1
|
Borzemska B, Cięszczyk P, Żekanowski C. The Genetic Basis of Non-Contact Soft Tissue Injuries-Are There Practical Applications of Genetic Knowledge? Cells 2024; 13:1828. [PMID: 39594578 PMCID: PMC11593177 DOI: 10.3390/cells13221828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Physical activity increases the risk of non-contact injuries, mainly affecting muscles, tendons, and ligaments. Genetic factors are recognized as contributing to susceptibility to different types of soft tissue injuries, making this broad condition a complicated multifactorial entity. Understanding genetic predisposition seems to offer the potential for personalized injury prevention and improved recovery strategies. The candidate gene analysis approach used so far, has often yielded inconclusive results. This manuscript reviews the most commonly studied genetic variants in genes involved in the musculoskeletal system's structure and recovery processes (ACTN3, ACE, CKM, MLCK, AMPD1, IGF2, IL6, TNFα, CCL2, COL1A1, COL5A1, MMP3, and TNC). Referring to the literature, it was highlighted that single-gene analyses provide limited insight. On the other hand, novel genetic testing methods identify numerous variants of uncertain physiological relevance. Distinguishing between functionally important variants, modifying variants, and the thousands of irrelevant variants requires advanced bioinformatics methods and basic multiomics research to identify the key biological pathways contributing to injury susceptibility. Tools like the Total Genotype Score (TGS) and Polygenic Risk Score (PRS) offer a more holistic view by assessing the combined effect of multiple variants. However, these methods, while useful in research, lack clinical applicability. In conclusion, it is too early to determine the clinical implications of genetic variability as a tool for improving well-established training and injury prevention methods, as the predictive power of genetic testing for injury predisposition is currently low.
Collapse
Affiliation(s)
- Beata Borzemska
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| | - Cezary Żekanowski
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland; (P.C.); (C.Ż.)
| |
Collapse
|
2
|
Del Coso J, Rodas G, Soler-Aguinaga A, López-Del Campo R, Resta R, González-Rodenas J, Ferrandis J, Moreno-Pérez V. ACTN3 XX Genotype Negatively Affects Running Performance and Increases Muscle Injury Incidence in LaLiga Football Players. Genes (Basel) 2024; 15:386. [PMID: 38540445 PMCID: PMC10969915 DOI: 10.3390/genes15030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
The aim of this study was to investigate the association of the ACTN3 rs1815739 polymorphism with match running performance and injury incidence in top-level professional football players. A total of 315 top-level professional football players from the first division of Spanish football (i.e., LaLiga) participated in this prospective and descriptive study. The ACTN3 rs1815739 genotype was identified for each player using genomic DNA samples. During LaLiga 2021-2022, players' performance was obtained through a validated camera system in all official matches. Additionally, the incidence of non-contact injuries was obtained by each team's medical staff according to the International Olympic Committee (IOC) statement. From the study sample, 116 (36.8%) players had the RR genotype, 156 (49.5%) had the RX genotype, and 43 (13.7%) had the XX genotype. The anthropometric characteristics of the players were similar across genotypes. However, the total running distance (p = 0.046), the distance at 21.0-23.9 km/h (p = 0.042), and the number of sprints (p = 0.042) were associated with the ACTN3 genotype. In all these variables, XX players had lower match performance values than RR players. Additionally, total and match injury incidences were higher in XX players than in RR players (p = 0.026 and 0.009, respectively). The rate of muscle injuries was also higher in XX players (p = 0.016). LaLiga football players with the ACTN3 XX genotype had lower match running performance and a higher incidence of non-contact injuries over the season.
Collapse
Affiliation(s)
- Juan Del Coso
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Fuenlabrada, Spain; (J.G.-R.); (J.F.)
| | - Gil Rodas
- Medical Department & Barça Innovation Hub, Fútbol Club Barcelona, 08038 Barcelona, Spain;
| | | | | | - Ricardo Resta
- Department of Competitions, La Liga, 28043 Madrid, Spain; (R.L.-D.C.); (R.R.)
| | - Joaquín González-Rodenas
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Fuenlabrada, Spain; (J.G.-R.); (J.F.)
| | - Jordi Ferrandis
- Sport Sciences Research Centre, Rey Juan Carlos University, 28943 Fuenlabrada, Spain; (J.G.-R.); (J.F.)
- Faculty of Physical Education and Sports Sciences, Catholic University of Valencia, “San Vicente Mártir”, 46001 Valencia, Spain
| | - Víctor Moreno-Pérez
- Department of Sport Sciences, Sports Research Centre, Miguel Hernandez University of Elche, 03202 Elche, Spain;
- Department of Pathology and Surgery, Translational Research Centre of Physiotherapy, Faculty of Medicine, Miguel Hernandez University, 03202 Elche, Spain
| |
Collapse
|
3
|
Weiss K, Valero D, Andrade MS, Villiger E, Thuany M, Knechtle B. Cycling is the most important predictive split discipline in professional Ironman® 70.3 triathletes. Front Sports Act Living 2024; 6:1214929. [PMID: 38390230 PMCID: PMC10881807 DOI: 10.3389/fspor.2024.1214929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Introduction Our study examined 16,611 records of professional triathletes from 163 Ironman® 70.3 races across 97 countries (2004-2020). The aim was to identify the most predictive discipline-swim, bike, or run-for overall race time. Methods We used correlation matrices to compare the dependent variable "finish time" with independent variables "swim time," "bike time," and "run time." This analysis was conducted separately for male and female athletes. Additionally, univariate and multiple linear regression models assessed the strength of these associations. Results The results indicated that "bike time" had the strongest correlation with finish time (0.85), followed by "run time" (0.75 for females, 0.82 for males) and "swim time" (0.46 for females, 0.63 for males). Regression models confirmed "bike time" as the strongest predictor of overall race time (R² = 0.8), with "run time" and "swim time" being less predictive. Discussion The study concludes that in Ironman 70.3 races, "bike time" is the most significant predictor of overall race performance for both sexes, suggesting a focus on cycling in training and competition strategies. It also highlights a smaller performance gap between genders in swimming than in cycling or running.
