1
|
Périard JD, Eijsvogels TMH, Daanen HAM. Exercise under heat stress: thermoregulation, hydration, performance implications, and mitigation strategies. Physiol Rev 2021; 101:1873-1979. [PMID: 33829868 DOI: 10.1152/physrev.00038.2020] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A rise in body core temperature and loss of body water via sweating are natural consequences of prolonged exercise in the heat. This review provides a comprehensive and integrative overview of how the human body responds to exercise under heat stress and the countermeasures that can be adopted to enhance aerobic performance under such environmental conditions. The fundamental concepts and physiological processes associated with thermoregulation and fluid balance are initially described, followed by a summary of methods to determine thermal strain and hydration status. An outline is provided on how exercise-heat stress disrupts these homeostatic processes, leading to hyperthermia, hypohydration, sodium disturbances, and in some cases exertional heat illness. The impact of heat stress on human performance is also examined, including the underlying physiological mechanisms that mediate the impairment of exercise performance. Similarly, the influence of hydration status on performance in the heat and how systemic and peripheral hemodynamic adjustments contribute to fatigue development is elucidated. This review also discusses strategies to mitigate the effects of hyperthermia and hypohydration on exercise performance in the heat by examining the benefits of heat acclimation, cooling strategies, and hyperhydration. Finally, contemporary controversies are summarized and future research directions are provided.
Collapse
Affiliation(s)
- Julien D Périard
- University of Canberra Research Institute for Sport and Exercise, Bruce, Australia
| | - Thijs M H Eijsvogels
- Department of Physiology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hein A M Daanen
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Grundstein AJ, Hosokawa Y, Casa DJ, Stearns RL, Jardine JF. Influence of Race Performance and Environmental Conditions on Exertional Heat Stroke Prevalence Among Runners Participating in a Warm Weather Road Race. Front Sports Act Living 2019; 1:42. [PMID: 33344965 PMCID: PMC7739836 DOI: 10.3389/fspor.2019.00042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/19/2019] [Indexed: 01/19/2023] Open
Abstract
The New Balance Falmouth Road Race held in Falmouth, Massachusetts, U.S. is a short distance race (11.26 km) that is well-known for high rates of exertional heat stroke (EHS). Previous research has documented the increased EHS rates with hotter and more humid weather conditions, yet did not explore the influence of race pacing on EHS risk. In this study, we leverage 15 years of data to investigate if runners who experienced an EHS moderate their average paces based on weather conditions and if there is a difference in average race pace between participants who experienced an EHS and other runners. Results indicate that runners who experience an EHS do not appear to reduce their average pace with increasing WBGT warning flag categories. In addition, runners who suffer an EHS run at a faster average pace than others, even when controlling for age, gender, race performance, and starting time WBGT. This suggests the important role of metabolic heat production as a risk factor of EHS. Since race pacing is a modifiable risk factor, our findings support the need for race organizers to actively encourage runners to adjust race pacing based on weather conditions.
