased (7.47 to 8.06 km, 7.6%; P = 0.049). Fluid intake above ~10 mL·kg-1 BM was associated with a 4.1% increase in high-speed running distance (P < 0.0001). Most outdoor team sport athletes fail to match fluid loss during training, and fluid intake is a strong predictor of running performance. Improved hydration practices during training should be beneficial and we provide a practical ingestion range to promote improved exercise capacity in outdoor team sport training sessions.
Collapse
Affiliation(s)
- Luke Badham
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Steven E. Stern
- Centre for Data Analytics, Bond Business School, Bond University, Gold Coast, Queensland, Australia
| | - Fergus K. O’Connor
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Gyan A. Wijekulasuriya
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Glenn Corcoran
- Bond University High Performance Training Centre, Gold Coast, Queensland, Australia
| | - Gregory R. Cox
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Vernon G. Coffey
- Bond Institute of Health and Sport and Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
- Centre for Data Analytics, Bond Business School, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
6
|
Effect of Glycerol-Induced Hyperhydration on a 5-kilometer Running Time-Trial Performance in the Heat in Recreationally Active Individuals. Nutrients 2023; 15:nu15030599. [PMID: 36771308 PMCID: PMC9919238 DOI: 10.3390/nu15030599] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Maximal oxygen consumption (V˙O2max) is a major determinant of 5-km running time-trial (TT) performance. Glycerol-induced hyperhydration (GIH) could improve V˙O2max in recreationally active persons through an optimal increase in plasma volume. Moreover, ingestion of a large bolus of cold fluid before exercise could decrease thermal stress during exercise, potentially contributing to improved performance. We determined the effect of GIH on 5-km running TT performance in 10 recreationally active individuals (age: 24 ± 4 years; V˙O2max: 48 ± 3 mL/kg/min). Using a randomized and counterbalanced protocol, participants underwent two, 120-min hydration protocols where they ingested a 1) 30 mL/kg fat-free mass (FFM) of cold water (~4 °C) with an artificial sweetener + 1.4 g glycerol/kg FFM over the first 60 min (GIH) or 2) 7.5 mL/kg FFM of cold water with an artificial sweetener over the first 20 min (EUH). Following GIH and EUH, participants underwent a 5-km running TT at 30 °C and 50% relative humidity. After 120 min, GIH was associated with significantly greater fluid retention (846 ± 415 mL) and plasma volume changes (10.1 ± 8.4%) than EUH, but gastrointestinal (GI) temperature did not differ. During exercise, 5-km running TT performance (GIH: 22.95 ± 2.62; EUH: 22.52 ± 2.74 min), as well as heart rate, GI temperature and perceived exertion did not significantly differ between conditions. This study demonstrates that the additional body water and plasma volume gains provided by GIH do not improve 5-km running TT performance in the heat in recreationally active individuals.
Collapse
|
7
|
Benjamin CL, Dobbins LW, Sullivan SG, Rogers RR, Williams TD, Marshall MR, Ballmann CG. The Effect of Fluid Availability on Consumption and Perceptual Measures during Aerobic Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1310. [PMID: 36674064 PMCID: PMC9858706 DOI: 10.3390/ijerph20021310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Fluid availability may alter drinking behavior; however, it is currently unknown if the availability of fluid impacts behavior and gastrointestinal issues (GI) that are often associated with increased fluid intake. The purpose of this study was to determine if ad libitum (AL) versus periodic (PER) fluid intake influences fluid consumption and GI distress during exercise in trained athletes. Male and female Division I NCAA Cross Country athletes (n = 11; age = 20 ± 1 years) participated in this counterbalanced crossover study. Each participant completed a moderate intensity 10 km run on two separate occasions. In one trial, participants had unlimited availability to fluid to consume AL. In the other trial, participants consumed PER fluid at stations placed every 3.2 km. Assurance of euhydration prior to each trial was confirmed via urine specific gravity (USG) and urine color. Subjective perceptions of thirst and gastric fullness were assessed pre- and post-exercise via Likert questioning and a visual analog scale, respectively. Participants started each trial euhydrated (AL = 1.009 USG ± 0.009; PER = 1.009 USG ± 0.009; urine color AL, 3 ± 1; urine color PER, 2 ± 1). Fluid volume consumption was significantly higher during the AL condition compared to PER (p = 0.050). Thirst significantly increased from pre- to post-run regardless of treatment (p < 0.001); however, there was no significant difference between the groups (p = 0.492). Feelings of fullness did not change pre-post trial (p = 0.304) or between trials (p = 0.958). Increased fluid availability allows for increased fluid consumption without the negative experience of GI discomfort.
Collapse
Affiliation(s)
| | - Luke W. Dobbins
- Department of Kinesiology, Samford University, Birmingham, AL 35226, USA
| | | | - Rebecca R. Rogers
- Department of Kinesiology, Samford University, Birmingham, AL 35226, USA
- SHP Research Collaborative, University of Alabama at Birmingham, Birmingham, AL 35226, USA
| | - Tyler D. Williams
- Department of Kinesiology, Samford University, Birmingham, AL 35226, USA
| | | | | |
Collapse
|
8
|
Deshayes TA, Pancrate T, Goulet ED. Impact of dehydration on perceived exertion during endurance exercise: A systematic review with meta-analysis. J Exerc Sci Fit 2022; 20:224-235. [PMID: 35601980 PMCID: PMC9093000 DOI: 10.1016/j.jesf.2022.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Background Understanding the impact of stressors on the rating of perceived exertion (RPE) is relevant from a performance and exercise adherence/participation standpoint. Athletes and recreationally active individuals dehydrate during exercise. No attempt has been made to systematically determine the impact of exercise-induced dehydration (EID) on RPE. Objective The present meta-analysis aimed to determine the effect of EID on RPE during endurance exercise and examine the moderating effect of potential confounders. Data analyses Performed on raw RPE values using random-effects models weighted mean effect summaries and meta-regressions with robust standard errors, and with a practical meaningful effect set at 1 point difference between euhydration (EUH) and EID. Only controlled crossover studies measuring RPE with a Borg scale in healthy adults performing ≥30 min of continuous endurance exercise while dehydrating or drinking to maintain EUH were included. Results Sixteen studies were included, representing 147 individuals. Mean body mass loss with EUH was 0.5 ± 0.4%, compared to 2.3 ± 0.5% with EID (range 1.7-3.1%). Within an EID of 0.5-3% body mass, a maximum difference in RPE of 0.81 points (95% CI: 0.36-1.27) was observed between conditions. A meta-regression revealed that RPE increases by 0.21 points for each 1% increase in EID (95% CI: 0.12-0.31). Humidity, ambient temperature and aerobic capacity did not alter the relationship between EID and RPE. Conclusion Therefore, the effect of EID on RPE is unlikely to be practically meaningful until a body mass loss of at least 3%.
Collapse
Affiliation(s)
- Thomas A. Deshayes
- Faculty of Physical Activity Sciences, University of Sherbrooke, P.Q., Canada
- Research Center on Aging, University of Sherbrooke, P.Q., Canada
| | - Timothée Pancrate
- Faculty of Physical Activity Sciences, University of Sherbrooke, P.Q., Canada
| | - Eric D.B. Goulet
- Faculty of Physical Activity Sciences, University of Sherbrooke, P.Q., Canada
- Research Center on Aging, University of Sherbrooke, P.Q., Canada
| |
Collapse
|
9
|
Jeker D, Claveau P, Abed MEF, Deshayes TA, Lajoie C, Gendron P, Hoffman MD, Goulet EDB. Programmed vs. Thirst-Driven Drinking during Prolonged Cycling in a Warm Environment. Nutrients 2021; 14:nu14010141. [PMID: 35011016 PMCID: PMC8747324 DOI: 10.3390/nu14010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
We compared the effect of programmed (PFI) and thirst-driven (TDFI) fluid intake on prolonged cycling performance and exercise associated muscle cramps (EAMC). Eight male endurance athletes (26 ± 6 years) completed two trials consisting of 5 h of cycling at 61% V˙O2peak followed by a 20 km time-trial (TT) in a randomized crossover sequence at 30 °C, 35% relative humidity. EAMC was assessed after the TT with maximal voluntary isometric contractions of the shortened right plantar flexors. Water intake was either programmed to limit body mass loss to 1% (PFI) or consumed based on perceived thirst (TDFI). Body mass loss reached 1.5 ± 1.0% for PFI and 2.5 ± 0.9% for TDFI (p = 0.10). Power output during the 20 km TT was higher (p < 0.05) for PFI (278 ± 41 W) than TDFI (263 ± 39 W), but the total performance time, including the breaks to urinate, was similar (p = 0.48) between conditions. The prevalence of EAMC of the plantar flexors was similar between the drinking conditions. Cyclists competing in the heat for over 5 h may benefit from PFI aiming to limit body mass loss to <2% when a high intensity effort is required in the later phase of the race and when time lost for urination is not a consideration.