Collapse
Affiliation(s)
- Katja Weiss
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
| | - David Valero
- Ultra Sports Science Foundation, Pierre-Benite, France
| | - Marilia Santos Andrade
- Departamento de Fisiologia, Disciplina de Neurofisiologia e Fisiologia do Exercício, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Elias Villiger
- Klinik für Allgemeine Innere Medizin, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mabliny Thuany
- Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland
- Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
| |
Collapse
|
4
|
Zouhal H, Coso JD, Jayavel A, Tourny C, Ravé G, Jebabli N, Clark CCT, Barthélémy B, Hackney AC, Abderrahman AB. Association between ACTN3 R577X genotype and risk of non-contact injury in trained athletes: A systematic review. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:359-368. [PMID: 34284153 PMCID: PMC10199131 DOI: 10.1016/j.jshs.2021.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 05/17/2023]
Abstract
PURPOSE The aim of this study was to review, systematically, evidence concerning the link between the ACTN3 R577X polymorphism and the rates and severity of non-contact injuries and exercise-induced muscle damage in athletes and individuals enrolled in exercise training programs. METHODS A computerized literature search was performed in the electronic databases PubMed, Web of Science, and SPORTDiscus, from inception until November 2020. All included studies compared the epidemiological characteristics of non-contact injury between the different genotypes of the ACTN3 R577X polymorphism. RESULTS Our search identified 492 records. After the screening of titles, abstracts, and full texts, 13 studies examining the association between the ACTN3 genotypes and the rate and severity of non-contact injury were included in the analysis. These studies were performed in 6 different countries (Spain, Japan, Brazil, China, the Republic of Korea, and Italy) and involved a total participant pool of 1093 participants. Of the studies, 2 studies involved only women, 5 studies involved only men, and 6 studies involved both men and women. All the studies included were classified as high-quality studies (≥6 points in the Physiotherapy Evidence Database (PEDro) scale score). Overall, evidence suggests there is an association between the ACTN3 R577X genotype and non-contact injury in 12 investigations. Six studies observed a significant association between ACTN3 R577X polymorphism and exercise induced muscle damage: 2 with non-contact ankle injury, 3 with non-contact muscle injury, and 1 with overall non-contact injury. CONCLUSION The present findings support the premise that possessing the ACTN3 XX genotype may predispose athletes to a higher probability of some non-contact injuries, such as muscle injury, ankle sprains, and higher levels of exercise-induced muscle damage.
Collapse
Affiliation(s)
- Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé)-EA 1274, Department of Sport Sciences, University of Rennes, Rennes F-35000, France.
| | - Juan Del Coso
- Rey Juan Carlos University, Centre for Sport Studies, Madrid 28032, Spain
| | - Ayyappan Jayavel
- SRM College of Physiotherapy, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, India
| | - Claire Tourny
- Department of Sport Sciences, University of Rouen, Mont Saint Aignan, CETAPS EA 3832, F-76821, France
| | | | - Nidhal Jebabli
- Higher Institute of Sport and Physical Education, Ksar-Said, University of Manouba, Tunis 2010, Tunisia
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK
| | | | - Anthony C Hackney
- Department of Exercise & Sport Science, Department of Nutrition, University of North Carolina, Chapel Hill, NC 27514, USA
| | | |
Collapse
|
5
|
Genotype Distribution of the ACTN3 p.R577X Polymorphism in Elite Badminton Players: A Preliminary Study. Genes (Basel) 2022; 14:genes14010050. [PMID: 36672791 PMCID: PMC9858904 DOI: 10.3390/genes14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
α-Actinin-3 is a protein with a structural role at the sarcomeric Z-line in skeletal muscle. As it is only present in fast-type muscle fibers, α-actinin-3 is considered a key mechanical component to produce high-intensity muscle contractions and to withstand external tension applied to the skeletal muscle. α-Actinin-3 is encoded by the gene ACTN3, which has a single-nucleotide polymorphism (p.R577X; rs1815739) that affects the expression of α-actinin-3 due to the presence of a stop codon. Individuals homozygous for the 577R allele (i.e., RR genotype) and RX heterozygotes express functional α-actinin-3, while those homozygous for the 577X (i.e., XX genotype) express a non-functional protein. There is ample evidence to support the associations between the ACTN3 genotype and athletic performance, with higher frequencies of the 577R allele in elite and professional sprint and power athletes than in control populations. This suggests a beneficial influence of possessing functional α-actinin-3 to become an elite athlete in power-based disciplines. However, no previous investigation has determined the frequency of the ACTN3 genotypes in elite badminton players, despite this sport being characterized by high-intensity actions of intermittent nature such as changes of direction, accelerations, jumps and smashes. The purpose of this study was to analyze ACTN3 R577X genotype frequencies in professional badminton players to establish whether this polymorphism is associated with elite athlete status. A total of 53 European Caucasian professional badminton players competing in the 2018 European Badminton Championships volunteered to participate in the study. Thirty-one were men (26.2 ± 4.4 years) and twenty-two were women (23.4 ± 4.5 years). Chi-squared tests were used to analyze the differences in the distribution of ACTN3 genotypes (RR, RX and XX) between categories and sexes. The ACTN3 RR genotype was the most frequent in the sample of professional badminton players (RR = 49.1%, RX = 22.6% and XX = 28.3%). None of the badminton players ranked in the world's top ten possessed the XX genotype (RX = 60%, RR = 40%). The distribution of the ACTN3 genotypes was similar between male and female professional badminton players (men: RR = 45.2%, RX = 25.8% and XX = 29.0%; women: RR = 54.5%, RX = 18.2% and XX = 27.3%; χ2 = 0.58; p = 0.750). The distribution of the ACTN3 genotypes in badminton players was different from the 1000 genome database for the European population (χ2 = 15.5; p < 0.001), with an overrepresentation of the RR genotype (p < 0.05) and an underrepresentation of the RX genotype (p < 0.01). In conclusion, the expression of functional α-actinin-3, associated with RR and RX genotypes in the ACTN3 gene may confer an advantage for reaching the status of elite athlete in badminton, and especially the world's top-ten ranking. Large-scale studies with different ethnic backgrounds are needed to confirm the association of the R allele of ACTN3 with badminton performance.
