1
|
Thomas C, Delfour‐Peyrethon R, Lambert K, Granata C, Hobbs T, Hanon C, Bishop DJ. The effect of pre-exercise alkalosis on lactate/pH regulation and mitochondrial respiration following sprint-interval exercise in humans. Front Physiol 2023; 14:1073407. [PMID: 36776968 PMCID: PMC9911540 DOI: 10.3389/fphys.2023.1073407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Purpose: The purpose of this study was to evaluate the effect of pre-exercise alkalosis, induced via ingestion of sodium bicarbonate, on changes to lactate/pH regulatory proteins and mitochondrial function induced by a sprint-interval exercise session in humans. Methods: On two occasions separated by 1 week, eight active men performed a 3 × 30-s all-out cycling test, interspersed with 20 min of recovery, following either placebo (PLA) or sodium bicarbonate (BIC) ingestion. Results: Blood bicarbonate and pH were elevated at all time points after ingestion in BIC vs PLA (p < 0.05). The protein content of monocarboxylate transporter 1 (MCT1) and basigin (CD147), at 6 h and 24 h post-exercise, and sodium/hydrogen exchanger 1 (NHE1) 24 h post-exercise, were significantly greater in BIC compared to PLA (p < 0.05), whereas monocarboxylate transporter 4 (MCT4), sodium/bicarbonate cotransporter (NBC), and carbonic anhydrase isoform II (CAII) content was unchanged. These increases in protein content in BIC vs. PLA after acute sprint-interval exercise may be associated with altered physiological responses to exercise, such as the higher blood pH and bicarbonate concentration values, and lower exercise-induced oxidative stress observed during recovery (p < 0.05). Additionally, mitochondrial respiration decreased after 24 h of recovery in the BIC condition only, with no changes in oxidative protein content in either condition. Conclusion: These data demonstrate that metabolic alkalosis induces post-exercise increases in several lactate/pH regulatory proteins, and reveal an unexpected role for acidosis in mitigating the loss of mitochondrial respiration caused by exercise in the short term.
Collapse
Affiliation(s)
- Claire Thomas
- LBEPS, Univ Evry, IRBA, University Paris Saclay, Evry, France,French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,*Correspondence: Claire Thomas,
| | - Rémi Delfour‐Peyrethon
- French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| | - Karen Lambert
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Montpellier, France
| | - Cesare Granata
- French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Thomas Hobbs
- LBEPS, Univ Evry, IRBA, University Paris Saclay, Evry, France
| | - Christine Hanon
- French Institute of Sport (INSEP), Research Department, Laboratory Sport, Expertise, and Performance, Paris, France,French Athletics Federation, Paris, France
| | - David J. Bishop
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Thomas C, Delfour-Peyrethon R, Dorel S, Hanon C. Positive Effects of Pre-exercise Metabolic Alkalosis on Perceived Exertion and Post-exercise Squat Jump Performance in World-Class Cyclists. J Strength Cond Res 2022; 36:2602-2609. [PMID: 33651728 DOI: 10.1519/jsc.0000000000003855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Thomas, C, Delfour-Peyrethon, R, Dorel, S, and Hanon, C. Positive effects of pre-exercise metabolic alkalosis on perceived exertion and post-exercise squat jump performance in world-class cyclists. J Strength Cond Res 36(9): 2602-2609, 2022-This study aimed to determine the effects of pre-exercise alkalosis in world-class cyclists on their general (rate of perceived exertion [RPE]) and local (category-ratio scale [CR10]) perceived rates of exertion and acid-base status during 2 types of training sessions. Eight world-class cyclists ingested either sodium bicarbonate (BIC) or a placebo (PLA) in a double-blind and randomized order before performing 4 × 1,000 m constant-power sprints (CP) or 3 × 500 m all-out sprints (AO), with 20 minutes of recovery time between each session. For AO, the performance was assessed through the cycling sprint velocity and a squat jump test during recovery. During both tests, RPE, CR10, and acid-base status were measured. Sodium bicarbonate ingestion was effective in inducing pre-exercise alkalosis, compared with a PLA ( p < 0.05). During CP, performance and RPE were the same for BIC and PLA ( p > 0.05) with no time effect. The CR10 increased for the last sprint in PLA ( p < 0.05) but was attenuated in BIC (BIC: 6 vs. PLA: 8.2; p < 0.05), whereas there was no difference in acid-base status. During AO, RPE and CR10 increased with time, with no BIC effect, whereas blood lactate concentration was different ( p < 0.05). Sodium bicarbonate supplementation had no effect on overall repeated sprints ( p > 0.05). However, world-class athletes responded to BIC with higher squat jump performance than the PLA condition after AO ( p < 0.05). Our results suggest a positive influence of pre-exercise alkalosis in world-class cyclists on local perception of efforts after constant load sprints and an attenuation of muscle power output decline postsprint, as evidenced by improved squat jump performance after all-out cycling effort.