Collapse
Affiliation(s)
- David Jeker
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (D.J.); (P.C.); (M.E.F.A.); (T.A.D.)
| | - Pascale Claveau
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (D.J.); (P.C.); (M.E.F.A.); (T.A.D.)
| | - Mohamed El Fethi Abed
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (D.J.); (P.C.); (M.E.F.A.); (T.A.D.)
| | - Thomas A. Deshayes
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (D.J.); (P.C.); (M.E.F.A.); (T.A.D.)
- Research Center on Aging, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Claude Lajoie
- Department of Physical Activity Sciences, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; (C.L.); (P.G.)
| | - Philippe Gendron
- Department of Physical Activity Sciences, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; (C.L.); (P.G.)
| | - Martin D. Hoffman
- Department of Physical Medicine & Rehabilitation, University of California Davis, Sacramento, CA 95817, USA;
- Ultra-Endurance Sports Science & Medicine, Duluth, MN 55811, USA
| | - Eric D. B. Goulet
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (D.J.); (P.C.); (M.E.F.A.); (T.A.D.)
- Research Center on Aging, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
- Correspondence:
| |
Collapse
|
10
|
The Hydrating Effects of Hypertonic, Isotonic and Hypotonic Sports Drinks and Waters on Central Hydration During Continuous Exercise: A Systematic Meta-Analysis and Perspective. Sports Med 2021; 52:349-375. [PMID: 34716905 PMCID: PMC8803723 DOI: 10.1007/s40279-021-01558-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 01/25/2023]
Abstract
Background Body-fluid loss during prolonged continuous exercise can impair cardiovascular function, harming performance. Delta percent plasma volume (dPV) represents the change in central and circulatory body-water volume and therefore hydration during exercise; however, the effect of carbohydrate–electrolyte drinks and water on the dPV response is unclear. Objective To determine by meta-analysis the effects of ingested hypertonic (> 300 mOsmol kg−1), isotonic (275–300 mOsmol kg−1) and hypotonic (< 275 mOsmol kg−1) drinks containing carbohydrate and electrolyte ([Na+] < 50 mmol L−1), and non-carbohydrate drinks/water (< 40 mOsmol kg−1) on dPV during continuous exercise. Methods A systematic review produced 28 qualifying studies and 68 drink treatment effects. Random-effects meta-analyses with repeated measures provided estimates of effects and probability of superiority (p+) during 0–180 min of exercise, adjusted for drink osmolality, ingestion rate, metabolic rate and a weakly informative Bayesian prior. Results Mean drink effects on dPV were: hypertonic − 7.4% [90% compatibility limits (CL) − 8.5, − 6.3], isotonic − 8.7% (90% CL − 10.1, − 7.4), hypotonic − 6.3% (90% CL − 7.4, − 5.3) and water − 7.5% (90% CL − 8.5, − 6.4). Posterior contrast estimates relative to the smallest important effect (dPV = 0.75%) were: hypertonic-isotonic 1.2% (90% CL − 0.1, 2.6; p+ = 0.74), hypotonic-isotonic 2.3% (90% CL 1.1, 3.5; p+ = 0.984), water-isotonic 1.3% (90% CL 0.0, 2.5; p+ = 0.76), hypotonic-hypertonic 1.1% (90% CL 0.1, 2.1; p+ = 0.71), hypertonic-water 0.1% (90% CL − 0.8, 1.0; p+ = 0.12) and hypotonic-water 1.1% (90% CL 0.1, 2.0; p+ = 0.72). Thus, hypotonic drinks were very likely superior to isotonic and likely superior to hypertonic and water. Metabolic rate, ingestion rate, carbohydrate characteristics and electrolyte concentration were generally substantial modifiers of dPV. Conclusion Hypotonic carbohydrate–electrolyte drinks ingested continuously during exercise provide the greatest benefit to hydration. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s40279-021-01558-y.
Collapse
|
11
|
Holtzman B, Ackerman KE. Recommendations and Nutritional Considerations for Female Athletes: Health and Performance. Sports Med 2021; 51:43-57. [PMID: 34515972 PMCID: PMC8566643 DOI: 10.1007/s40279-021-01508-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 11/29/2022]
Abstract
Optimal nutrition is an important aspect of an athlete’s preparation to achieve optimal health and performance. While general concepts about micro- and macronutrients and timing of food and fluids are addressed in sports science, rarely are the specific effects of women’s physiology on energy and fluid needs highly considered in research or clinical practice. Women differ from men not only in size, but in body composition and hormonal milieu, and also differ from one another. Their monthly hormonal cycles, with fluctuations in estrogen and progesterone, have varying effects on metabolism and fluid retention. Such cycles can change from month to month, can be suppressed with exogenous hormones, and may even be manipulated to capitalize on ideal timing for performance. But before such physiology can be manipulated, its relationship with nutrition and performance must be understood. This review will address general concepts regarding substrate metabolism in women versus men, common menstrual patterns of female athletes, nutrient and hydration needs during different phases of the menstrual cycle, and health and performance issues related to menstrual cycle disruption. We will discuss up-to-date recommendations for fueling female athletes, describe areas that require further exploration, and address methodological considerations to inform future work in this important area.
Collapse
Affiliation(s)
- Bryan Holtzman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kathryn E Ackerman
- Female Athlete Program, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, USA. .,Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Tan XR, Low ICC, Byrne C, Wang R, Lee JKW. Assessment of dehydration using body mass changes of elite marathoners in the tropics. J Sci Med Sport 2021; 24:806-810. [DOI: 10.1016/j.jsams.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/30/2020] [Accepted: 01/19/2021] [Indexed: 11/27/2022]
|
13
|
Cheuvront SN, Kenefick RW. Personalized fluid and fuel intake for performance optimization in the heat. J Sci Med Sport 2021; 24:735-738. [DOI: 10.1016/j.jsams.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/16/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
|
14
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Armstrong LE. Rehydration during Endurance Exercise: Challenges, Research, Options, Methods. Nutrients 2021; 13:887. [PMID: 33803421 PMCID: PMC8001428 DOI: 10.3390/nu13030887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 01/18/2023] Open
Abstract
During endurance exercise, two problems arise from disturbed fluid-electrolyte balance: dehydration and overhydration. The former involves water and sodium losses in sweat and urine that are incompletely replaced, whereas the latter involves excessive consumption and retention of dilute fluids. When experienced at low levels, both dehydration and overhydration have minor or no performance effects and symptoms of illness, but when experienced at moderate-to-severe levels they degrade exercise performance and/or may lead to hydration-related illnesses including hyponatremia (low serum sodium concentration). Therefore, the present review article presents (a) relevant research observations and consensus statements of professional organizations, (b) 5 rehydration methods in which pre-race planning ranges from no advanced action to determination of sweat rate during a field simulation, and (c) 9 rehydration recommendations that are relevant to endurance activities. With this information, each athlete can select the rehydration method that best allows her/him to achieve a hydration middle ground between dehydration and overhydration, to optimize physical performance, and reduce the risk of illness.