Collapse
|
6
|
Del Coso J, Rodas G, Buil MÁ, Sánchez-Sánchez J, López P, González-Ródenas J, Gasulla-Anglés P, López-Samanes Á, Hernández-Sánchez S, Iztueta A, Moreno-Pérez V. Association of the ACTN3 rs1815739 Polymorphism with Physical Performance and Injury Incidence in Professional Women Football Players. Genes (Basel) 2022; 13:genes13091635. [PMID: 36140803 PMCID: PMC9498709 DOI: 10.3390/genes13091635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
The p.R577X polymorphism (rs1815739) in the ACTN3 gene causes individuals with the XX genotype to be deficient in functional α-actinin-3. Previous investigations have found that XX athletes are more prone to suffer non-contact muscle injuries, in comparison with RR and RX athletes who produce a functional α-actinin-3 in their fast-twitch fibers. This investigation aimed to determine the influence of the ACTN3 R577X polymorphism on physical performance and injury incidence of players competing in the women’s Spanish first division of football (soccer). Using a cross-sectional experiment, football-specific performance and epidemiology of non-contact football-related injuries were recorded in a group of 191 professional football players. ACTN3 R577X genotype was obtained for each player using genomic DNA samples obtained through buccal swabs. A battery of physical tests, including a countermovement jump, a 20 m sprint test, the sit-and-reach test and ankle dorsiflexion, were performed during the preseason. Injury incidence and characteristics of non-contact injuries were obtained according to the International Olympic Committee (IOC) statement for one season. From the study sample, 28.3% of players had the RR genotype, 52.9% had the RX genotype, and 18.8% had the XX genotype. Differences among genotypes were identified with one-way analysis of variance (numerical variables) or chi-square tests (categorical variables). Jump height (p = 0.087), sprint time (p = 0.210), sit-and-reach distance (p = 0.361), and dorsiflexion in the right (p = 0.550) and left ankle (p = 0.992) were similar in RR, RX, and XX football players. A total of 356 non-contact injuries were recorded in 144 football players while the remaining 47 did not sustain any non-contact injuries during the season. Injury incidence was 10.4 ± 8.6, 8.2 ± 5.7, and 8.9 ± 5.3 injuries per/1000 h of football exposure, without differences among genotypes (p = 0.222). Injury rates during training (from 3.6 ± 3.7 to 4.8 ± 2.1 injuries per/1000 h of training exposure, p = 0.100) and match (from 47.8 ± 9.5 to 54.1 ± 6.3 injuries per/1000 h of match exposure, p = 0.209) were also similar in RR, RX, and XX football players. The ACTN3 genotype did not affect the mode of onset, the time needed to return to play, the type of injury, or the distribution of body locations of the injuries. In summary, women football players with different genotypes of the p.R577X ACTN3 polymorphism had similar values of football-specific performance and injury incidence. From a practical perspective, the ACTN3 genotyping may not be useful to predict performance or injury incidence in professional women football players.
Collapse
Affiliation(s)
- Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28943 Fuenlabrada, Spain
- Correspondence:
| | - Gil Rodas
- Medical Department & Barça Innovation Hub, Fútbol Club Barcelona, 08028 Barcelona, Spain
| | - Miguel Ángel Buil
- Department of Sports Medicine, Levante Unión Deportiva, 46360 Valencia, Spain
- Department of Sports Medicine, IVRE—Institut Valencià de Recuperació Esportiva, 46010 Valencia, Spain
| | | | - Pedro López
- Medical Department, Valencia Club de Fútbol, 46980 Paterna, Spain
| | | | | | - Álvaro López-Samanes
- Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| | - Sergio Hernández-Sánchez
- Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Miguel Hernandez University of Elche, 03202 Elche, Spain
| | - Ane Iztueta
- Health and Performance Unit, Real Sociedad de Fútbol Sociedad Anónima Deportiva, 20160 Donostia, Spain
| | - Víctor Moreno-Pérez
- Center for Translational Research in Physiotherapy, Department of Pathology and Surgery, Miguel Hernandez University of Elche, 03202 Elche, Spain
| |
Collapse
|
7
|
Kumagai H, Miyamoto-Mikami E, Takaragawa M, Kuriki K, Goto C, Shibata K, Yamada N, Hosono A, Fuku M, Suzuki S, Fuku N. Genetic polymorphisms in CYP19A1 and ESR1 are associated with serum CK activity after prolonged running in men. J Appl Physiol (1985) 2022; 132:966-973. [PMID: 35175101 DOI: 10.1152/japplphysiol.00374.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to clarify 1) the influence of genetic polymorphisms in the cytochrome P450 aromatase gene (CYP19A1) on circulating estradiol levels in men and 2) whether estrogen-related genetic polymorphisms, such as the CYP19A1 rs936306 and estrogen receptor-α (ESR1) rs2234693 polymorphisms, predict exercise-induced muscle damage. Serum estradiol levels were examined in young men (n = 167). In a different cohort, serum creatine kinase (CK) activity, an index of skeletal muscle membrane disruption, was analyzed in a 2-days ultramarathon race: baseline, after the first day, and after the second day (114 males and 25 females). Genetic polymorphisms in CYP19A1 rs936306 C/T and ESR1 rs2234693 T/C were analyzed using the TaqMan SNP genotyping assay. Male subjects with the TT genotype of the CYP19A1 polymorphism exhibited significantly higher serum estradiol levels than the C allele carriers. Male runners had significantly higher post-race serum CK activity than female runners. The change in the CK activity during the ultramarathon race was significantly lower in male subjects with the CYP19A1 TT genotype than in those with the CC+CT genotypes, and was correlated with the number of C alleles in ESR1 rs2234693 in male subjects. Furthermore, the genotype scores of these two polymorphisms were significantly correlated with changes in serum CK activity during race (r = ‒0.279, P = 0.003). The results of this study suggest that genetic polymorphisms in CYP19A1 rs936306 influence serum estradiol levels in men, and genetic polymorphisms in CYP19A1 and ESR1 are associated with serum CK activity in men.
