1
|
do Nascimento Salvador PC, de Lucas RD, Schäfer L, Guglielmo LGA, Grassi B, Denadai BS. Modeling the depletion and reconstitution of W': Effects of prior exercise on cycling tolerance. Respir Physiol Neurobiol 2020; 285:103590. [PMID: 33271307 DOI: 10.1016/j.resp.2020.103590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Thirteen healthy male subjects (age 28 ± 7 years) performed tests for critical power and W' determination and two square-wave high-intensity exercises until exhaustion either with prior very-heavy intensity cycling (EXP) or without (CON). Prior exercise bout induced a depletion of 60 % of W'. After 10 min of recovery, W' reconstitution was not fully achieved (∼ 92 %). Time to exhaustion and Δ blood lactate concentration were significantly lower in EXP compared to CON (595 ± 118 s vs. 683 ± 148 s; 3.5 ± 1.2 mmol.L-1 vs. 8.8 ± 2.3 mmol.L-1; p < 0.05, respectively). Oxygen uptake (VO2) and heart rate were significantly higher in EXP, during the first 150 s of exercise (p < 0.05). The carbon dioxide production kinetics was significantly slower in EXP (mean response time = 87.8 ± 17.8 s vs. 73.7 ± 16.6 s in CON; p < 0.05). Thus, prior exercise impairs high-intensity cycling performance which can partly be explained by physiological disturbances linked to W' depletion.
Collapse
Affiliation(s)
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Lisa Schäfer
- Centre for Sport and Exercise Science and Medicine, University of Brighton, United Kingdom
| | | | - Bruno Grassi
- Exercise Physiology Laboratory, Department of Medicine, Università Degli Studi Di Udine, Italy
| | | |
Collapse
|
2
|
do Nascimento Salvador PC, Schäfer L, Grassi B, Guglielmo LGA, Denadai BS. Changes in VO 2 Kinetics After Elevated Baseline Do Not Necessarily Reflect Alterations in Muscle Force Production in Both Sexes. Front Physiol 2019; 10:471. [PMID: 31073291 PMCID: PMC6495266 DOI: 10.3389/fphys.2019.00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/04/2019] [Indexed: 11/13/2022] Open
Abstract
A link between muscle fatigue, decreased efficiency and the slow component of oxygen uptake (VO2sc) has been suggested. However, a cause-effect relationship remains to be elucidated. Although alterations in VO2 kinetics after elevated baseline work rate have previously been reported, to date no study has observed the effect on muscle force production (MFP) behavior considering physiological differences between male and female subjects. This study investigated the effect of elevated baseline work rate on the VO2 kinetics and MFP in 10 male and 10 female healthy subjects. Subjects performed 4 transitions of very-heavy (VH) intensity cycling in a randomized order after unloaded (U-VH) or moderate (M-VH) exercise. Maximal isokinetic efforts (MIE) were performed before and after each condition at two different cadences (60 or 120 rpm). Whereas baseline VO2 and time constant (τ) were significantly higher in M-VH compared to U-VH, the fundamental amplitude and the VO2 slow component (VO2sc) were significantly lower in M-VH (p < 0.05) in both sexes. Blood lactate concentration ([La]) and rate of perceived exertion (RPE) were not influenced by condition or sex (p > 0.05). The MFP post-exercise was not significantly influenced by condition in both sexes and cadences (Δtorque for males: at 60 rpm in U-VH = 13 ± 10 Nm, in M-VH = 13 ± 9 Nm; at 120 rpm in U-VH = 22 ± 14 Nm, in M-VH = 21 ± 12 Nm; for females: at 120 rpm in U-VH = 10 ± 9 Nm, in M-VH = 12 ± 8 Nm; p > 0.05), with the exception that female subjects presented smaller decreases in M-UH at 60 rpm compared to U-VH (11 ± 13 vs. 18 ± 14 Nm, respectively, p < 0.05). There was no correlation between the decrease in torque production and VO2 kinetics parameters (p > 0.05). The alterations in VO2 kinetics which have been suggested to be linked to changes in motor unit recruitment after elevated baseline work rate did not reflect alterations in MFP and fatigue in both sexes.