Collapse
Affiliation(s)
- Lawrence E Armstrong
- Human Performance Laboratory and Korey Stringer Institute, University of Connecticut, Storrs, CT 06269-1110, USA
| |
Collapse
|
16
|
Rosales AM, Hailes WS, Dodds PS, Marks AN, Ruby BC. Influence of Fluid Delivery Schedule and Composition on Fluid Balance, Physiologic Strain, and Substrate Use in the Heat. Wilderness Environ Med 2021; 32:27-35. [PMID: 33431304 DOI: 10.1016/j.wem.2020.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Wildfire suppression is characterized by high total energy expenditure and water turnover rates. Hydration position stands outline hourly fluid intake rates. However, dose interval remains ambiguous. We aimed to determine the effects of microdosing and bolus-dosing water and microdosing and bolus-dosing carbohydrate-electrolyte solutions on fluid balance, heat stress (physiologic strain index [PSI]), and carbohydrate oxidation during extended thermal exercise. METHODS In a repeated-measures cross-over design, subjects completed four 120-min treadmill trials (1.3 m·s-1, 5% grade, 33°C, 30% relative humidity) wearing a US Forest Service wildland firefighter uniform and a 15-kg pack. Fluid delivery approximated losses calculated from a pre-experiment familiarization trial, providing 22 doses·h-1 or 1 dose·h-1 (46±11, 1005±245 mL·dose-1). Body weight (pre- and postexercise) and urine volume (pre-, during, and postexercise) were recorded. Heart rate, rectal temperature, skin temperature, and steady-state expired air samples were recorded throughout exercise. Statistical significance (P<0.05) was determined via repeated-measures analysis of variance. RESULTS Total body weight loss (n=11, -0.6±0.3 kg, P>0.05) and cumulative urine output (n=11, 677±440 mL, P>0.05) were not different across trials. The micro-dosed carbohydrate-electrolyte trial sweat rate was lower than that of the bolus-dosed carbohydrate-electrolyte, bolus-dosed water, and microdosed water trials (n=11, 0.8±0.2, 0.9±0.2, 0.9±0.2, 0.9±0.2 L·h-1, respectively; P<0.05). PSI was lower at 60 than 120 min (n=12, 3.6±0.7 and 4.5±0.9, respectively; P<0.05), with no differences across trials. The carbohydrate-electrolyte trial's carbohydrate oxidation was higher than water trial's (n=12, 1.5±0.3 and 0.8±0.2 g·min-1, respectively; P<0.05), with no dosing style differences. CONCLUSIONS Equal-volume diverse fluid delivery schedules did not affect fluid balance, PSI, or carbohydrate oxidation during extended thermal work.
Collapse
Affiliation(s)
- Alejandro M Rosales
- University of Montana, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT
| | - Walter S Hailes
- University of Montana, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT
| | - Patrick S Dodds
- University of Montana, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT
| | - Alexander N Marks
- University of Montana, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT
| | - Brent C Ruby
- University of Montana, Montana Center for Work Physiology and Exercise Metabolism, Missoula, MT.
| |
Collapse
|
17
|
Rodrigues Júnior JFC, Mckenna Z, Amorim FT, Da Costa Sena AF, Mendes TT, Veneroso CE, Torres Cabido CE, Sevilio De Oliveira Júnior MN. Thermoregulatory and metabolic responses to a half-marathon run in hot, humid conditions. J Therm Biol 2020; 93:102734. [PMID: 33077145 DOI: 10.1016/j.jtherbio.2020.102734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
This study describes the thermoregulatory and metabolic responses during a simulated half-marathon (21 km) run performed outdoors in a hot, humid environment. Ten male runners were recruited for the study, The run was carried out individually under solar radiation on a predetermined path in the following environmental conditions (ambient temperature: 27.96 ± 1.70 °C, globe temperature: 28.52 ± 2.51 °C, relative humidity: 76.88 ± 7.49%, wet bulb globe temperature: 25.80 ± 1.18 °C). Core temperature, skin temperature, head temperature, heat storage, heart rate, expired gases, rating of perceived exertion, and speed were measured or calculated before the start, every 3 km, and immediately following the run. Comparisons were made for each dependent variable using one-way repeated measures analysis of variance tests, and a Bonferroni test. Average run time and pace were 101:00 ± 9:52 min and 4:48 ± 00:16 min km-1, respectively. Participants significantly reduced their running speed, oxygen consumption, and heat storage at 9 km (p < 0.05). While core temperature was significantly increased at 6 km (p < 0.05) before plateauing for the remainder of the run. The key finding was that most of the runners reduced their pace when a Tcore of 39 °C was reached which occurred between 6 and 9 km of the run, yet runners were able to increase their speed demonstrating an "end-spurt" near the end of the run.
Collapse
Affiliation(s)
| | - Zachary Mckenna
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA.
| | - Fabiano Trigueiro Amorim
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Alyson Felipe Da Costa Sena
- Graduate Program in Physical Education, Department of Physical Education, Federal University of Maranhão, São Luis, MA, Brazil
| | - Thiago Teixeira Mendes
- Graduate Program in Physical Education, Department of Physical Education, Federal University of Maranhão, São Luis, MA, Brazil
| | - Christiano Eduardo Veneroso
- Graduate Program in Physical Education, Department of Physical Education, Federal University of Maranhão, São Luis, MA, Brazil
| | | | | |
Collapse
|
18
|
Abed MEF, Deshayes TA, Claveau P, Jeker D, Thénault F, Goulet ED. Impact of Mild Hypohydration on 100 m Front Crawl Performance and Starting Block Peak Force Production in Competitive University-Level Swimmers. Sports (Basel) 2020; 8:sports8100133. [PMID: 33066345 PMCID: PMC7602092 DOI: 10.3390/sports8100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 11/29/2022] Open
Abstract
Unstructured, ad libitum drinking may predispose some athletes to start exercise already slightly hypohydrated (decreased body water). The impact of pre-exercise mild hypohydration on subsequent swimming performance is still unknown. Hence, the goal of this study was to examine its effect on peak force production on the starting block and 100 m front crawl swimming performance in competitive university-level swimmers. At least one hour after having been passively exposed to heat where a body mass loss of 1.5% was induced or euhydration (normal body water) maintained, nine participants (age: 22 ± 2 years) underwent an assessment of their peak force production on the starting block and 100 m front crawl performance. One hour following hypohydration, rectal temperature had returned to baseline in each condition. Urine osmolality and specific gravity were higher (p < 0.05) with hypohydration than euhydration (995 ± 65 vs. 428 ± 345 mOsmol/kg; 1.027 ± 0.003 vs. 1.016 ± 0.007 g/mL) prior to exercise testing, as was perceived thirst. Swimming performance (p = 0.86) and peak force production (p = 0.72) on the starting block did not differ between the hypohydration and euhydrated condition (63.00 ± 4.26 vs. 63.09 ± 4.52 s; 1322 ± 236 vs. 1315 ± 230 N). The current results indicate that mild hypohydration, which may occur with ad libitum drinking, does not impede peak force production on the starting block and 100 m front crawl performance in university-level competitive swimmers. Planned drinking is not required prior to such an event.
Collapse
Affiliation(s)
- Mohamed El Fethi Abed
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (M.E.F.A.); (T.A.D.); (P.C.); (D.J.); (F.T.)
| | - Thomas A. Deshayes
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (M.E.F.A.); (T.A.D.); (P.C.); (D.J.); (F.T.)
- Research Centre on Aging, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
| | - Pascale Claveau
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (M.E.F.A.); (T.A.D.); (P.C.); (D.J.); (F.T.)
| | - David Jeker
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (M.E.F.A.); (T.A.D.); (P.C.); (D.J.); (F.T.)
| | - François Thénault
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (M.E.F.A.); (T.A.D.); (P.C.); (D.J.); (F.T.)
| | - Eric D.B. Goulet
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (M.E.F.A.); (T.A.D.); (P.C.); (D.J.); (F.T.)