Collapse
Affiliation(s)
- Hiroshi Kumagai
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Mizuki Takaragawa
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| | - Kiyonori Kuriki
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Chiho Goto
- Faculty of Health and Human Life, Nagoya Bunri University, Inazawa, Japan
| | - Kiyoshi Shibata
- Department of Human Life and Sciences, Nagoya University of Economics, Nagoya, Japan
| | - Norihiro Yamada
- Faculty of Agriculture, Setsunan University, Neyagawa, Japan
| | - Akihiro Hosono
- Atsuta Health Center, City of Nagoya, Japan.,Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Mizuho Fuku
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan.,Department of Rehabilitation Medicine, Tsudanuma Central General Hospital, Narashino, Japan
| | - Sadao Suzuki
- Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Noriyuki Fuku
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Japan
| |
Collapse
|
8
|
de Lima LCR, Bueno Junior CR, de Oliveira Assumpção C, de Menezes Bassan N, Barreto RV, Cardozo AC, Greco CC, Denadai BS. The Impact of ACTN3 Gene Polymorphisms on Susceptibility to Exercise-Induced Muscle Damage and Changes in Running Economy Following Downhill Running. Front Physiol 2021; 12:769971. [PMID: 34867477 PMCID: PMC8634444 DOI: 10.3389/fphys.2021.769971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate if ACTN3 gene polymorphism impacts the susceptibility to exercise-induced muscle damage (EIMD) and changes in running economy (RE) following downhill running. Thirty-five healthy men were allocated to the two groups based on their ACTN3 gene variants: RR and X allele carriers. Neuromuscular function [knee extensor isometric peak torque (IPT), rate of torque development (RTD), and countermovement, and squat jump height], indirect markers of EIMD [muscle soreness, mid-thigh circumference, knee joint range of motion, and serum creatine kinase (CK) activity], and RE (oxygen uptake, minute ventilation, blood lactate concentration, and perceived exertion) for 5-min of running at a speed equivalent to 80% of individual maximal oxygen uptake speed were assessed before, immediately after, and 1-4 days after a 30-min downhill run (-15%). Neuromuscular function was compromised (P < 0.05) following downhill running with no differences between the groups, except for IPT, which was more affected in the RR individuals compared with the X allele carriers immediately (-24.9 ± 6.9% vs. -16.3 ± 6.5%, respectively) and 4 days (-16.6 ± 14.9% vs. -4.2 ± 9.5%, respectively) post-downhill running. EIMD manifested similarly for both the groups except for serum CK activity, which was greater for RR (398 ± 120 and 452 ± 126 U L-1 at 2 and 4 days following downhill running, respectively) compared with the X allele carriers (273 ± 121 and 352 ± 114 U L-1 at the same time points). RE was compromised following downhill running (16.7 ± 8.3% and 11 ± 7.5% increases in oxygen uptake immediately following downhill running for the RR and X allele carriers, respectively) with no difference between the groups. We conclude that although RR individuals appear to be more susceptible to EIMD following downhill running, this does not extend to the changes in RE.
Collapse
Affiliation(s)
- Leonardo Coelho Rabello de Lima
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil.,Faculty of Biological and Health Sciences, School of Physical Education, Centro Universitário da Fundação Hermínio Ometto, Araras, Brazil.,School of Physical Education, Campus Liceu Salesiano, Centro Universitário Salesiano de São Paulo, Campinas, Brazil
| | | | - Claudio de Oliveira Assumpção
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil.,Physical Education and Sports Institute, Federal University of Ceará, Fortaleza, Brazil
| | - Natália de Menezes Bassan
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Renan Vieira Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Adalgiso Coscrato Cardozo
- Biomechanics Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Camila Coelho Greco
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Benedito Sérgio Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| |
Collapse
|
9
|
Alpha-Actinin-3 Deficiency Might Affect Recovery from Non-Contact Muscle Injuries: Preliminary Findings in a Top-Level Soccer Team. Genes (Basel) 2021; 12:genes12050769. [PMID: 34069995 PMCID: PMC8157848 DOI: 10.3390/genes12050769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 11/17/2022] Open
Abstract
There are recent data suggesting an association between the R577X polymorphism (rs1815739) in the gene encoding α-actinin-3 (ACTN3) and the risk of musculoskeletal injuries. The purpose of this study was to analyze the association of rs1815739 with risk of, and recovery time from non-contact soft-tissue muscle injuries in professional soccer players. Forty-six (22 male and 24 female) players from a top-level professional soccer team were assessed during five consecutive seasons: the genotype distribution was: RR, 41.3%; RX, 47.8%; and XX, 10.9%. There was a trend towards a higher risk of muscle injury associated with the XX genotype (p = 0.092, with no injury-free XX player during the 5-year study period) and a significant genotype effect for the time needed to return to play (p = 0.044, with the highest value shown for the XX genotype, i.e., 36 ± 26 days, vs. 20 ± 10 and 17 ± 12 days for RR and RX, respectively). In conclusion, the XX genotype might be associated not only with a higher risk of non-contact muscle injuries, but also of recovery time from these conditions. However, more research in larger cohorts is needed to confirm this preliminary hypothesis.
Collapse
|
10
|
Carneiro A, Viana-Gomes D, Macedo-da-Silva J, Lima GHO, Mitri S, Alves SR, Kolliari-Turner A, Zanoteli E, Neto FRDA, Palmisano G, Pesquero JB, Moreira JC, Pereira MD. Risk factors and future directions for preventing and diagnosing exertional rhabdomyolysis. Neuromuscul Disord 2021; 31:583-595. [PMID: 34193371 DOI: 10.1016/j.nmd.2021.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Exertional rhabdomyolysis may occur when an individual is subjected to strenuous physical exercise. It is occasionally associated with myoglobinuria (i.e. "cola-colored" urine) alongside muscle pain and weakness. The pathophysiology of exertional rhabdomyolysis involves striated muscle damage and the release of cellular components into extracellular fluid and bloodstream. This can cause acute renal failure, electrolyte abnormalities, arrhythmias and potentially death. Exertional rhabdomyolysis is observed in high-performance athletes who are subjected to intense, repetitive and/or prolonged exercise but is also observed in untrained individuals and highly trained or elite groups of military personnel. Several risk factors have been reported to increase the likelihood of the condition in athletes, including: viral infection, drug and alcohol abuse, exercise in intensely hot and humid environments, genetic polymorphisms (e.g. sickle cell trait and McArdle disease) and epigenetic modifications. This article reviews several of these risk factors and proposes screening protocols to identify individual susceptibility to exertional rhabdomyolysis as well as the relevance of proteomics for the evaluation of potential biomarkers of muscle damage.