Collapse
Affiliation(s)
| | - Yuri Hosokawa
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Douglas J Casa
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - Rebecca L Stearns
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, United States
| | - John F Jardine
- Korey Stringer Institute, Department of Kinesiology, University of Connecticut, Storrs, CT, United States.,Falmouth Hospital, Falmouth, MA, United States
| |
Collapse
|
3
|
Bright FM, Chaseling GK, Jay O, Morris NB. Self-paced exercise performance in the heat with neck cooling, menthol application, and abdominal cooling. J Sci Med Sport 2018; 22:371-377. [PMID: 30270195 DOI: 10.1016/j.jsams.2018.09.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/19/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To investigate whether the exercise performance benefits with neck cooling in the heat are attributable to neck-specific cooling, general body cooling, a cooler site-specific thermal perception or a combination of the above. DESIGN Counter-balanced crossover design. METHODS Twelve healthy participants cycled in the heat (34°C, 30% relative humidity), at a power output (PO) self-selected to maintain a fixed rating of perceived exertion (RPE) of 16. Each participant underwent four experimental trials: no cooling (CON), neck cooling (NEC), abdominal cooling (ABD), or neck cooling with menthol (MEN). Participants cycled for 90min or until their workload reduced by <70% of their initial PO. Changes in PO, rectal temperature (Tre), mean skin temperature (Tsk), whole-body thermal sensation (TSwb) and thermal sensation of the neck (TSneck) were recorded throughout. RESULTS The mean reduction in PO throughout exercise was similar (p=0.431) for CON (175±10W), NEC (176 ±12W), ABD (172±13W) and MEN (174±12W). The ΔTre at the end of exercise was similar (p=0.874) for CON (0.83±0.5°C), NEC (0.85±0.5°C), ABD (0.82±0.5°C) and MEN (0.81±0.5°C). TSwb was cooler (p<0.013) in MEN (125±8mm) compared to CON (146±19mm), NEC (135±11mm) and ABD (141±16mm). CONCLUSIONS No differences in exercise performance or thermal strain were observed in any of the cooling trials compared to the CON trial, despite significantly cooler TSwb values in the MEN and NEC trials compared to the CON trial. These findings differ from previous observations and highlight that the benefit of neck cooling may be situation dependent.
Collapse
Affiliation(s)
- Felicity M Bright
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Australia
| | - Georgia K Chaseling
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Australia
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Australia; Charles Perkins Centre, University of Sydney, Australia
| | - Nathan B Morris
- Thermal Ergonomics Laboratory, Faculty of Health Sciences, University of Sydney, Australia; Center for Technology Research and Innovation, Cyprus; Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
| |
Collapse
|
4
|
CHASELING GEORGIAK, FILINGERI DAVIDE, BARNETT MICHAEL, HOANG PHU, DAVIS SCOTTL, JAY OLLIE. Cold Water Ingestion Improves Exercise Tolerance of Heat-Sensitive People with MS. Med Sci Sports Exerc 2018; 50:643-648. [DOI: 10.1249/mss.0000000000001496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
MacRae BA, Annaheim S, Spengler CM, Rossi RM. Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values. Front Physiol 2018. [PMID: 29441024 DOI: 10.3389/fphys.2018.00029, 10.3389/fpls.2018.00029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Skin temperature (Tskin) is commonly measured using Tskin sensors affixed directly to the skin surface, although the influence of setup variables on the measured outcome requires clarification. Objectives: The two distinct objectives of this systematic review were (1) to examine measurements from contact Tskin sensors considering equilibrium temperature and temperature disturbance, sensor attachments, pressure, environmental temperature, and sensor type, and (2) to characterise the contact Tskin sensors used, conditions of use, and subsequent reporting in studies investigating sports, exercise, and other physical activity. Data sources and study selection: For the measurement comparison objective, Ovid Medline and Scopus were used (1960 to July 2016) and studies comparing contact Tskin sensor measurements in vivo or using appropriate physical models were included. For the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact temperature sensors for the measurement of human Tskinin vivo during sport, exercise, and other physical activity were included. Study appraisal and synthesis methods: For measurement comparisons, assessments of risk of bias were made according to an adapted version of the Cochrane Collaboration's risk of bias tool. Comparisons of temperature measurements were expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-analyses were not performed due to the lack of a common reference condition. For the survey of use, extracted information was summarised in text and tabular form. Results: For measurement comparisons, 21 studies were included. Results from these studies indicated minor (<0.5°C) to practically meaningful (>0.5°C) measurement bias within the subgroups of attachment type, applied pressure, environmental conditions, and sensor type. The 95% LoA were often within 1.0°C for in vivo studies and 0.5°C for physical models. For the survey of use, 172 studies were included. Details about Tskin sensor setup were often poorly reported and, from those reporting setup information, it was evident that setups widely varied in terms of type of sensors, attachments, and locations used. Conclusions: Setup variables and conditions of use can influence the measured temperature from contact Tskin sensors and thus key setup variables need to be appropriately considered and consistently reported.