- Research Centre on Aging, University of Sherbrooke, Sherbrooke, QC J1H 4C4, Canada
- Correspondence: ; Tel.: +1-819-821-8000 (ext. 62728)
| |
Collapse
|
19
|
James LJ, Funnell MP, James RM, Mears SA. Does Hypohydration Really Impair Endurance Performance? Methodological Considerations for Interpreting Hydration Research. Sports Med 2020; 49:103-114. [PMID: 31696453 PMCID: PMC6901416 DOI: 10.1007/s40279-019-01188-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The impact of alterations in hydration status on human physiology and performance responses during exercise is one of the oldest research topics in sport and exercise nutrition. This body of work has mainly focussed on the impact of reduced body water stores (i.e. hypohydration) on these outcomes, on the whole demonstrating that hypohydration impairs endurance performance, likely via detrimental effects on a number of physiological functions. However, an important consideration, that has received little attention, is the methods that have traditionally been used to investigate how hypohydration affects exercise outcomes, as those used may confound the results of many studies. There are two main methodological limitations in much of the published literature that perhaps make the results of studies investigating performance outcomes difficult to interpret. First, subjects involved in studies are generally not blinded to the intervention taking place (i.e. they know what their hydration status is), which may introduce expectancy effects. Second, most of the methods used to induce hypohydration are both uncomfortable and unfamiliar to the subjects, meaning that alterations in performance may be caused by this discomfort, rather than hypohydration per se. This review discusses these methodological considerations and provides an overview of the small body of recent work that has attempted to correct some of these methodological issues. On balance, these recent blinded hydration studies suggest hypohydration equivalent to 2–3% body mass decreases endurance cycling performance in the heat, at least when no/little fluid is ingested.
Collapse
Affiliation(s)
- Lewis J James
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK.
| | - Mark P Funnell
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Ruth M James
- Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| |
Collapse
|
20
|
Kenefick RW. Author's Reply to Goulet: Comment on: "Drinking Strategies: Planned Drinking Versus Drinking to Thirst''. Sports Med 2020; 49:635-636. [PMID: 30094800 DOI: 10.1007/s40279-018-0966-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert W Kenefick
- Thermal and Mountain Medicine Division, US Army Research Institute, Natick, MA, USA.
| |
Collapse
|
21
|
Giersch GEW, Charkoudian N, Stearns RL, Casa DJ. Fluid Balance and Hydration Considerations for Women: Review and Future Directions. Sports Med 2019; 50:253-261. [DOI: 10.1007/s40279-019-01206-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Effect of Thirst-Driven Fluid Intake on 1 H Cycling Time-Trial Performance in Trained Endurance Athletes. Sports (Basel) 2019; 7:sports7100223. [PMID: 31615028 PMCID: PMC6835292 DOI: 10.3390/sports7100223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 11/16/2022] Open
Abstract
A meta-analysis demonstrated that programmed fluid intake (PFI) aimed at fully replacing sweat losses during a 1 h high-intensity cycling exercise impairs performance compared with no fluid intake (NFI). It was reported that thirst-driven fluid intake (TDFI) may optimize cycling performance, compared with when fluid is consumed more than thirst dictates. However, how TDFI, compared with PFI and NFI, impacts performance during a 1 h cycling time-trial performance remains unknown. The aim of this study was to compare the effect of NFI, TDFI and PFI on 1 h cycling time-trial performance. Using a randomized, crossover and counterbalanced protocol, 9 (7 males and 2 females) trained endurance athletes (30 ± 9 years; Peak V · O2∶ 59 ± 8 mL·kg-1·min-1) completed three 1 h cycling time-trials (30 °C, 50% RH) with either NFI, TDFI or PFI designed to maintain body mass (BM) at ~0.5% of pre-exercise BM. Body mass loss reached 2.9 ± 0.4, 2.2 ± 0.3 and 0.6 ± 0.2% with NFI, TDFI and PFI, respectively. Heart rate, rectal and mean skin temperatures and ratings of perceived exertion and of abdominal discomfort diverged marginally among trials. Mean distance completed (NFI: 35.6 ± 1.9 km; TDFI: 35.8 ± 2.0; PFI: 35.7 ± 2.0) and, hence, average power output maintained during the time-trials did not significantly differ among trials, and the impact of both PFI and TDFI vs. NFI was deemed trivial or unclear. These findings indicate that neither PFI nor TDFI are likely to offer any advantage over NFI during a 1 h cycling time-trial.
Collapse
|
23
|
Wilson PB. 'I think I'm gonna hurl': A Narrative Review of the Causes of Nausea and Vomiting in Sport. Sports (Basel) 2019; 7:E162. [PMID: 31277403 PMCID: PMC6680692 DOI: 10.3390/sports7070162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022] Open
Abstract
Exercise-associated gastrointestinal (GI) distress can negatively impact athletic performance and interfere with exercise training. Although there are a few universal underlying causes of GI distress, each symptom often has its own unique triggers and, therefore, its own prevention and management strategies. One of the most troubling GI symptoms an athlete can experience during training and competition is nausea/vomiting. The prevalence of nausea varies with several factors, two of the most important being exercise intensity and duration. Relatively brief, high-intensity exercise (e.g., sprinting, tempo runs) and ultra-endurance exercise are both associated with more frequent and severe nausea. The potential causes of nausea in sport are numerous and can include catecholamine secretion, hypohydration, heat stress, hyponatremia, altitude exposure, excessive fluid/food consumption, hypertonic beverage intake, pre-exercise intake of fatty- or protein-rich foods (especially in close proximity to exercise), prolonged fasting, various supplements (caffeine, sodium bicarbonate, ketones), certain drugs (antibiotics, opioids), GI infections, and competition-related anxiety. Beyond directly addressing these aforementioned causes, antiemetic drugs (e.g., ondansetron) may also be useful for alleviating nausea in some competitive situations. Given the commonness of nausea in sport and its potential impact on exercise performance, athletes and sports medicine practitioners should be aware of the origins of nausea and strategies for dealing with this troublesome gut complaint.
Collapse
Affiliation(s)
- Patrick B Wilson
- Human Movement Sciences, Old Dominion University, Norfolk, VA 23529, USA.
| |
Collapse
|
24
|
Effect of ad libitum intake of lactose-free milk on subsequent performance of collegiate badminton athletes. GERMAN JOURNAL OF EXERCISE AND SPORT RESEARCH 2019. [DOI: 10.1007/s12662-019-00592-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
The ergogenic potency of carbohydrate mouth rinse on endurance running performance of dehydrated athletes. Eur J Appl Physiol 2019; 119:1711-1723. [PMID: 31098832 DOI: 10.1007/s00421-019-04161-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/09/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To examine the effect of carbohydrate (CHO) mouth rinsing on endurance running responses and performance in dehydrated individuals. METHODS In a double blind, randomised crossover design, 12 well-trained male runners completed 4 running time to exhaustion (TTE) trials at a speed equivalent to 70% of VO2peak in a thermoneutral condition. Throughout each run, participants mouth rinsed and expectorated every 15 min either 25 mL of 6% CHO or a placebo (PLA) solution for 10 s. The four TTEs consisted of two trials in the euhydrated (EU-CHO and EU-PLA) and two trials in the dehydrated (DY-CHO and DY-PLA) state. Prior to each TTE run, participants were dehydrated via exercise and allowed a passive rest period during which they were fed and either rehydrated equivalent to their body mass deficit (i.e., EU trials) or ingested only 50 mL of water (DY trials). RESULTS CHO mouth rinsing significantly improved TTE performance in the DY compared to the EU trials (78.2 ± 4.3 vs. 76.9 ± 3.8 min, P = 0.02). The arousal level of the runners was significantly higher in the DY compared to the EU trials (P = 0.02). There was no significant difference among trials in heart rate, plasma glucose and lactate, and psychological measures. CONCLUSIONS CHO mouth rinsing enhanced running performance significantly more when participants were dehydrated vs. euhydrated due to the greater sensitivity of oral receptors related to thirst and central mediated activation. These results show that level of dehydration alters the effect of brain perception with presence of CHO.