Collapse
Affiliation(s)
- Andréia Carneiro
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil; Departamento de Química, Diretoria de Sistemas de Armas da Marinha, Marinha do Brazil, Brazil; Departamento de Parasitologia, Universidade de São Paulo, Instituto de Ciencias Biomédicas, Brazil.
| | - Diego Viana-Gomes
- Departamento de Corridas, Universidade Federal do Rio de Janeiro, Escola de Educação Física, Brazil
| | - Janaina Macedo-da-Silva
- Departamento de Parasitologia, Universidade de São Paulo, Instituto de Ciencias Biomédicas, Brazil
| | - Giscard Humberto Oliveira Lima
- Departamento de Biofísica, Universidade Federal de São Paulo, Brazil; Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | - Simone Mitri
- Centro de Ecologia Humana e Saúde do Trabalhador, Fundação Oswaldo Cruz, Brazil
| | | | | | - Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Departamento de Parasitologia, Universidade de São Paulo, Instituto de Ciencias Biomédicas, Brazil
| | - João Bosco Pesquero
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | | | - Marcos Dias Pereira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Corpas M, Megy K, Mistry V, Metastasio A, Lehmann E. Whole Genome Interpretation for a Family of Five. Front Genet 2021; 12:535123. [PMID: 33763108 PMCID: PMC7982663 DOI: 10.3389/fgene.2021.535123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Although best practices have emerged on how to analyse and interpret personal genomes, the utility of whole genome screening remains underdeveloped. A large amount of information can be gathered from various types of analyses via whole genome sequencing including pathogenicity screening, genetic risk scoring, fitness, nutrition, and pharmacogenomic analysis. We recognize different levels of confidence when assessing the validity of genetic markers and apply rigorous standards for evaluation of phenotype associations. We illustrate the application of this approach on a family of five. By applying analyses of whole genomes from different methodological perspectives, we are able to build a more comprehensive picture to assist decision making in preventative healthcare and well-being management. Our interpretation and reporting outputs provide input for a clinician to develop a healthcare plan for the individual, based on genetic and other healthcare data.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Institute of Continuing Education Madingley Hall Madingley, University of Cambridge, Cambridge, United Kingdom.,Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, Madrid, Spain
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge & National Health Service (NHS) Blood and Transplant, Cambridge, United Kingdom
| | | | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Camden and Islington NHS Foundation Trust, London, United Kingdom
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom
| |
Collapse
|
12
|
Gutiérrez-Hellín J, Baltazar-Martins G, Aguilar-Navarro M, Ruiz-Moreno C, Oliván J, Del Coso J. Effect of ACTN3 R577X Genotype on Injury Epidemiology in Elite Endurance Runners. Genes (Basel) 2021; 12:genes12010076. [PMID: 33430120 PMCID: PMC7828078 DOI: 10.3390/genes12010076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
The p.R577X polymorphism (rs1815739) in the ACTN3 gene causes individuals with the ACTN3 XX genotype to be deficient in functional α-actinin-3. Previous investigations have found that XX athletes are more prone to suffer non-contact muscle injuries. This investigation aimed to determine the influence of the ACTN3 R577X polymorphism in the injury epidemiology of elite endurance athletes. Using a cross-sectional experiment, the epidemiology of running-related injuries was recorded for one season in a group of 89 Spanish elite endurance runners. ACTN3 R577X genotype was obtained for each athlete using genomic DNA samples. From the study sample, 42.7% of athletes had the RR genotype, 39.3% had the RX genotype, and 18.0% had the XX genotype. A total of 96 injuries were recorded in 57 athletes. Injury incidence was higher in RR runners (3.2 injuries/1000 h of running) than in RX (2.0 injuries/1000 h) and XX (2.2 injuries/1000 h; p = 0.030) runners. RR runners had a higher proportion of injuries located in the Achilles tendon, RX runners had a higher proportion of injuries located in the knee, and XX runners had a higher proportion of injuries located in the groin (p = 0.025). The ACTN3 genotype did not affect the mode of onset, the severity, or the type of injury. The ACTN3 genotype slightly affected the injury epidemiology of elite endurance athletes with a higher injury rate in RR athletes and differences in injury location. However, elite ACTN3 XX endurance runners were not more prone to muscle-type injuries.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Hellín
- Faculty of Health Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain; (J.G.-H.); (M.A.-N.)
| | - Gabriel Baltazar-Martins
- Exercise Physiology Laboratory, Camilo José Cela University, 28692 Villanueva de la Cañada, Spain; (G.B.-M.); (C.R.-M.)
| | - Millán Aguilar-Navarro
- Faculty of Health Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain; (J.G.-H.); (M.A.-N.)
| | - Carlos Ruiz-Moreno
- Exercise Physiology Laboratory, Camilo José Cela University, 28692 Villanueva de la Cañada, Spain; (G.B.-M.); (C.R.-M.)