Collapse
Affiliation(s)
- Paulo Cesar do Nascimento Salvador
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianopolis, Brazil.,Leonardo da Vinci University/Uniasselvi, Indaial, Brazil
| | - Lisa Schäfer
- School of Sport and Service Management, University of Brighton, Eastbourne, United Kingdom
| | - Bruno Grassi
- Exercise Physiology Laboratory, Department of Medicine, Università Degli Studi di Udine, Udine, Italy
| | | | | |
Collapse
|
3
|
Helal L, do Nascimento Salvador PC, de Lucas RD, Guglielmo LGA. Thigh Ischemia-Reperfusion Model Does Not Accelerate Pulmonary VO 2 Kinetics at High Intensity Cycling Exercise. Front Physiol 2019; 10:160. [PMID: 30858806 PMCID: PMC6397857 DOI: 10.3389/fphys.2019.00160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
Background: We aimed to investigate the effect of a priming ischemia-reperfusion (IR) model on the kinetics of pulmonary oxygen uptake (VO2) and cardiopulmonary parameters after high-intensity exercise. Our primary outcome was the overall VO2 kinetics and secondary outcomes were heart rate (HR) and O2 pulse kinetics. We hypothesized that the IR model would accelerate VO2 and cardiopulmonary kinetics during the exercise. Methods: 10 recreationally active men (25.7 ± 4.7 years; 79.3 ± 10.8 kg; 177 ± 5 cm; 44.5 ± 6.2 mL kg−1 min−1) performed a maximal incremental ramp test and four constant load sessions at the midpoint between ventilatory threshold and VO2 max on separate days: two without IR (CON) and two with IR (IR). The IR model consisted of a thigh bi-lateral occlusion for 15 min at a pressure of 250 mmHg, followed by 3 min off, before high-intensity exercise bouts. Results: There were no significant differences for any VO2 kinetics parameters (VO2 base 1.08 ± 0.08 vs. 1.12 ± 0.06 L min−1; P = 0.30; τ = 50.1 ± 7.0 vs. 47.9 ± 6.4 s; P = 0.47), as well as for HR (MRT180s 67.3 ± 6.0 vs. 71.3 ± 6.1 s; P = 0.54) and O2 pulse kinetics (MRT180s 40.9 ± 3.9 vs. 48.2 ± 5.6 s; P = 0.31) between IR and CON conditions, respectively. Conclusion: We concluded that the priming IR model used in this study had no influence on VO2, HR, and O2 pulse kinetics during high-intensity cycling exercise.
Collapse
Affiliation(s)
- Lucas Helal
- Exercise Pathophysiology Laboratory, Hospital de Clinicas de Porto Alegre, Graduate Program in Cardiology and Cardiovascular Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo Cesar do Nascimento Salvador
- Physical Effort Laboratory, Graduate Program in Biodynamics and Human Performance, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Graduate Program in Biodynamics and Human Performance, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Luiz Guilherme Antonacci Guglielmo
- Physical Effort Laboratory, Graduate Program in Biodynamics and Human Performance, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Cooper DM. Supramax exercise testing in cystic fibrosis: not ready for prime time. J Appl Physiol (1985) 2019; 126:264. [PMID: 30694710 PMCID: PMC6842863 DOI: 10.1152/japplphysiol.00782.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/24/2018] [Indexed: 11/22/2022] Open
Affiliation(s)
- Dan M Cooper
- Pediatric Exercise and Genomics Research Center, University of California at Irvine, California
| |
Collapse
|
5
|
Clark CCT, Draper SB. A detailed comparison of oxygen uptake kinetics at a range of exercise intensities. MOTRIZ: REVISTA DE EDUCACAO FISICA 2019. [DOI: 10.1590/s1980-6574201900010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