Collapse
Affiliation(s)
- Braid A MacRae
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Christina M Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
6
|
MacRae BA, Annaheim S, Spengler CM, Rossi RM. Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values. Front Physiol 2018; 9:29. [PMID: 29441024 PMCID: PMC5797625 DOI: 10.3389/fphys.2018.00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Skin temperature (Tskin) is commonly measured using Tskin sensors affixed directly to the skin surface, although the influence of setup variables on the measured outcome requires clarification. Objectives: The two distinct objectives of this systematic review were (1) to examine measurements from contact Tskin sensors considering equilibrium temperature and temperature disturbance, sensor attachments, pressure, environmental temperature, and sensor type, and (2) to characterise the contact Tskin sensors used, conditions of use, and subsequent reporting in studies investigating sports, exercise, and other physical activity. Data sources and study selection: For the measurement comparison objective, Ovid Medline and Scopus were used (1960 to July 2016) and studies comparing contact Tskin sensor measurements in vivo or using appropriate physical models were included. For the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact temperature sensors for the measurement of human Tskinin vivo during sport, exercise, and other physical activity were included. Study appraisal and synthesis methods: For measurement comparisons, assessments of risk of bias were made according to an adapted version of the Cochrane Collaboration's risk of bias tool. Comparisons of temperature measurements were expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-analyses were not performed due to the lack of a common reference condition. For the survey of use, extracted information was summarised in text and tabular form. Results: For measurement comparisons, 21 studies were included. Results from these studies indicated minor (<0.5°C) to practically meaningful (>0.5°C) measurement bias within the subgroups of attachment type, applied pressure, environmental conditions, and sensor type. The 95% LoA were often within 1.0°C for in vivo studies and 0.5°C for physical models. For the survey of use, 172 studies were included. Details about Tskin sensor setup were often poorly reported and, from those reporting setup information, it was evident that setups widely varied in terms of type of sensors, attachments, and locations used. Conclusions: Setup variables and conditions of use can influence the measured temperature from contact Tskin sensors and thus key setup variables need to be appropriately considered and consistently reported.
Collapse
Affiliation(s)
- Braid A. MacRae
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Christina M. Spengler
- Exercise Physiology Lab, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
7
|
FRIESEN BRIANJ, PÉRIARD JULIEND, POIRIER MARTINP, LAUZON MARTIN, BLONDIN DENISP, HAMAN FRANCOIS, KENNY GLENP. Work Rate during Self-paced Exercise is not Mediated by the Rate of Heat Storage. Med Sci Sports Exerc 2018; 50:159-168. [DOI: 10.1249/mss.0000000000001421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Gibson OR, Willmott AGB, James CA, Hayes M, Maxwell NS. Power Relative to Body Mass Best Predicts Change in Core Temperature During Exercise-Heat Stress. J Strength Cond Res 2017; 31:403-414. [PMID: 27359208 DOI: 10.1519/jsc.0000000000001521] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gibson, OR, Willmott, AGB, James, CA, Hayes, M, and Maxwell, NS. Power relative to body mass best predicts change in core temperature during exercise-heat stress. J Strength Cond Res 31(2): 403-414, 2017-Controlling internal temperature is crucial when prescribing exercise-heat stress, particularly during interventions designed to induce thermoregulatory adaptations. This study aimed to determine the relationship between the rate of rectal temperature (Trec) increase, and various methods for prescribing exercise-heat stress, to identify the most efficient method of prescribing isothermic heat acclimation (HA) training. Thirty-five men cycled in hot conditions (40° C, 39% R.H.) for 29 ± 2 minutes. Subjects exercised at 60 ± 9% V[Combining Dot Above]O2peak, with methods for prescribing exercise retrospectively observed for each participant. Pearson product moment correlations were calculated for each prescriptive variable against the rate of change in Trec (° C·h), with stepwise multiple regressions performed on statistically significant variables (p ≤ 0.05). Linear regression identified the predicted intensity required to increase Trec by 1.0-2.0° C between 20- and 45-minute periods and the duration taken to increase Trec by 1.5° C in response to incremental intensities to guide prescription. Significant (p ≤ 0.05) relationships with the rate of change in Trec were observed for prescriptions based on relative power (W·kg; r = 0.764), power (%Powermax; r = 0.679), rating of perceived exertion (RPE) (r = 0.577), V[Combining Dot Above]O2 (%V[Combining Dot Above]O2peak; r = 0.562), heart rate (HR) (%HRmax; r = 0.534), and thermal sensation (r = 0.311). Stepwise multiple regressions observed relative power and RPE as variables to improve the model (r = 0.791), with no improvement after inclusion of any anthropometric variable. Prescription of exercise under heat stress using power (W·kg or %Powermax) has the strongest relationship with the rate of change in Trec with no additional requirement to correct for body composition within a normal range. Practitioners should therefore prescribe exercise intensity using relative power during isothermic HA training to increase Trec efficiently and maximize adaptation.