| | - Jesús Oliván
- Faculty of Physical Activity and Sport Sciences, Technical University of Madrid, 28040 Madrid, Spain;
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, 28933 Fuenlabrada, Spain
- Correspondence:
| |
Collapse
|
13
|
Del Coso J, Salinero JJ, Lara B, Gallo-Salazar C, Areces F, Herrero D, Puente C. Polygenic Profile and Exercise-Induced Muscle Damage by a Competitive Half-Ironman. J Strength Cond Res 2020; 34:1400-1408. [PMID: 29140910 DOI: 10.1519/jsc.0000000000002303] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Del Coso, J, Salinero, JJ, Lara, B, Gallo-Salazar, C, Areces, F, Herrero, D, and Puente, C. Polygenic profile and exercise-induced muscle damage by a competitive half-ironman. J Strength Cond Res 34(5): 1400-1408, 2020-To date, it is still unknown why some individuals develop higher levels of muscle damage than other individuals, despite participating in exercise with comparable levels of physical intensity. The aim of this investigation was to analyze 7 single-nucleotide polymorphisms (SNPs) that are candidates to explain individual variations in the level of muscle damage attained during a half-ironman competition. Using the model of Williams and Folland (2, 1, and 0 points for optimal, intermediate, and suboptimal genotype), we determined the total genotype score from the accumulated combination of 7 SNPs (ACE = 287bp Ins/Del; ACTN3 = p.R577X; creatine kinase, muscle type = NcoI; insulin-like growth factor 2 = C13790G; interleukin-6 = 174G>C; myosin light chain kinase = C37885A; and tumor necrosis factor-α = 308G>A) in 22 experienced triathletes. Before and after the race, a sample of venous blood was obtained to measure serum markers of muscle damage. Two groups of triathletes were established according to their postcompetition serum CK concentration: low CK responders (n = 10; 377 ± 86 U·L) vs. high CK responders (n = 12; 709 ± 136 U·L). At the end of the race, low CK responders had lower serum myoglobin concentrations (384 ± 243 vs. 597 ± 293 ng·ml, p = 0.04). Although the groups were similar in age, anthropometric characteristics, and training habits, total genotype score was higher in low CK responders than in high CK responders (7.7 ± 1.1 vs. 5.5 ± 1.1 point, p < 0.01). A favorable polygenic profile can contribute to reducing the level of muscle damage developed during endurance exercise.
Collapse
Affiliation(s)
- Juan Del Coso
- Sports Sciences Department, Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Effect of ACTN3 Genotype on Sports Performance, Exercise-Induced Muscle Damage, and Injury Epidemiology. Sports (Basel) 2020; 8:sports8070099. [PMID: 32668587 PMCID: PMC7404684 DOI: 10.3390/sports8070099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic factors play a significant role in athletic performance and its related phenotypes such as power, strength and aerobic capacity. In this regard, the lack of a muscle protein due to a genetic polymorphism has been found to affect sport performance in a wide variety of ways. α-actinin-3 is a protein located within the skeletal muscle with a key role in the production of sarcomeric force. A common stop-codon polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) produces individuals with the XX genotype that lack expression of a functional α-actinin-3. In contrast, individuals with the R-allele (i.e., RX vs. RR genotypes) in this polymorphism can express α-actinin-3. Interestingly, around ~18% of the world population have the XX genotype and much has been debated about why a polymorphism that produces a lack of a muscle protein has endured natural selection. Several investigations have found that α-actinin-3 deficiency due to XX homozygosity in the ACTN3 R577X polymorphism can negatively affect sports performance through several structural, metabolic, or signaling changes. In addition, new evidence suggests that α-actinin-3 deficiency may also impact sports performance through indirect factors such a higher risk for injury or lower resistance to muscle-damaging exercise. The purpose of this discussion is to provide a clear explanation of the effect of α-actinin-3 deficiency due to the ACTN3 XX genotype on sport. Key focus has been provided about the effect of α-actinin-3 deficiency on morphologic changes in skeletal muscle, on the low frequency of XX athletes in some athletic disciplines, and on injury epidemiology.
Collapse
|
15
|
Vadasz B, Gohari J, West DW, Grosman-Rimon L, Wright E, Ozcakar L, Srbely J, Kumbhare D. Improving characterization and diagnosis quality of myofascial pain syndrome: a systematic review of the clinical and biomarker overlap with delayed onset muscle soreness. Eur J Phys Rehabil Med 2020; 56:469-478. [PMID: 32072791 DOI: 10.23736/s1973-9087.20.05820-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Myofascial pain syndrome (MPS) is one of the most common conditions of chronic musculoskeletal pain, yet its mechanisms are still poorly understood. Delayed Onset Muscle Soreness (DOMS) is also a regional pain syndrome that has clinical similarities to MPS, but has been better investigated. Emerging research suggests that DOMS may be a valid experimental model for studying MPS; however, a comparison of the similarities and differences of these two conditions has previously not been performed. Herein, we aimed to identify the similarities and differences in the clinical features and biomarkers between DOMS and MPS in order to better define MPS and identify future areas of (DOMS-informed) MPS research. EVIDENCE ACQUISITION In order to identify similarities and differences in the clinical manifestation and biomarkers of DOMS and MPS, scoping literature searches were performed using Medline (1965-2019), Embase (1966-2019) and Central (1966-2019) databases. Fifty-three full-text articles were reviewed out of the 2836 articles retrieved in the search. EVIDENCE SYNTHESIS A scoping review of the literature demonstrated that DOMS and MPS similarly present as conditions of musculoskeletal pain that are associated with decreased strength and limited range of motion. However, while taut bands and discrete tender spots were described in DOMS, none of the studies reviewed have characterized whether these tender points represent the classic myofascial trigger point phenomenon observed in MPS. Certain systemic circulation biomarkers, including inflammatory cytokines and growth factors, were commonly elevated in MPS and DOMS; further research is needed to determine if other biomarkers that are currently characterized in DOMS are useful to enhance the clinical evaluation of MPS. CONCLUSIONS DOMS and MPS share clinical and biomarker similarities suggesting that DOMS may be a useful model for studying MPS.