Collapse
Affiliation(s)
- Claire Thomas
- LBEPS, Univ Evry, IRBA, University of Paris-Saclay, Evry, France
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance, Paris, France
| | - Rémi Delfour-Peyrethon
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance, Paris, France
- Laboratory Movement, Interactions, Performance, University of Nantes, France ; and
| | - Sylvain Dorel
- Laboratory Movement, Interactions, Performance, University of Nantes, France ; and
| | - Christine Hanon
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance, Paris, France
- French Athletics Federation, Paris, France
| |
Collapse
|
3
|
de Oliveira LF, Dolan E, Swinton PA, Durkalec-Michalski K, Artioli GG, McNaughton LR, Saunders B. Extracellular Buffering Supplements to Improve Exercise Capacity and Performance: A Comprehensive Systematic Review and Meta-analysis. Sports Med 2022; 52:505-526. [PMID: 34687438 DOI: 10.1007/s40279-021-01575-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Extracellular buffering supplements [sodium bicarbonate (SB), sodium citrate (SC), sodium/calcium lactate (SL/CL)] are ergogenic supplements, although questions remain about factors which may modify their effect. OBJECTIVE To quantify the main effect of extracellular buffering agents on exercise outcomes, and to investigate the influence of potential moderators on this effect using a systematic review and meta-analytic approach. METHODS This study was designed in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Three databases were searched for articles that were screened according to inclusion/exclusion criteria. Bayesian hierarchical meta-analysis and meta-regression models were used to investigate pooled effects of supplementation and moderating effects of a range of factors on exercise and biomarker responses. RESULTS 189 articles with 2019 participants were included, 158 involving SB supplementation, 30 with SC, and seven with CL/SL; four studies provided a combination of buffering supplements together. Supplementation led to a mean estimated increase in blood bicarbonate of + 5.2 mmol L-1 (95% credible interval (CrI) 4.7-5.7). The meta-analysis models identified a positive overall effect of supplementation on exercise capacity and performance compared to placebo [ES0.5 = 0.17 (95% CrI 0.12-0.21)] with potential moderating effects of exercise type and duration, training status and when the exercise test was performed following prior exercise. The greatest ergogenic effects were shown for exercise durations of 0.5-10 min [ES0.5 = 0.18 (0.13-0.24)] and > 10 min [ES0.5 = 0.22 (0.10-0.33)]. Evidence of greater effects on exercise were obtained when blood bicarbonate increases were medium (4-6 mmol L-1) and large (> 6 mmol L-1) compared with small (≤ 4 mmol L-1) [βSmall:Medium = 0.16 (95% CrI 0.02-0.32), βSmall:Large = 0.13 (95% CrI - 0.03 to 0.29)]. SB (192 outcomes) was more effective for performance compared to SC (39 outcomes) [βSC:SB = 0.10 (95% CrI - 0.02 to 0.22)]. CONCLUSIONS Extracellular buffering supplements generate large increases in blood bicarbonate concentration leading to positive overall effects on exercise, with sodium bicarbonate being most effective. Evidence for several group-level moderating factors were identified. These data can guide an athlete's decision as to whether supplementation with buffering agents might be beneficial for their specific aims.