do Nascimento Salvador PC, Souza KMD, De Lucas RD, Guglielmo LGA, Denadai BS. The effects of priming exercise on the V̇O 2 slow component and the time-course of muscle fatigue during very-heavy-intensity exercise in humans. Appl Physiol Nutr Metab 2018; 43:909-919. [PMID: 29566544 DOI: 10.1139/apnm-2017-0769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that prior exercise would attenuate the muscle fatigue accompanied by oxygen uptake slow-component (V̇O2SC) behavior during a subsequent very-heavy (VH)-intensity cycling exercise. Thirteen healthy male subjects performed tests to determine the critical power (CP) and the fixed amount of work above CP ([Formula: see text]) and performed 6 square-wave bouts until 3 or 8 min, each at a work rate set to deplete 70% [Formula: see text] in 8 min, with a maximal isokinetic effort before and after the conditions without (VHCON) and with prior exercise (VHEXP), to measure the cycling peak torque decrement. The V̇O2SC magnitude at 3 min (VHCON = 0.280 ± 0.234, VHEXP = 0.116 ± 0.109 L·min-1; p = 0.04) and the V̇O2SC trajectory were significantly lower for VHEXP (VHCON = 0.108 ± 0.042, VHEXP = 0.063 ± 0.031 L·min-2; p < 0.01), leading to a V̇O2SC magnitude at the eighth minute that was significantly lower than VHCON (VHCON = 0.626 ± 0.296 L·min-1, VHEXP = 0.337 ± 0.179; p < 0.01). Conversely, peak torque progressively decreased from pre-exercise to 3 min (Δtorque = 21.5 ± 7.7 vs. 19.6 ± 9.2 Nm) and to 8 min (Δtorque = 29.4 ± 15.8 vs. 27.5 ± 12.0 Nm) at VHCON and VHEXP, respectively, without significant differences between conditions. Regardless of the condition, there was a significant relationship between Δtorque and the V̇O2SC (R2: VHCON = 0.23, VHEXP = 0.25; p = 0.01). Considering that "priming" effects on the V̇O2SC were not accompanied by the muscle force behavior, these findings do not support the hypothesis of a "causal" relationship between the time-course of muscle fatigue and V̇O2SC.
Collapse
Affiliation(s)
| | - Kristopher Mendes de Souza
- a Physical effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Ricardo Dantas De Lucas
- a Physical effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | | | | |
Collapse
|
7
|
Dobashi K, Fujii N, Watanabe K, Tsuji B, Sasaki Y, Fujimoto T, Tanigawa S, Nishiyasu T. Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. Eur J Appl Physiol 2017; 117:1573-1583. [PMID: 28527012 DOI: 10.1007/s00421-017-3646-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/12/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate the effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. METHODS Ten males performed three 30-s bouts of high-intensity cycling [Ex1 and Ex2: constant-workload at 80% of the power output in the Wingate anaerobic test (WAnT), Ex3: WAnT] interspaced with 4-min recovery periods under normoxic (Control), hypocapnic or hypoxic (2500 m) conditions. Hypocapnia was developed through voluntary hyperventilation for 20 min prior to Ex1 and during each recovery period. RESULTS End-tidal CO2 pressure was lower before each exercise in the hypocapnia than control trials. Oxygen uptake ([Formula: see text]) was lower in the hypocapnia than control trials (822 ± 235 vs. 1645 ± 245 mL min-1; mean ± SD) during Ex1, but not Ex2 or Ex3, without a between-trial difference in the power output during the exercises. Heart rates (HRs) during Ex1 (127 ± 8 vs. 142 ± 10 beats min-1) and subsequent post-exercise recovery periods were lower in the hypocapnia than control trials, without differences during or after Ex2, except at 4 min into the second recovery period. [Formula: see text] did not differ between the control and hypoxia trials throughout. CONCLUSIONS These results suggest that during three 30-s bouts of high-intensity intermittent cycling, (1) hypocapnia reduces the aerobic metabolic rate with a compensatory increase in the anaerobic metabolic rate during the first but not subsequent exercises; (2) HRs during the exercise and post-exercise recovery periods are lowered by hypocapnia, but this effect is diminished with repeated exercise bouts, and (3) moderate hypoxia (2500 m) does not affect the metabolic response during exercise.