Collapse
|
26
|
Goulet EDB, Mélançon MO, Lafrenière D, Paquin J, Maltais M, Morais JA. Impact of Mild Hypohydration on Muscle Endurance, Power, and Strength in Healthy, Active Older Men. J Strength Cond Res 2019; 32:3405-3415. [PMID: 28234715 DOI: 10.1519/jsc.0000000000001857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Goulet, EDB, Mélançon, MO, Lafrenière, D, Paquin, J, Maltais, M, and Morais, JA. Impact of mild hypohydration on muscle endurance, power, and strength in healthy, active older men. J Strength Cond Res 32(12): 3414-3424, 2018-Under particular circumstances older persons may be vulnerable to developing mild chronic hypohydration. In young adults, hypohydration has been shown to impair muscle endurance, power and strength. Muscle performance declines with aging, a condition known as dynapenia. How hypohydration impacts muscle performance in older persons remains unclear. In this study, we examined this question, believing it may identify a factor exacerbating dynapenia. One-hour after having been passively exposed to heat where either a body mass loss of 1% was induced or euhydration maintained with fluid ingestion, 8 healthy, active older men (age: 68 ± 5 years) completed an exercise testing session where indices of muscle strength (30-second chair stand, grip strength, maximal isometric seated leg-press extension), endurance (seated leg-curl flexion + seated leg-press extension to exhaustion at 60% of 1 repetition maximum), and power (30-second Wingate test) were assessed. Gastrointestinal temperature before exercise testing was not significantly different from that measured before heat exposure with neither hydration regimen. Magnitude-based inferential statistics indicate that from a clinical perspective, the effect of hypohydration on 30-second chair stand (-1.0 ± 4.4%) is possibly harmful, for grip strength (-2.4 ± 4.1%), lower limbs endurance (-7.5 ± 11.2%), and anaerobic power (-3.9 ± 4.3%) likely detrimental, and unclear with respect to maximal isometric lower limb strength. Maintaining adequate hydration in older men is important, since hypohydration of only 1% body mass could impede muscle endurance, power and strength and, consequently, worsen the impact of dynapenia.
Collapse
Affiliation(s)
- Eric D B Goulet
- Department of Kinanthropology, Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Québec, Canada.,Research Center on Aging, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Michel O Mélançon
- School of Readaptation, Faculty of Medicine and Health Sciences, University of Sherbrooke, Québec, Canada
| | - David Lafrenière
- Department of Kinanthropology, Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Jasmine Paquin
- Department of Kinanthropology, Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Mathieu Maltais
- Research Center on Aging, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - José A Morais
- Division of Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| |
Collapse
|
27
|
Impact of Ad Libitum Versus Programmed Drinking on Endurance Performance: A Systematic Review with Meta-Analysis. Sports Med 2019; 49:221-232. [DOI: 10.1007/s40279-018-01051-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Abstract
The health and performance of ultra-endurance athletes is dependent on avoidance of performance limiting hypohydration while also avoiding the potentially fatal consequences of exercise-associated hyponatremia due to overhydration. In this work, key factors related to maintaining proper hydration during ultra-endurance activities are discussed. In general, proper hydration need not be complicated and has been well demonstrated to be achieved by simply drinking to thirst and consuming a typical race diet during ultra-endurance events without need for supplemental sodium. As body mass is lost from oxidation of stored fuel, and water supporting the intravascular volume is generated from endogenous fuel oxidation and released with glycogen oxidation, the commonly promoted hydration guidelines of avoiding body mass losses of >2% can result in overhydration during ultra-endurance activities. Thus, some body mass loss should occur during prolonged exercise, and appropriate hydration can be maintained by drinking to the dictates of thirst.
Collapse
|
29
|
Mulligan M, Adam G, Emig T. A minimal power model for human running performance. PLoS One 2018; 13:e0206645. [PMID: 30444876 PMCID: PMC6239296 DOI: 10.1371/journal.pone.0206645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/16/2018] [Indexed: 11/18/2022] Open
Abstract
Models for human running performances of various complexities and underlying principles have been proposed, often combining data from world record performances and bio-energetic facts of human physiology. The purpose of this work is to develop a novel, minimal and universal model for human running performance that employs a relative metabolic power scale. The main component is a self-consistency relation for the time dependent maximal power output. The analytic approach presented here is the first to derive the observed logarithmic scaling between world (and other) record running speeds and times from basic principles of metabolic power supply. Our hypothesis is that various female and male record performances (world, national) and also personal best performances of individual runners for distances from 800m to the marathon are excellently described by this model. Indeed, we confirm this hypothesis with mean errors of (often much) less than 1%. The model defines endurance in a way that demonstrates symmetry between long and short racing events that are separated by a characteristic time scale comparable to the time over which a runner can sustain maximal oxygen uptake. As an application of our model, we derive personalized characteristic race speeds for different durations and distances.
Collapse
Affiliation(s)
- Matthew Mulligan
- Claremont McKenna College, W.M. Keck Science Department, Claremont, California, United States of America
| | - Guillaume Adam
- Massachusetts Institute of Technology, MultiScale Materials Science for Energy and Environment, Joint MIT-CNRS Laboratory (UMI 3466), Cambridge, Massachusetts, United States of America
| | - Thorsten Emig
- Massachusetts Institute of Technology, MultiScale Materials Science for Energy and Environment, Joint MIT-CNRS Laboratory (UMI 3466), Cambridge, Massachusetts, United States of America
- Laboratoire de Physique Théorique et Modèles Statistiques, CNRS UMR 8626, Bât. 100, Université Paris-Saclay, Orsay cedex, France
| |
Collapse
|
30
|
Abstract
In humans, thirst tends to be alleviated before complete rehydration is achieved. When sweating rates are high and ad libitum fluid consumption is not sufficient to replace sweat losses, a cumulative loss in body water results. Body mass losses of 2% or greater take time to accumulate. Dehydration of ≥ 2% body mass is associated with impaired thermoregulatory function, elevated cardiovascular strain and, in many conditions (e.g., warmer, longer, more intense), impaired aerobic exercise performance. Circumstances where planned drinking is optimal include longer duration activities of > 90 min, particularly in the heat; higher-intensity exercise with high sweat rates; exercise where performance is a concern; and when carbohydrate intake of 1 g/min is desired. Individuals with high sweat rates and/or those concerned with exercise performance should determine sweat rates under conditions (exercise intensity, pace) and environments similar to that anticipated when competing and tailor drinking to prevent body mass losses > 2%. Circumstances where drinking to thirst may be sufficient include short duration exercise of < 1 h to 90 min; exercise in cooler conditions; and lower-intensity exercise. It is recommended to never drink so much that weight is gained.
Collapse
Affiliation(s)
- Robert W Kenefick
- Thermal and Mountain Medicine Division, US Army Research Institute, Natick, MA, USA.
| |
Collapse
|
31
|
Hoffman MD, Goulet EDB, Maughan RJ. Considerations in the Use of Body Mass Change to Estimate Change in Hydration Status During a 161-Kilometer Ultramarathon Running Competition. Sports Med 2018; 48:243-250. [PMID: 28895063 DOI: 10.1007/s40279-017-0782-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydration guidelines found in the scientific and popular literature typically advise that body mass losses beyond 2% should be avoided during exercise. In this work, we demonstrate that these guidelines are not applicable to prolonged exercise of several hours where body mass loss does not reflect an equivalent loss of body water due to the effects of body mass change from substrate use, release of water bound with muscle and liver glycogen, and production of water during substrate metabolism. These effects on the body mass loss required to maintain body water balance are shown for a 161-km mountain ultramarathon running competition participant utilizing published data for the total energy cost, exogenous energy consumption and percentage from each fuel source, average participant body mass, and the extent of soft tissue fluid accumulation during an ultramarathon. We assumed that total energy derived from protein ranges from 5 to 10%, all exogenous energy is used to support the energy cost of the race, glycogen utilization ranges from 300 to 500 g, water linked with glycogen ranges from 1 to 3 g per g of glycogen, and the mass of the bladder and gastrointestinal tract is unchanged from pre-race to post-race body mass measurements. These calculations show that the average participant of 68.8 kg must lose 1.9-5.0% body mass to maintain the water supporting body water balance while also avoiding overhydration. Future hydration guidelines should consider these findings so that the proper hydration message is conveyed to those who participate in prolonged exercise.