Collapse
Affiliation(s)
- Luana Farias de Oliveira
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Eimear Dolan
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil
| | - Paul A Swinton
- School of Health Sciences, Robert Gordon University, Aberdeen, UK
| | - Krzysztof Durkalec-Michalski
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Guilherme G Artioli
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Manchester, M1 5GD, UK
| | - Lars R McNaughton
- Sports Nutrition and Performance Group, Department of Sport and Physical Activity, Edge Hill University, Ormskirk, UK
| | - Bryan Saunders
- Applied Physiology & Nutrition Research Group, Rheumatology Division, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.
- Department of Sports Dietetics, Poznań University of Physical Education, Poznań, Poland.
- Institute of Orthopaedics and Traumatology, Faculty of Medicine FMUSP, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Calvo JL, Xu H, Mon-López D, Pareja-Galeano H, Jiménez SL. Effect of sodium bicarbonate contribution on energy metabolism during exercise: a systematic review and meta-analysis. J Int Soc Sports Nutr 2021; 18:11. [PMID: 33546730 PMCID: PMC7863495 DOI: 10.1186/s12970-021-00410-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background The effects of sodium bicarbonate (NaHCO3) on anaerobic and aerobic capacity are commonly acknowledged as unclear due to the contrasting evidence thus, the present study analyzes the contribution of NaHCO3 to energy metabolism during exercise. Methods Following a search through five databases, 17 studies were found to meet the inclusion criteria. Meta-analyses of standardized mean differences (SMDs) were performed using a random-effects model to determine the effects of NaHCO3 supplementation on energy metabolism. Subgroup meta-analyses were conducted for the anaerobic-based exercise (assessed by changes in pH, bicarbonate ion [HCO3−], base excess [BE] and blood lactate [BLa]) vs. aerobic-based exercise (assessed by changes in oxygen uptake [VO2], carbon dioxide production [VCO2], partial pressure of oxygen [PO2] and partial pressure of carbon dioxide [PCO2]). Results The meta-analysis indicated that NaHCO3 ingestion improves pH (SMD = 1.38, 95% CI: 0.97 to 1.79, P < 0.001; I2 = 69%), HCO3− (SMD = 1.63, 95% CI: 1.10 to 2.17, P < 0.001; I2 = 80%), BE (SMD = 1.67, 95% CI: 1.16 to 2.19, P < 0.001, I2 = 77%), BLa (SMD = 0.72, 95% CI: 0.34 to 1.11, P < 0.001, I2 = 68%) and PCO2 (SMD = 0.51, 95% CI: 0.13 to 0.90, P = 0.009, I2 = 0%) but there were no differences between VO2, VCO2 and PO2 compared with the placebo condition. Conclusions This meta-analysis has found that the anaerobic metabolism system (AnMS), especially the glycolytic but not the oxidative system during exercise is affected by ingestion of NaHCO3. The ideal way is to ingest it is in a gelatin capsule in the acute mode and to use a dose of 0.3 g•kg− 1 body mass of NaHCO3 90 min before the exercise in which energy is supplied by the glycolytic system.
Collapse
Affiliation(s)
- Jorge Lorenzo Calvo
- Faculty of Physical Activity and Sport science, Universidad Politécnica de Madrid, Madrid, Spain.
| | - Huanteng Xu
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.