Collapse
Affiliation(s)
- Kohei Dobashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | - Kazuhito Watanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Bun Tsuji
- Faculty of Human Culture and Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Yosuke Sasaki
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | - Tomomi Fujimoto
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoru Tanigawa
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan.
| |
Collapse
|
8
|
Tanji F, Shirai Y, Tsuji T, Shimazu W, Nabekura Y. Relation between 1,500-m running performance and running economy during high-intensity running in well-trained distance runners. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2017. [DOI: 10.7600/jpfsm.6.41] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fumiya Tanji
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yusuke Shirai
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
- Institute of Sports Science and Nutrition, Integrated Physiology, University of Copenhagen
| | - Toshiki Tsuji
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Wataru Shimazu
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | | |
Collapse
|
9
|
do Nascimento Salvador PC, Dal Pupo J, De Lucas RD, de Aguiar RA, Arins FB, Guglielmo LG. The V̇o 2 Kinetics of Maximal and Supramaximal Running Exercises in Sprinters and Middle-Distance Runners. J Strength Cond Res 2016; 30:2857-63. [DOI: 10.1519/jsc.0000000000001366] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
do Nascimento Salvador PC, de Aguiar RA, Teixeira AS, Souza KMD, de Lucas RD, Denadai BS, Guglielmo LGA. Are the oxygen uptake and heart rate off-kinetics influenced by the intensity of prior exercise? Respir Physiol Neurobiol 2016; 230:60-7. [PMID: 27181327 DOI: 10.1016/j.resp.2016.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
The aim of this study was to investigate the effect of prior exercise on the heart rate (HR) and oxygen uptake (VO2) off-kinetics after a subsequent high-intensity running exercise. Thirteen male futsal players (age 22.8±6.1years) performed a series of high-intensity bouts without prior exercise (control), preceded by a prior same intensity continuous exercise (CE+CE) and a prior sprint exercise (SE+CE). The magnitude of excess post-exercise oxygen consumption (EPOCm-4.25±0.19 vs. 3.69±0.20Lmin(-1) in CE+CE and 3.62±0.18Lmin(-1) in control; p<0.05) and the parasympathetic reactivation (HRR60s-33±3 vs. 37±3bpm in CE+CE and 42±3 bpm in control; p<0.05) in the SE+CE were higher and slower, compared with another two conditions. The EPOCτ (time to attain 63% of total response; 53±2s) and the heart rate time-course (HRτ-86±5s) were significantly longer after the SE+CE condition than control transition (48±2s and 69±5s, respectively; p<0.05). The SE+CE induce greater stress on the metabolic function, respiratory system and autonomic nervous system regulation during post-exercise recovery than CE, highlighting that the inclusion of sprint-based exercises can be an effective strategy to increase the total energy expenditure following an exercise session.
Collapse
Affiliation(s)
- Paulo Cesar do Nascimento Salvador
- Physical effort Laboratory, Sports Center, Federal University of Santa Catarina, Rua Antonio Edu Vieira, Pantanal, CDS/UFSC, Florianopolis 88040-970, SC, Brazil, Brazil.
| | - Rafael Alves de Aguiar
- Human Performance Research Group, Center of Health and Sport Sciences, Santa Catarina State University, Rua Pascoal Simone, 358, Coqueiros, Florianopolis CEP: 88080-350, SC, Brazil, Brazil.
| | - Anderson Santiago Teixeira
- Physical effort Laboratory, Sports Center, Federal University of Santa Catarina, Rua Antonio Edu Vieira, Pantanal, CDS/UFSC, Florianopolis 88040-970, SC, Brazil, Brazil.