Collapse
Affiliation(s)
- Oliver R Gibson
- 1Center for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, United Kingdom; and 2Center for Sport and Exercise Science and Medicine (SESAME), University of Brighton, Eastbourne, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Faulkner SH, Hupperets M, Hodder SG, Havenith G. Conductive and evaporative precooling lowers mean skin temperature and improves time trial performance in the heat. Scand J Med Sci Sports 2016; 25 Suppl 1:183-9. [PMID: 25943669 DOI: 10.1111/sms.12373] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2014] [Indexed: 02/01/2023]
Abstract
Self-paced endurance performance is compromised by moderate-to-high ambient temperatures that are evident in many competitive settings. It has become common place to implement precooling prior to competition in an attempt to alleviate perceived thermal load and performance decline. The present study aimed to investigate precooling incorporating different cooling avenues via either evaporative cooling alone or in combination with conductive cooling on cycling time trial performance. Ten trained male cyclists completed a time trial on three occasions in hot (35 °C) ambient conditions with the cooling garment prepared by (a) immersion in water (COOL, evaporative); (b) immersion in water and frozen (COLD, evaporative and conductive); or (c) no precooling (CONT). COLD improved time trial performance by 5.8% and 2.6% vs CONT and COOL, respectively (both P < 0.05). Power output was 4.5% higher for COLD vs CONT (P < 0.05). Mean skin temperature was lower at the onset of the time trial following COLD compared with COOL and CONT (both P < 0.05) and lasted for the first 20% of the time trial. Thermal sensation was perceived cooler following COOL and COLD. The combination of evaporative and conductive cooling (COLD) had the greatest benefit to performance, which is suggested to be driven by reduced skin temperature following cooling.