Collapse
Affiliation(s)
- Brian Vadasz
- Technion American Medical School, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel.,Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University of Toronto, Toronto, ON, Canada
| | - Jacob Gohari
- Technion American Medical School, The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Daniel W West
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.,Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University of Toronto, Toronto, ON, Canada
| | - Liza Grosman-Rimon
- Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University of Toronto, Toronto, ON, Canada
| | - Evan Wright
- Department of Pediatrics, Jacobi Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Levent Ozcakar
- Department of Physical and Rehabilitation Medicine, School of Medicine, Hacettepe University, Ankara, Turkey
| | - John Srbely
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Canada
| | - Dinesh Kumbhare
- Division of Physical Medicine and Rehabilitation, Toronto Rehabilitation Institute, University of Toronto, Toronto, ON, Canada -
| |
Collapse
|
16
|
Moreno V, Areces F, Ruiz-Vicente D, Ordovás JM, Del Coso J. Influence of the ACTN3 R577X genotype on the injury epidemiology of marathon runners. PLoS One 2020; 15:e0227548. [PMID: 31990958 PMCID: PMC6986710 DOI: 10.1371/journal.pone.0227548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
A common single nucleotide polymorphism in the ACTN3 gene might result in the complete deficiency of α-actinin-3 (i.e., XX genotype). It has been found that ACTN3 XX individuals have several traits related to lessened muscle performance. This study aimed to determine the influence, if any, of ACTN3 genotypes on injury incidence of marathoners during the year preceding to participating in a competitive marathon race. Using a cross-sectional experimental design, the type and conditions of sports injuries were documented for one year in a group of 139 marathoners. Injuries were recorded following a consensus statement on injuries in Athletics. Afterward, ACTN3 genotyping was performed, and injury epidemiology was compared among RR, RX, and XX genotypes. The distribution of the RR/RX/XX genotypes was 28.8/42.8/23.5%, respectively. A total of 67 injuries were recorded. The frequency of marathoners that reported any injury during the previous year was not different across the genotypes (55.0/38.8/40.6%, P = 0.241). Although the overall injury incidence was not different among genotypes (2.78/1.65/1.94 injuries/1000 h of running, P = 0.084), the likelihood of suffering an injury was higher in RR than in RX (OR = 1.93: 95%CI = 0.87–4.30), and higher than in XX (OR = 1.79: 0.70–4.58). There was no difference in the conditions, severity, body location, time of year, or leading cause of injury among genotypes. However, XX presented a higher frequency of sudden-onset injuries (P = 0.024), and the OR for muscle-type injuries was 2.0 (0.51–7.79) times higher compared to RR runners. Although XX marathoners did not have a higher overall incidence of injury, the OR in these runners for muscle-type injuries was superior to RR and RX runners. The likelihood of suffering a muscle injury, especially with a sudden-onset, was twice in XX than in RR endurance runners.
Collapse
Affiliation(s)
- Victor Moreno
- Sports Research Centre, Miguel Hernandez University of Elche, Alicante, Spain
| | - Francisco Areces
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | - Diana Ruiz-Vicente
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | - José M. Ordovás
- USDA ARS, Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States of America
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Juan Del Coso
- Centre for Sport Studies, Rey Juan Carlos University, Fuenlabrada, Madrid, Spain
- * E-mail:
| |
Collapse
|
17
|
ACTN3 R577X Genotype and Exercise Phenotypes in Recreational Marathon Runners. Genes (Basel) 2019; 10:genes10060413. [PMID: 31146466 PMCID: PMC6627880 DOI: 10.3390/genes10060413] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/29/2022] Open
Abstract
Background: Homozygosity for the X-allele in the ACTN3 R577X (rs1815739) polymorphism results in the complete absence of α-actinin-3 in sarcomeres of fast-type muscle fibers. In elite athletes, the ACTN3 XX genotype has been related to inferior performance in speed and power-oriented sports; however, its influence on exercise phenotypes in recreational athletes has received less attention. We sought to determine the influence of ACTN3 genotypes on common exercise phenotypes in recreational marathon runners. Methods: A total of 136 marathoners (116 men and 20 women) were subjected to laboratory testing that included measurements of body composition, isometric muscle force, muscle flexibility, ankle dorsiflexion, and the energy cost of running. ACTN3 genotyping was performed using TaqMan probes. Results: 37 runners (27.2%) had the RR genotype, 67 (49.3%) were RX and 32 (23.5%) were XX. There was a difference in body fat percentage between RR and XX genotype groups (15.7 ± 5.8 vs. 18.8 ± 5.5%; effect size, ES, = 0.5 ± 0.4, p = 0.024), whereas the distance obtained in the sit-and-reach-test was likely lower in the RX than in the XX group (15.3 ± 7.8 vs. 18.4 ± 9.9 cm; ES = 0.4 ± 0.4, p = 0.046). Maximal dorsiflexion during the weight-bearing lunge test was different in the RR and XX groups (54.8 ± 5.8 vs. 57.7 ± 5.1 degree; ES = 0.5 ± 0.5, p = 0.044). Maximal isometric force was higher in the RR than in the XX group (16.7 ± 4.7 vs. 14.7 ± 4.0 N/kg; ES = −0.5 ± 0.3, p = 0.038). There was no difference in the energy cost of running between genotypes (~4.8 J/kg/min for all three groups, ES ~0.2 ± 0.4). Conclusions: The ACTN3 genotype might influence several exercise phenotypes in recreational marathoners. Deficiency in α-actinin-3 might be accompanied by higher body fatness, lower muscle strength and higher muscle flexibility and range of motion. Although there is not yet a scientific rationale for the use of commercial genetic tests to predict sports performance, recreational marathon runners who have performed such types of testing and have the ACTN3 XX genotype might perhaps benefit from personalized strength training to improve their performance more than their counterparts with other ACTN3 genotypes.
Collapse
|
18
|
The Development of a Personalised Training Framework: Implementation of Emerging Technologies for Performance. J Funct Morphol Kinesiol 2019; 4:jfmk4020025. [PMID: 33467340 PMCID: PMC7739422 DOI: 10.3390/jfmk4020025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023] Open
Abstract
Over the last decade, there has been considerable interest in the individualisation of athlete training, including the use of genetic information, alongside more advanced data capture and analysis techniques. Here, we explore the evidence for, and practical use of, a number of these emerging technologies, including the measurement and quantification of epigenetic changes, microbiome analysis and the use of cell-free DNA, along with data mining and machine learning. In doing so, we develop a theoretical model for the use of these technologies in an elite sport setting, allowing the coach to better answer six key questions: (1) To what training will my athlete best respond? (2) How well is my athlete adapting to training? (3) When should I change the training stimulus (i.e., has the athlete reached their adaptive ceiling for this training modality)? (4) How long will it take for a certain adaptation to occur? (5) How well is my athlete tolerating the current training load? (6) What load can my athlete handle today? Special consideration is given to whether such an individualised training framework will outperform current methods as well as the challenges in implementing this approach.