| | - Daniel Mon-López
- Faculty of Physical Activity and Sport science, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
5
|
The Effect of Beta-Alanine versus Alkaline Agent Supplementation Combined with Branched-Chain Amino Acids and Creatine Malate in Highly-Trained Sprinters and Endurance Athletes: A Randomized Double-Blind Crossover Study. Nutrients 2019; 11:nu11091961. [PMID: 31438535 PMCID: PMC6769605 DOI: 10.3390/nu11091961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
The study aimed to verify the effect of intra- (beta-alanine—BA) versus extra- (alkaline agents—ALK) cellular buffering agent supplementation, combined with customarily used branched-chain amino acids (BCAAs) and creatine malate (TCM) treatment in natural training conditions. Thirty-one elite athletes (11 sprinters and 20 endurance athletes) participated in the study. Eight-week randomized double-blind, crossover, combined supplementation with BA-ALKplaBCAA&TCM and ALK-BAplaBCAA&TCM was implemented. In the course of the experiment, body composition, aerobic capacity, and selected blood markers were assayed. After BA-ALKplaBCAA&TCM supplementation, total fat-free mass increased in sprinters (p = 0.009). No other differences were found in body composition, respiratory parameters, aerobic capacity, blood lactate concentration, and hematological indices after BA-ALKplaBCAA&TCM/ALK-BAplaBCAA&TCM supplementation. The maximum post-exercise blood ammonia (NH3) concentration decreased in both groups after BA-ALKplaBCAA&TCM supplementation (endurance, p = 0.002; sprint, p < 0.0001). Also, lower NH3 concentrations were observed in endurance athletes in the post-exercise recovery period. The results of our study indicate that combined BCAA, TCM, and BA supplementation is more effective than combined BCAA, TCM and ALK supplementation for an increase in fat-free mass and exercise adaptation, but not for aerobic capacity improvement. Besides, it seems that specific exercise stimuli and the training status are key factors affecting exercise performance, even in athletes using efficient supplementation.
Collapse
|
6
|
Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players. Nutrients 2018; 10:nu10111610. [PMID: 30388775 PMCID: PMC6266022 DOI: 10.3390/nu10111610] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022] Open
Abstract
Anaerobic power and anaerobic capacity significantly influence performance in many sport disciplines. These include prolonged sprints in athletics, swimming, or cycling, and other high intensity intermittent sports, such as soccer or basketball. Considering the association of exercise-induced acidosis and fatigue, the ingestion of potential buffering agents such as sodium bicarbonate, has been suggested to attenuate metabolic acidosis and improve anaerobic performance. Since elite soccer players cover from 200 to 350 m while sprinting, performing 40–60 all out sprints during a game, it seems that repeated sprint ability in soccer players is among the key components of success. In our experiment, we evaluated the effectiveness of chronic supplementation with sodium and potassium bicarbonate, fortified with minerals, on speed and speed endurance in elite soccer players. Twenty-six soccer players participated in the study. The subjects were randomly divided into two groups. The experimental group was supplemented with sodium bi-carbonate and potassium di-carbonate fortified with minerals, while the control group received a placebo. The athletes were tested at baseline and after nine days of supplementation. Anaerobic performance was evaluated by the Repeated Anaerobic Sprint Test (RAST) protocol which involved 6 × 30 m max sprints, separated by 10 s of active recovery. Resting, post ingestion and post exercise concentrations of HCO3− and blood pH were measured as well as lactate concentration. The current investigation demonstrated a significant increase in RAST performance of elite soccer players supplemented with sodium and potassium bicarbonate along with calcium phosphate, potassium citrate, and magnesium citrate ingested twice a day over a nine-day training period. The improvements in anaerobic performance were caused by increased resting blood pH and bicarbonate levels.