Collapse
Affiliation(s)
- Martin D Hoffman
- Department of Physical Medicine and Rehabilitation, Department of Veterans Affairs, Northern California Health Care System, 10535 Hospital Way, Sacramento, CA, 95655-1200, USA. .,Department of Physical Medicine and Rehabilitation, University of California Davis Medical Center, Sacramento, CA, USA. .,Ultra Sports Science Foundation, El Dorado Hills, CA, USA.
| | - Eric D B Goulet
- Research Centre on Aging and Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
32
|
Ad libitum drinking adequately supports hydration during 2 h of running in different ambient temperatures. Eur J Appl Physiol 2018; 118:2687-2697. [PMID: 30267225 DOI: 10.1007/s00421-018-3996-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE To examine if ad libitum drinking will adequately support hydration during exertional heat stress. METHODS Ten endurance-trained runners ran for 2 h at 60% of maximum oxygen uptake under different conditions. Participants drank water ad libitum during separate trials at mean ambient temperatures of 22 °C, 30 °C and 35 °C. Participants also completed three trials at a mean ambient temperature of 35 °C while drinking water ad libitum in all trials, and with consumption of programmed glucose or whey protein hydrolysate solutions to maintain euhydration in two of these trials. Heart rate, oxygen uptake, rectal temperature, perceived effort, and thermal sensation were monitored, and nude body mass, hemoglobin, hematocrit, and plasma osmolality were measured before and after exercise. Water and mass balance equations were used to calculate hydration-related variables. RESULTS Participants adjusted their ad libitum water intake so that the same decrease in body mass (1.1-1.2 kg) and same decrease in body water (0.8-0.9 kg) were observed across the range of ambient temperatures which yielded significant differences (p < .001) in sweat loss. Overall, water intake and total water gain replaced 57% and 66% of the water loss, respectively. The loss in body mass and body water associated with ad libitum drinking resulted in no alteration in physiological and psychophysiological variables compared with the condition when hydration was nearly fully maintained (0.3 L body water deficit) relative to pre-exercise status from programmed drinking. CONCLUSIONS Ad libitum drinking is an appropriate strategy for supporting hydration during running for 2 h duration under hot conditions.
Collapse
|
33
|
Waldman HS, Heatherly AJ, Waddell AF, Krings BM, OʼNeal EK. Five-Kilometer Time Trial Reliability of a Nonmotorized Treadmill and Comparison of Physiological and Perceptual Responses vs. a Motorized Treadmill. J Strength Cond Res 2018; 32:1455-1461. [PMID: 28542090 DOI: 10.1519/jsc.0000000000001993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Waldman, HS, Heatherly, AJ, Waddell, AF, Krings, BM, and O'Neal, EK. Five-kilometer time trial reliability of a nonmotorized treadmill and comparison of physiological and perceptual responses vs. a motorized treadmill. J Strength Cond Res 32(5): 1455-1461, 2018-This study examined the reliability of running performance across 3 nonmotorized treadmill (NMT) 5-km time trials (TTs) and physiological, gait, and perceptual differences at a 5-km pace for both NMT and motorized treadmills (MTs). Ten male runners experienced in road racing who had never run on an NMT completed 3 TT to establish personal best 5-km pace. In a later session, participants ran at this pace for 5 minutes on the NMT while metabolic, gait, and perceptual measures were recorded and then ran at outdoor 5-km personal best pace on an MT at 1% grade (counter-balanced crossover design). Intraclass correlation (ICC = 0.95) between the TT1 and TT2 was strong but improved between TT2 and TT3 (ICC = 0.99) with considerable reduction in variability. Nonmotorized treadmill resulted in a 24% slower pace (10.6 ± 1.5 vs. 13.9 ± 2.6 km·h; p < 0.001), shorter stride length (1.02 ± 0.10 vs. 1.27 ± 0.18 m; p < 0.001), and decreased cadence (175 ± 12 vs. 181 ± 13 steps per·minute; p = 0.01). However, V[Combining Dot Above]O2, respiratory exchange ratio (RER), lactate concentration, and heart rate did not differ between modalities (NMT = 3.4 ± 0.4 L·min, 0.96 ± 0.04, 6.9 ± 3.7 mmol, 172 ± 10 b·min; MT = 3.4 ± 0.5 L·min, 0.96 ± 0.04, 5.7 ± 3.4 mmol, 170 ± 10 b·min). rate of perceived exertion (RPE) for legs, breathing, and overall did not differ between treadmill types. A familiarization session should be included for TT using NMT. Other than gait and pace characteristics similar responses were elicited by both treadmills when running at 5-km pace. However, with these considerations, NMT TT of 4-km might be more appropriate in matching MT 5-km TT duration without altering physiological responses significantly.
Collapse
Affiliation(s)
- Hunter S Waldman
- Department of Kinesiology, Mississippi State University, Mississippi State, Mississippi
| | - Alex J Heatherly
- Department of Health, Physical Education, and Recreation, University of North Alabama, Florence, Alabama
| | - Ashton F Waddell
- Department of Health, Physical Education, and Recreation, University of North Alabama, Florence, Alabama
| | - Ben M Krings
- Department of Kinesiology, Mississippi State University, Mississippi State, Mississippi
| | - Eric K OʼNeal
- Department of Health, Physical Education, and Recreation, University of North Alabama, Florence, Alabama
| |
Collapse
|
34
|
Goulet EDB. Comment on "Drinking Strategies: Planned Drinking Versus Drinking to Thirst''. Sports Med 2018; 49:631-633. [PMID: 30094801 DOI: 10.1007/s40279-018-0973-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Eric D B Goulet
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC, Canada. .,Research Centre on Aging, University of Sherbrooke, Sherbrooke, QC, Canada. .,Performance, Hydration and Thermoregulation Laboratory, University of Sherbrooke, 2500 boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
35
|
Hoffman MD, Stellingwerff T, Costa RJS. Considerations for ultra-endurance activities: part 2 - hydration. Res Sports Med 2018; 27:182-194. [PMID: 30056755 DOI: 10.1080/15438627.2018.1502189] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
It is not unusual for those participating in ultra-endurance (> 4 hr) events to develop varying degrees of either hypohydration or hyperhydration. Yet, it is important for ultra-endurance athletes to avoid the performance limiting and potentially fatal consequences of these conditions. During short periods of exercise (< 1 hr), trivial effects on the relationship between body mass change and hydration status result from body mass loss due to oxidation of endogenous fuel stores, and water supporting the intravascular volume being generated from endogenous fuel oxidation and released with glycogen oxidation. However, these effects have meaningful implications during prolonged exercise. In fact, body mass loses well over 2% may be required during some ultra-endurance activities to avoid hyperhydration. Therefore, the typical hydration guidelines to avoid more than 2% body mass loss do not apply in ultra-endurance activities and can potentially result in hyperhydration. Fortunately, achieving the balance of proper hydration during ultra-endurance activities need not be complicated and has been well demonstrated to generally be achieved by simply drinking to thirst and avoiding excessive sodium supplementation with intention of replacing all sodium losses during the exercise.
Collapse
Affiliation(s)
- Martin D Hoffman
- a Physical Medicine and Rehabilitation Service, Department of Veterans Affairs , Northern California Health Care System , Sacramento , CA , USA.,b Department of Physical Medicine and Rehabilitation , University of California Davis Medical Center , Sacramento , CA , USA.,c Ultra Sports Science Foundation , El Dorado Hills , CA , USA
| | | | - Ricardo J S Costa
- e Department of Nutrition Dietetics and Food , Monash University , Notting Hill , Victoria , Australia
| |
Collapse
|
36
|
Salt + Glycerol-Induced Hyperhydration Enhances Fluid Retention More Than Salt- or Glycerol-Induced Hyperhydration. Int J Sport Nutr Exerc Metab 2018; 28:246-252. [DOI: 10.1123/ijsnem.2017-0310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hyperhydration has been demonstrated to improve work capacity and cardiovascular and thermoregulatory functions, enhance orthostatic tolerance, slow or neutralize bone demineralization, and decrease postdive bubble formation. Adding sodium or glycerol to a hyperhydration solution optimizes fluid retention. Sodium and glycerol produce their effect through different physiological mechanisms. If combined into a hyperhydration solution, their impact on fluid retention could potentially be greater than their singular effect. We compared the effect of salt-induced hyperhydration (SIH), glycerol-induced hyperhydration (GIH), and salt + glycerol-induced hyperhydration (SGIH) on fluid balance responses during a 3-hr passive experiment. Using a randomized, crossover, and counterbalanced experiment, 15 young men (22 ± 4 years) underwent three, 3-hr hyperhydration experiments during which they ingested 30 ml/kg fat-free mass (FFM) of water with an artificial sweetener plus either (a) 7.5 g of table salt/L (SIH), (b) 1.4 g glycerol/kg FFM (GIH), or (c) 7.5 g of table salt/L + 1.4 g glycerol/kg FFM (SGIH). After 3 hr, there were no significant differences in plasma volume changes among experiments (SIH: 11.3% ± 9.9%; GIH: 7.6% ± 12.7%; SGIH: 11.3% ± 13.7%). Total urine production was significantly lower (SIH: 775 ± 329 ml; GIH: 1,248 ± 270 ml; SGIH: 551 ± 208 ml) and fluid retention higher (SIH: 1,127 ± 212 ml; GIH: 729 ± 115 ml; SGIH: 1,435 ± 140 ml) with SGIH than either GIH or SIH. Abdominal discomfort was low and not significantly different among experiments. In conclusion, results show that SGIH reduces urine production and provides more fluid retention than either SIH or GIH.