Collapse
Affiliation(s)
- S H Faulkner
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK; National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | | | | | | |
Collapse
|
10
|
Périard JD, Racinais S. Self-paced exercise in hot and cool conditions is associated with the maintenance of %V̇O2peak within a narrow range. J Appl Physiol (1985) 2015; 118:1258-65. [PMID: 25814635 DOI: 10.1152/japplphysiol.00084.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/23/2015] [Indexed: 11/22/2022] Open
Abstract
This study examined the time course and extent of decrease in peak oxygen uptake (V̇O2peak) during self-paced exercise in HOT (35°C and 60% relative humidity) and COOL (18°C and 40% relative humidity) laboratory conditions. Ten well-trained cyclists completed four consecutive 16.5-min time trials (15-min self-paced effort with 1.5-min maximal end-spurt to determine V̇O2peak) interspersed by 5 min of recovery on a cycle ergometer in each condition. Rectal temperature increased significantly more in HOT (39.4 ± 0.7°C) than COOL (38.6 ± 0.3°C; P < 0.001). Power output was lower throughout HOT compared with COOL (P < 0.001). The decrease in power output from trial 1 to 4 was ∼16% greater in HOT (P < 0.001). Oxygen uptake (V̇o2) was lower throughout HOT than COOL (P < 0.05), except at 5 min and during the end-spurt in trial 1. In HOT, V̇O2peak reached 97, 89, 85, and 85% of predetermined maximal V̇o2, whereas in COOL 97, 94, 93, and 92% were attained. Relative exercise intensity (%V̇O2peak) during trials 1 and 2 was lower in HOT (∼84%) than COOL (∼86%; P < 0.05), decreasing slightly during trials 3 and 4 (∼80 and ∼85%, respectively; P < 0.05). However, heart rate was higher throughout HOT (P = 0.002), and ratings of perceived exertion greater during trials 3 and 4 in HOT (P < 0.05). Consequently, the regulation of self-paced exercise appears to occur in conjunction with the maintenance of %V̇O2peak within a narrow range (80-85% V̇O2peak). This range widens under heat stress, however, when exercise becomes protracted and a disassociation develops between relative exercise intensity, heart rate, and ratings of perceived exertion.
Collapse
Affiliation(s)
- Julien D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Sébastien Racinais
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
11
|
Poirier MP, Meade RD, McGinn R, Friesen BJ, Hardcastle SG, Flouris AD, Kenny GP. The Influence of Arc-Flash and Fire-Resistant Clothing on Thermoregulation during Exercise in the Heat. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2015; 12:654-667. [PMID: 25898230 DOI: 10.1080/15459624.2015.1029615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We evaluated the effect of arc-flash and fire-resistant (AFR) clothing ensembles (CE) on whole-body heat dissipation during work in the heat. On 10 occasions, 7 males performed four 15-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C), each separated by 15-min of recovery. Whole-body heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was calculated as the temporal summation of heat production and heat loss. Responses were compared in a semi-nude state and while wearing two CE styles: (1) single-piece (coveralls) and (2) two-piece (workpant + long-sleeve shirt). For group 1, there was one non-AFR single-piece CE (CE1STD) and three single-piece CE with AFR properties (CE2AFR, CE3AFR, CE4AFR). For group 2, there was one non-AFR two-piece CE (CE5STD) and four two-piece CE with AFR properties (CE6AFR, CE7AFR, CE8AFR, CE9AFR). The workpants for CE6AFR were not AFR-rated, while a cotton undershirt was also worn for conditions CE8AFR and CE9AFR and for all single-piece CE. Heat storage for all conditions (CE1STD: 328 ± 55, CE2AFR: 335 ± 87, CE3AFR: 309 ± 95, CE4AFR: 403 ± 104, CE5STD: 253 ± 78, CE6AFR: 268 ± 89, CE7AFR: 302 ± 70, CE8AFR: 360 ± 36, CE9AFR: 381 ± 99 kJ) was greater than the semi-nude state (160 ± 124 kJ) (all p ≤ 0.05). No differences were measured between single-piece uniforms (p = 0.273). Among the two-piece uniforms, heat storage was greater for CE8AFR and CE9AFR relative to CE5STD and CE6AFR (all p ≤ 0.05), but not CE7AFR (both p > 0.05). Differences between clothing styles were measured such that greater heat storage was observed in both CE1STD and CE2-4AFR relative to CE5STD. Further, heat storage was greater in CE2AFR and CE4AFR relative to CE6AFR, while it was greater in CE4AFR compared to CE7AFR. Body heat storage during work in the heat was not influenced by the use of AFR fabrics in the single- or two-piece uniforms albeit less heat was stored in the two-piece uniforms when no undershirt was worn. However, heat storage was comparable between clothing styles when an undershirt was worn with the two-piece uniform.
Collapse
Affiliation(s)
- Martin P Poirier
- a Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa , Ottawa , Ontario , Canada
| | | | | | | | | | | | | |
Collapse
|