Collapse
|
7
|
The effect of chronic progressive-dose sodium bicarbonate ingestion on CrossFit-like performance: A double-blind, randomized cross-over trial. PLoS One 2018; 13:e0197480. [PMID: 29771966 PMCID: PMC5957406 DOI: 10.1371/journal.pone.0197480] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 05/02/2018] [Indexed: 11/29/2022] Open
Abstract
Background Sodium bicarbonate (SB) has been proposed as an ergogenic aid, as it improves high-intensity and resistance exercise performance. However, no studies have yet investigated SB application in CrossFit. This study examined the effects of chronic, progressive-dose SB ingestion on CrossFit-like performance and aerobic capacity. Methods In a randomized, double-blind, cross-over trial, 21 CrossFit-trained participants were randomly allocated to 2 groups and underwent 2 trials separated by a 14-day washout period. Participants ingested either up to 150 mg∙kg-1 of SB in a progressive-dose regimen or placebo for 10 days. Before and after each trial, Fight Gone Bad (FGB) and incremental cycling (ICT) tests were performed. In order to examine biochemical responses, blood samples were obtained prior to and 3 min after completing each exercise test. Results No gastrointestinal (GI) side effects were reported during the entire protocol. The overall FGB performance improved under SB by ~6.1% (p<0.001) and it was ~3.1% higher compared to post placebo (PLApost) (p = 0.040). The number of repetitions completed in each round also improved under SB (mean from baseline: +5.8% to +6.4%). Moreover, in ICT, the time to ventilatory threshold (VT) (~8:25 min SBpost vs. ~8:00 min PLApost, p = 0.020), workload at VT (~218 W SBpost vs. ~208 W PLApost, p = 0.037) and heart rate at VT (~165 bpm SBpost vs. ~161 bpm PLApost, p = 0.030) showed higher SBpost than PLApost. Furthermore, the maximum carbon dioxide production increased under SB by ~4.8% (from ~3604 mL∙min-1 to ~3776 mL∙min-1, p = 0.049). Pyruvate concentration and creatine kinase activity before ICT showed higher SBpost than PLApost (~0.32 mmol∙L-1 vs. ~0.26 mmol∙L-1, p = 0.001; ~275 U∙L-1 vs. ~250 U∙L-1, p = 0.010, respectively). However, the small sample size limits the wide-application of our results. Conclusions Progressive-dose SB ingestion regimen eliminated GI side effects and improved CrossFit-like performance, as well as delayed ventilatory threshold occurrence.
Collapse
|
8
|
Christensen PM, Shirai Y, Ritz C, Nordsborg NB. Caffeine and Bicarbonate for Speed. A Meta-Analysis of Legal Supplements Potential for Improving Intense Endurance Exercise Performance. Front Physiol 2017; 8:240. [PMID: 28536531 PMCID: PMC5422435 DOI: 10.3389/fphys.2017.00240] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
A 1% change in average speed is enough to affect medal rankings in intense Olympic endurance events lasting ~45 s to 8 min which for example includes 100 m swimming and 400 m running (~1 min), 1,500 m running and 4000 m track cycling (~4 min) and 2,000 m rowing (~6-8 min). To maximize the likelihood of winning, athletes utilizes legal supplements with or without scientifically documented beneficial effects on performance. Therefore, a continued systematic evidence based evaluation of the possible ergogenic effects is of high importance. A meta-analysis was conducted with a strict focus on closed-end performance tests in humans in the time domain from 45 s to 8 min. These test include time-trials or total work done in a given time. This selection criterion results in a high relevance for athletic performance. Only peer-reviewed placebo controlled studies were included. The often applied and potentially ergogenic supplements beta-alanine, bicarbonate, caffeine and nitrate were selected for analysis. Following a systematic search in Pubmed and SportsDiscuss combined with evaluation of cross references a total of 7 (beta-alanine), 25 (bicarbonate), 9 (caffeine), and 5 (nitrate) studies was included in the meta-analysis. For each study, performance was converted to an average speed (km/h) from which an effect size (ES; Cohens d with 95% confidence intervals) was calculated. A small effect and significant performance improvement relative to placebo was observed for caffeine (ES: 0.41 [0.15–0.68], P = 0.002) and bicarbonate (ES: 0.40 [0.27–0.54], P < 0.001). Trivial and non-significant effects on performance was observed for nitrate (ES: 0.19 [−0.03–0.40], P = 0.09) and beta-alanine (ES: 0.17 [−0.12–0.46], P = 0.24). Thus, caffeine's and bicarbonate's ergogenic effect is clearly documented for intense endurance performance. Importantly, for all supplements an individualized approach may improve the ergogenic effect on performance.
Collapse
Affiliation(s)
- Peter M Christensen
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of CopenhagenCopenhagen, Denmark.,Team DanmarkCopenhagen, Denmark
| | - Yusuke Shirai
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of CopenhagenCopenhagen, Denmark
| | - Christian Ritz
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of CopenhagenCopenhagen, Denmark
| | - Nikolai B Nordsborg
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of CopenhagenCopenhagen, Denmark
| |
Collapse
|