Collapse
|
19
|
Del Coso J, Hiam D, Houweling P, Pérez LM, Eynon N, Lucía A. More than a 'speed gene': ACTN3 R577X genotype, trainability, muscle damage, and the risk for injuries. Eur J Appl Physiol 2018; 119:49-60. [PMID: 30327870 DOI: 10.1007/s00421-018-4010-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
A common null polymorphism (rs1815739; R577X) in the gene that codes for α-actinin-3 (ACTN3) has been related to different aspects of exercise performance. Individuals who are homozygous for the X allele are unable to express the α-actinin-3 protein in the muscle as opposed to those with the RX or RR genotype. α-actinin-3 deficiency in the muscle does not result in any disease. However, the different ACTN3 genotypes can modify the functioning of skeletal muscle during exercise through structural, metabolic or signaling changes, as shown in both humans and in the mouse model. Specifically, the ACTN3 RR genotype might favor the ability to generate powerful and forceful muscle contractions. Leading to an overall advantage of the RR genotype for enhanced performance in some speed and power-oriented sports. In addition, RR genotype might also favor the ability to withstand exercise-induced muscle damage, while the beneficial influence of the XX genotype on aerobic exercise performance needs to be validated in human studies. More information is required to unveil the association of ACTN3 genotype with trainability and injury risk during acute or chronic exercise.
Collapse
Affiliation(s)
- Juan Del Coso
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain.
| | - Danielle Hiam
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | | | - Laura M Pérez
- Universidad Europea de Madrid (Faculty of Sport Sciences) and Research Institute i+12, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Alejandro Lucía
- Universidad Europea de Madrid (Faculty of Sport Sciences) and Research Institute i+12, Madrid, Spain
| |
Collapse
|
20
|
Pickering C, Kiely J. ACTN3: More than Just a Gene for Speed. Front Physiol 2017; 8:1080. [PMID: 29326606 PMCID: PMC5741991 DOI: 10.3389/fphys.2017.01080] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/08/2017] [Indexed: 12/31/2022] Open
Abstract
Over the last couple of decades, research has focused on attempting to understand the genetic influence on sports performance. This has led to the identification of a number of candidate genes which may help differentiate between elite and non-elite athletes. One of the most promising genes in that regard is ACTN3, which has commonly been referred to as “a gene for speed”. Recent research has examined the influence of this gene on other performance phenotypes, including exercise adaptation, exercise recovery, and sporting injury risk. In this review, we identified 19 studies exploring these phenotypes. Whilst there was large variation in the results of these studies, as well as extremely heterogeneous cohorts, there is overall a tentative consensus that ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a common polymorphism (R577X) is associated with enhanced improvements in strength, protection from eccentric training-induced muscle damage, and sports injury. This illustrates that ACTN3 is more than just a gene for speed, with potentially wide-ranging influence on muscle function, knowledge of which may aid in the future personalization of exercise training programmes.
Collapse
Affiliation(s)
- Craig Pickering
- School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom.,Exercise and Nutritional Genomics Research Centre, DNAFit Ltd., London, United Kingdom
| | - John Kiely
- School of Sport and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
21
|
Del Coso J, Valero M, Salinero JJ, Lara B, Gallo-Salazar C, Areces F. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon. PLoS One 2017; 12:e0172965. [PMID: 28257486 PMCID: PMC5336235 DOI: 10.1371/journal.pone.0172965] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/13/2017] [Indexed: 12/27/2022] Open
Abstract
Purpose Exertional rhabdomyolysis can occur in individuals performing various types of exercise but it is unclear why some individuals develop this condition while others do not. Previous investigations have determined the role of several single nucleotide polymorphisms (SNPs) to explain inter-individual variability of serum creatine kinase (CK) concentrations after exertional muscle damage. However, there has been no research about the interrelationship among these SNPs. The purpose of this investigation was to analyze seven SNPs that are candidates for explaining individual variations of CK response after a marathon competition (ACE = 287bp Ins/Del, ACTN3 = p.R577X, CKMM = NcoI, IGF2 = C13790G, IL6 = 174G>C, MLCK = C37885A, TNFα = 308G>A). Methods Using Williams and Folland’s model, we determined the total genotype score from the accumulated combination of these seven SNPs for marathoners with a low CK response (n = 36; serum CK <400 U·L-1) vs. marathoners with a high CK response (n = 31; serum CK ≥400 U·L-1). Results At the end of the race, low CK responders had lower serum CK (290±65 vs. 733±405 U·L-1; P<0.01) and myoglobin concentrations (443±328 vs. 1009±971 ng·mL-1, P<0.01) than high CK responders. Although the groups were similar in age, anthropometric characteristics, running experience and training habits, total genotype score was higher in low CK responders than in high CK responders (5.2±1.4 vs. 4.4±1.7 point, P = 0.02). Conclusion Marathoners with a lower CK response after the race had a more favorable polygenic profile than runners with high serum CK concentrations. This might suggest a significant role of genetic polymorphisms in the levels of exertional muscle damage and rhabdomyolysis. Yet other SNPs, in addition to exercise training, might also play a role in the values of CK after damaging exercise.
Collapse
Affiliation(s)
- Juan Del Coso
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
- * E-mail:
| | - Marjorie Valero
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | - Juan José Salinero
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | - Beatriz Lara
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| | | | - Francisco Areces
- Exercise Physiology Laboratory, Camilo José Cela University, Madrid, Spain
| |
Collapse
|
22
|
ACTN3 genotype influences exercise-induced muscle damage during a marathon competition. Eur J Appl Physiol 2017; 117:409-416. [DOI: 10.1007/s00421-017-3542-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/09/2017] [Indexed: 11/27/2022]
|