Collapse
|
37
|
Kenefick RW. Author's Reply to Valenzuela et al.: Comment on "Drinking Strategies: Planned Drinking Versus Drinking to Thirst". Sports Med 2018; 48:2215-2217. [PMID: 29582379 DOI: 10.1007/s40279-018-0902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Robert W Kenefick
- Thermal and Mountain Medicine Division, US Army Research Institute, Natick, MA, USA.
| |
Collapse
|
38
|
|
39
|
Willmott AGB, Gibson OR, James CA, Hayes M, Maxwell NS. Physiological and perceptual responses to exercising in restrictive heat loss attire with use of an upper-body sauna suit in temperate and hot conditions. Temperature (Austin) 2018; 5:162-174. [PMID: 30377634 DOI: 10.1080/23328940.2018.1426949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022] Open
Abstract
The aim of this experiment was to quantify physiological and perceptual responses to exercise with and without restrictive heat loss attire in hot and temperate conditions. Ten moderately-trained individuals (mass; 69.44±7.50 kg, body fat; 19.7±7.6%) cycled for 30-mins (15-mins at 2 W.kg-1 then 15-mins at 1 W.kg-1) under four experimental conditions; temperate (TEMP, 22°C/45%), hot (HOT, 45°C/20%) and, temperate (TEMPSUIT, 22°C/45%) and hot (HOTSUIT, 45°C/20%) whilst wearing an upper-body "sauna suit". Core temperature changes were higher (P<0.05) in TEMPSUIT (+1.7±0.4°C.hr-1), HOT (+1.9±0.5°C.hr-1) and HOTSUIT (+2.3±0.5°C.hr-1) than TEMP (+1.3±0.3°C.hr-1). Skin temperature was higher (P<0.05) in HOT (36.53±0.93°C) and HOTSUIT (37.68±0.68°C) than TEMP (33.50±1.77°C) and TEMPSUIT (33.41±0.70°C). Sweat rate was greater (P<0.05) in TEMPSUIT (0.89±0.24 L.hr-1), HOT (1.14±0.48 L.hr-1) and HOTSUIT (1.51±0.52 L.hr-1) than TEMP (0.56±0.27 L.hr-1). Peak heart rate was higher (P<0.05) in TEMPSUIT (155±23 b.min-1), HOT (163±18 b.min-1) and HOTSUIT (171±18 b.min-1) than TEMP (151±20 b.min-1). Thermal sensation and perceived exertion were greater (P<0.05) in TEMPSUIT (5.8±0.5 and 14±1), HOT (6.4±0.5 and 15±1) and HOTSUIT (7.1±0.5 and 16±1) than TEMP (5.3±0.5 and 14±1). Exercising in an upper-body sauna suit within temperate conditions induces a greater physiological strain and evokes larger sweat losses compared to exercising in the same conditions, without restricting heat loss. In hot conditions, wearing a sauna suit increases physiological and perceptual strain further, which may accelerate the stimuli for heat adaptation and improve HA efficiency.
Collapse
Affiliation(s)
| | - Oliver R Gibson
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK.,Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, UK
| | - Carl A James
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK.,National Sports Institute, Institut Sukan Negara, National Sport Complex, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Mark Hayes
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| | - Neil S Maxwell
- Environmental Extremes Laboratory, University of Brighton, Eastbourne, UK
| |
Collapse
|
40
|
Hew-Butler TD, Eskin C, Bickham J, Rusnak M, VanderMeulen M. Dehydration is how you define it: comparison of 318 blood and urine athlete spot checks. BMJ Open Sport Exerc Med 2018; 4:e000297. [PMID: 29464103 PMCID: PMC5812394 DOI: 10.1136/bmjsem-2017-000297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 11/05/2022] Open
Abstract
Clinical medicine defines dehydration using blood markers that confirm hypertonicity (serum sodium concentration ([Na+])>145 mmol/L) and intracellular dehydration. Sports medicine equates dehydration with a concentrated urine as defined by any urine osmolality (UOsm) ≥700 mOsmol/kgH2O or urine specific gravity (USG) ≥1.020.
Collapse
Affiliation(s)
- Tamara D Hew-Butler
- Department of Human Movement Science, Exercise Science Program, Oakland University, Rochester, Michigan, USA
| | - Christopher Eskin
- Department of Human Movement Science, Exercise Science Program, Oakland University, Rochester, Michigan, USA
| | - Jordan Bickham
- Department of Human Movement Science, Exercise Science Program, Oakland University, Rochester, Michigan, USA
| | - Mario Rusnak
- Department of Human Movement Science, Exercise Science Program, Oakland University, Rochester, Michigan, USA
| | - Melissa VanderMeulen
- Department of Human Movement Science, Exercise Science Program, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
41
|
Hoffman MD, Cotter JD, Goulet ÉD, Laursen PB. VIEW: Is Drinking to Thirst Adequate to Appropriately Maintain Hydration Status During Prolonged Endurance Exercise? Yes. Wilderness Environ Med 2017; 27:192-5. [PMID: 27291699 DOI: 10.1016/j.wem.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Martin D Hoffman
- Department of Physical Medicine & Rehabilitation Department of Veterans Affairs, Northern California Health Care System, and University of California Davis Medical Center, Sacramento, CA, USA (Dr Hoffman)
| | - James D Cotter
- Exercise and Environmental Physiology, School of Physical Education, Sport and Exercise Sciences Division of Sciences, University of Otago, Dunedin New Zealand (Dr Cotter)
| | - Éric D Goulet
- Research Centre on Aging, Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, QC Canada (Dr Goulet)
| | - Paul B Laursen
- High Performance Sport New Zealand, and Sports Performance Research Institute New Zealand (SPRINZ) Auckland University of Technology, Auckland New Zealand (Dr Laursen)
| |
Collapse
|
42
|
The Influence of Drinking Fluid on Endurance Cycling Performance: A Meta-Analysis. Sports Med 2017; 47:2269-2284. [DOI: 10.1007/s40279-017-0739-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Savoie FA, Asselin A, Goulet EDB. Comparison of Sodium Chloride Tablets-Induced, Sodium Chloride Solution-Induced, and Glycerol-Induced Hyperhydration on Fluid Balance Responses in Healthy Men. J Strength Cond Res 2016; 30:2880-91. [PMID: 26849790 DOI: 10.1519/jsc.0000000000001371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Savoie, FA, Asselin, A, and Goulet, EDB. Comparison of sodium chloride tablets-induced, sodium chloride solution-induced, and glycerol-induced hyperhydration on fluid balance responses in healthy men. J Strength Cond Res 30(10): 2880-2891, 2016-Sodium chloride solution-induced hyperhydration (NaCl-SolIH) is a powerful strategy to increase body water before exercise. However, NaCl-SolIH is associated with an unpleasant salty taste, potentially dissuading some athletes from using it and coaches from recommending it. Therefore, we evaluated the hyperhydrating potential of sodium chloride tablets-induced hyperhydration (NaCl-TabIH), which bypasses the palatability issue of NaCl-SolIH without sacrificing sodium chloride content, and compared it to NaCl-SolIH and glycerol-induced hyperhydration (GIH). Sixteen healthy males (age: 21 ± 2 years; fat-free mass (FFM): 65 ± 6 kg) underwent three, 3-hour long passive hyperhydration protocols during which they drank, over the first 60 minutes, 30-ml·kg FFM of an artificially sweetened solution. During NaCl-TabIH, participants swallowed 7.5, 1 g each, sodium chloride tablets with every liter of solution. During NaCl-SolIH, an equal quantity of sodium chloride tablets was dissolved in each liter of solution. With GIH, the glycerol concentration was 46.7 g·L. Urine production, fluid retention, hemoglobin, hematocrit, plasma volume, and perceptual variables were monitored throughout the trials. Total fluid intake was 1948 ± 182 ml. After 3 hour, there were no significant differences among treatments for hemoglobin, hematocrit, and plasma volume changes. Fluid retention was significantly greater with NaCl-SolIH (1150 ± 287 ml) than NaCl-TabIH (905 ± 340 ml) or GIH (800 ± 211 ml), with no difference between NaCl-TabIH and GIH. No differences were found among treatments for perceptual variables. NaCl-TabIH and GIH are equally effective, but inferior than NaCl-SolIH. NaCl-TabIH represents an alternative to hyperhydration induced with glycerol, which is prohibited by the World Anti-Doping Agency.