| | - Kristopher Mendes de Souza
- Physical effort Laboratory, Sports Center, Federal University of Santa Catarina, Rua Antonio Edu Vieira, Pantanal, CDS/UFSC, Florianopolis 88040-970, SC, Brazil, Brazil.
| | - Ricardo Dantas de Lucas
- Physical effort Laboratory, Sports Center, Federal University of Santa Catarina, Rua Antonio Edu Vieira, Pantanal, CDS/UFSC, Florianopolis 88040-970, SC, Brazil, Brazil.
| | - Benedito Sérgio Denadai
- Human Performance Laboratory, UNESP, Avenida 24 A, 1515, Bela Vista, Rio Claro CEP: 13506-900, SP, Brazil, Brazil.
| | - Luiz Guilherme Antonacci Guglielmo
- Physical effort Laboratory, Sports Center, Federal University of Santa Catarina, Rua Antonio Edu Vieira, Pantanal, CDS/UFSC, Florianopolis 88040-970, SC, Brazil, Brazil.
| |
Collapse
|
11
|
Andersson Hall U, Edin F, Pedersen A, Madsen K. Whole-body fat oxidation increases more by prior exercise than overnight fasting in elite endurance athletes. Appl Physiol Nutr Metab 2015; 41:430-7. [PMID: 26988766 DOI: 10.1139/apnm-2015-0452] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to compare whole-body fat oxidation kinetics after prior exercise with overnight fasting in elite endurance athletes. Thirteen highly trained athletes (9 men and 4 women; maximal oxygen uptake: 66 ± 1 mL·min(-1)·kg(-1)) performed 3 identical submaximal incremental tests on a cycle ergometer using a cross-over design. A control test (CON) was performed 3 h after a standardized breakfast, a fasting test (FAST) 12 h after a standardized evening meal, and a postexercise test (EXER) after standardized breakfast, endurance exercise, and 2 h fasting recovery. The test consisted of 3 min each at 30%, 40%, 50%, 60%, 70%, and 80% of maximal oxygen uptake and fat oxidation rates were measured through indirect calorimetry. During CON, maximal fat oxidation rate was 0.51 ± 0.04 g·min(-1) compared with 0.69 ± 0.04 g·min(-1) in FAST (P < 0.01), and 0.89 ± 0.05 g·min(-1) in EXER (P < 0.01). Across all intensities, EXER was significantly higher than FAST and FAST was higher than CON (P < 0.01). Blood insulin levels were lower and free fatty acid and cortisol levels were higher at the start of EXER compared with CON and FAST (P < 0.05). Plasma nuclear magnetic resonance-metabolomics showed similar changes in both EXER and FAST, including increased levels of fatty acids and succinate. In conclusion, prior exercise significantly increases whole-body fat oxidation during submaximal exercise compared with overnight fasting. Already high rates of maximal fat oxidation in elite endurance athletes were increased by approximately 75% after prior exercise and fasting recovery.
Collapse
Affiliation(s)
- Ulrika Andersson Hall
- a Department of Food and Nutrition, and Sport Science, University of Gothenburg, PO Box 300, 405 30 Gothenburg, Sweden.,b Department of Public Health, Section for Sport, Arhus University, Dalgas Avenue 4, DK-8000, Aarhus C, Denmark
| | - Fredrik Edin
- a Department of Food and Nutrition, and Sport Science, University of Gothenburg, PO Box 300, 405 30 Gothenburg, Sweden
| | - Anders Pedersen
- c Swedish NMR Centre, University of Gothenburg, PO Box 465, 405 30, Gothenburg, Sweden
| | - Klavs Madsen
- a Department of Food and Nutrition, and Sport Science, University of Gothenburg, PO Box 300, 405 30 Gothenburg, Sweden.,b Department of Public Health, Section for Sport, Arhus University, Dalgas Avenue 4, DK-8000, Aarhus C, Denmark
| |
Collapse
|