Collapse
Affiliation(s)
- Félix A Savoie
- 1Department of Kinanthropology, Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Canada; and 2Research Centre on Aging, University of Sherbrooke, Sherbrooke, Canada
| | | | | |
Collapse
|
44
|
Wilson PB. Does Carbohydrate Intake During Endurance Running Improve Performance? A Critical Review. J Strength Cond Res 2016; 30:3539-3559. [PMID: 27045602 DOI: 10.1519/jsc.0000000000001430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Wilson, PB. Does carbohydrate intake during endurance running improve performance? A critical review. J Strength Cond Res 30(12): 3539-3559, 2016-Previous review articles assessing the effects of carbohydrate ingestion during prolonged exercise have not focused on running. Given the popularity of distance running and the widespread use of carbohydrate supplements, this article reviewed the evidence for carbohydrate ingestion during endurance running. The criteria for inclusion were (a) experimental studies reported in English language including a performance task, (b) moderate-to-high intensity exercise >60 minutes (intermittent excluded), and (c) carbohydrate ingestion (mouth rinsing excluded). Thirty studies were identified with 76 women and 505 men. Thirteen of the 17 studies comparing a carbohydrate beverage(s) with water or a placebo found a between-condition performance benefit with carbohydrate, although heterogeneity in protocols precludes clear generalizations about the expected effect sizes. Additional evidence suggests that (a) performance benefits are most likely to occur during events >2 hours, although several studies showed benefits for tasks lasting 90-120 minutes; (b) consuming carbohydrate beverages above ad libitum levels increases gastrointestinal discomfort without improving performance; (c) carbohydrate gels do not influence performance for events lasting 16-21 km; and (d) multiple saccharides may benefit events >2 hours if intake is ≥1.3 g·min Given that most participants were fasted young men, inferences regarding women, adolescents, older runners, and those competing in fed conditions are hampered. Future studies should address these limitations to further elucidate the role of carbohydrate ingestion during endurance running.
Collapse
Affiliation(s)
- Patrick B Wilson
- Human Movement Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
45
|
Thermoregulation During Extended Exercise in the Heat: Comparisons of Fluid Volume and Temperature. Wilderness Environ Med 2016; 27:386-92. [DOI: 10.1016/j.wem.2016.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 11/21/2022]
|
46
|
Akerman AP, Tipton M, Minson CT, Cotter JD. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither? Temperature (Austin) 2016; 3:412-436. [PMID: 28349082 PMCID: PMC5356617 DOI: 10.1080/23328940.2016.1216255] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 01/14/2023] Open
Abstract
Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se. While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans.
Collapse
Affiliation(s)
- Ashley Paul Akerman
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago , New Zealand
| | - Michael Tipton
- Extreme Environments Laboratory, Department of Sport & Exercise Science, University of Portsmouth , UK
| | | | - James David Cotter
- School of Physical Education, Sport and Exercise Sciences, Division of Sciences, University of Otago , New Zealand
| |
Collapse
|
47
|
Gonçalves LGC, Aquino RLDQTD, Puggina EF. Long distance run induced hydration and kidney function changes in marathoners. MOTRIZ: REVISTA DE EDUCACAO FISICA 2015. [DOI: 10.1590/s1980-65742015000300011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
AbstractThe aim of the study was to verify the hydration status and the kidney function in marathoners during the training season and after a marathon race. Nine male runners were investigated during 12 weeks of training. Urine was collected in four moments; in the beginning (C1) and during (C2) the training program, before (C3) and after (C4) the competition. Urine pH was measured using reagent tapes, urine density with a refractometer, protein excretion by Bradford assay and erythrocytes and leucocytes by microscopy. Changes were observed when C-4 was compared to the other collection times for all variables investigated. It is possible to conclude that physical exertion induced important changes in the hydration status and glomerular membrane selectivity to macromolecules, modifying the kidney function of the marathoners in C4.
Collapse
|
48
|
Maughan RJ, Watson P, Shirreffs SM. Implications of active lifestyles and environmental factors for water needs and consequences of failure to meet those needs. Nutr Rev 2015; 73 Suppl 2:130-40. [DOI: 10.1093/nutrit/nuv051] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Cheung SS, McGarr GW, Mallette MM, Wallace PJ, Watson CL, Kim IM, Greenway MJ. Separate and combined effects of dehydration and thirst sensation on exercise performance in the heat. Scand J Med Sci Sports 2015; 25 Suppl 1:104-11. [DOI: 10.1111/sms.12343] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2014] [Indexed: 11/29/2022]
Affiliation(s)
- S. S. Cheung
- Environmental Ergonomics Laboratory; Department of Kinesiology; Brock University; St. Catharines Canada
| | - G. W. McGarr
- Environmental Ergonomics Laboratory; Department of Kinesiology; Brock University; St. Catharines Canada
| | - M. M. Mallette
- Environmental Ergonomics Laboratory; Department of Kinesiology; Brock University; St. Catharines Canada
| | - P. J. Wallace
- Environmental Ergonomics Laboratory; Department of Kinesiology; Brock University; St. Catharines Canada
| | - C. L. Watson
- Environmental Ergonomics Laboratory; Department of Kinesiology; Brock University; St. Catharines Canada
| | - I. M. Kim
- Environmental Ergonomics Laboratory; Department of Kinesiology; Brock University; St. Catharines Canada
| | - M. J. Greenway
- Niagara Regional Campus; Michael G. DeGroote School of Medicine, McMaster University; Hamilton Canada
| |
Collapse
|
50
|
Longman D, Wells JCK, Stock JT. Can persistence hunting signal male quality? A test considering digit ratio in endurance athletes. PLoS One 2015; 10:e0121560. [PMID: 25853679 PMCID: PMC4390232 DOI: 10.1371/journal.pone.0121560] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 02/11/2015] [Indexed: 12/05/2022] Open
Abstract
Various theories have been posed to explain the fitness payoffs of hunting success among hunter-gatherers. ‘Having’ theories refer to the acquisition of resources, and include the direct provisioning hypothesis. In contrast, ‘getting’ theories concern the signalling of male resourcefulness and other desirable traits, such as athleticism and intelligence, via hunting prowess. We investigated the association between androgenisation and endurance running ability as a potential signalling mechanism, whereby running prowess, vital for persistence hunting, might be used as a reliable signal of male reproductive fitness by females. Digit ratio (2D:4D) was used as a proxy for prenatal androgenisation in 439 males and 103 females, while a half marathon race (21km), representing a distance/duration comparable with that of persistence hunting, was used to assess running ability. Digit ratio was significantly and positively correlated with half-marathon time in males (right hand: r = 0.45, p<0.001; left hand: r = 0.42, p<0.001) and females (right hand: r = 0.26, p<0.01; left hand: r = 0.23, p = 0.02). Sex-interaction analysis showed that this correlation was significantly stronger in males than females, suggesting that androgenisation may have experienced stronger selective pressure from endurance running in males. As digit ratio has previously been shown to predict reproductive success, our results are consistent with the hypothesis that endurance running ability may signal reproductive potential in males, through its association with prenatal androgen exposure. However, further work is required to establish whether and how females respond to this signalling for fitness.
Collapse
Affiliation(s)
- Daniel Longman
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Jonathan C. K. Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London, United Kingdom
| | - Jay T. Stock
- Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|