1
|
Li Z, Li W, Lin PJ, Jia T, Ji L, Li C. Motor-Respiratory Coupling Improves Endurance Performance during Rhythmic Isometric Handgrip Exercise. Med Sci Sports Exerc 2024; 56:536-544. [PMID: 37882076 DOI: 10.1249/mss.0000000000003329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
PURPOSE This study aimed to evaluate whether motor-respiratory coupling exists in rhythmic isometric handgrip exercises and its effect on endurance performance. In addition, the mechanism underlying observed effects was to be investigated if higher motor-respiratory coupling rate could enhance endurance performance. METHODS Eleven subjects completed three rhythmic isometric handgrip trials to task failure in a randomized manner. After one pretraining session to determine personal grip frequency, one trial was performed without respiration requirement (CON), and two trials were performed with inspiration-motor coupling (IMC) or expiration-motor coupling. Changes in maximal voluntary contraction (MVC) and EMG were used to measure neuromuscular fatigue. Force data during test were used to assess exercise intensity. Another 10 subjects completed electrical stimulation-induced finger flexion and extension during normal inspiration, normal expiration, fast inspiration, fast expiration, and breath holding. Force changes of different breathing conditions were compared. RESULTS Normalized exercise time to exhaustion was significantly longer in IMC (1.27 ± 0.23) compared with expiration-motor coupling (0.82 ± 0.18) and CON (0.91 ± 0.18, P < 0.001). ΔMVC, grip frequency, force, and EMG indices were not different among conditions (all P > 0.05). Electrical stimulation-induced finger extensor force was significant higher during fast inspiration (1.11 ± 0.09) than normal respiration (1.00 ± 0.05) and fast expiration (0.94 ± 0.08, P < 0.05). CONCLUSIONS IMC is an effective way to improve endurance performance of rhythmic handgrip exercise. This is likely due to a reduction in the energy consumption of motion control, as evidenced by similar peripheral fatigue in different conditions and modulation of corticospinal excitability by respiration.
Collapse
Affiliation(s)
- Zhibin Li
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, CHINA
| | - Wei Li
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, CHINA
| | - Ping-Ju Lin
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, CHINA
| | - Tianyu Jia
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, CHINA
| | - Linhong Ji
- Lab of Intelligent and Bio-mimetic Machinery, Department of Mechanical Engineering, Tsinghua University, Beijing, CHINA
| | | |
Collapse
|
2
|
Cassirame J, Godin A, Chamoux M, Doucende G, Mourot L. Physiological Implication of Slope Gradient during Incremental Running Test. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12210. [PMID: 36231513 PMCID: PMC9566275 DOI: 10.3390/ijerph191912210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Uphill running induces a higher physiological demand than level conditions. Although many studies have investigated this locomotion from a psychological point of view, there is no clear position on the effects of the slope on the physiological variables during an incremental running test performed on a slope condition. The existing studies have heterogeneous designs with different populations or slopes and have reported unclear results. Some studies observed an increase in oxygen consumption, whereas it remained unaffected in others. The aim of this study is to investigate the effect of a slope on the oxygen consumption, breathing frequency, ventilation and heart rate during an incremental test performed on 0, 15, 25 and 40% gradient slopes by specialist trail runners. The values are compared at the first and second ventilatory threshold and exhaustion. A one-way repeated measures ANOVA, with a Bonferroni post-hoc analysis, was used to determine the effects of a slope gradient (0, 15, 25 and 40%) on the physiological variables. Our study shows that all the variables are not affected in same way by the slopes during the incremental test. The heart rate and breathing frequency did not differ from the level condition and all the slope gradients at the ventilatory thresholds or exhaustion. At the same time, the ventilation and oxygen consumption increased concomitantly with the slope (p < 0.001) in all positions. The post-hoc analysis highlighted that the ventilation significantly increased between each successive gradient (0 to 15%, 15% to 25% and 25% to 40%), while the oxygen consumption stopped increasing at the 25% gradient. Our results show that the 25 and 40% gradient slopes allow the specialist trail runners to reach the highest oxygen consumption level.
Collapse
Affiliation(s)
- Johan Cassirame
- Laboratory Culture Sport Health and Society (C3S−UR 4660), Sport and Performance Department, University of Bourgogne Franche-Comte, 25000 Besançon, France
- EA7507, Laboratoire Performance, Santé, Métrologie, Société, 51100 Reims, France
- Mtraining, R&D Division, 25480 Ecole-Valentin, France
| | - Antoine Godin
- EA3920-Prognostic Markers and Regulatory Factors of Heart and Vascular Diseases, and Exercise Performance, Health, Innovation Platform, University Bourgogne Franche-Comté, 25000 Besançon, France
| | - Maxime Chamoux
- Laboratoire Interdisciplinaire Performance Santé en Environnement de Montagne (LIPSEM), UR-4604, Université de Perpignan Via Domitia, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France
| | - Gregory Doucende
- Laboratoire Interdisciplinaire Performance Santé en Environnement de Montagne (LIPSEM), UR-4604, Université de Perpignan Via Domitia, 7 Avenue Pierre de Coubertin, 66120 Font-Romeu, France
| | - Laurent Mourot
- EA3920-Prognostic Markers and Regulatory Factors of Heart and Vascular Diseases, and Exercise Performance, Health, Innovation Platform, University Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
3
|
Callender NA, Hayes TN, Tiller NB. Cardiorespiratory demands of competitive rock climbing. Appl Physiol Nutr Metab 2020; 46:161-168. [PMID: 32813982 DOI: 10.1139/apnm-2020-0566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rock climbing has become a mainstream sport, contested on the Olympic stage. The work/rest pattern of bouldering is unique among disciplines, and little is known about its physiological demands. This study characterised the cardiorespiratory responses to simulated competition. Eleven elite boulderers (7 male) volunteered to participate (age = 23.3 ± 4.5 years; mass = 68.2 ± 9.7 kg; stature = 1.73 ± 0.06 m; body fat = 10.4% ± 5%). Subjects completed incremental treadmill running to determine maximal capacities. On a separate day, they undertook a simulated Olympic-style climbing competition comprising 5 boulder problems, each separated by 5 min of rest. Pulmonary ventilation, gas exchange, and heart rate were assessed throughout. Total climbing time was 18.9 ± 2.7 min. Bouldering elicited a peak oxygen uptake of 35.8 ± 7.3 mL·kg-1·min-1 (∼75% of treadmill maximum) and a peak heart rate of 162 ± 14 beats·min-1 (∼88% of maximum). Subjects spent 22.9% ± 8.6% of climbing time above the gas exchange threshold. At exercise cessation, there was an abrupt and significant increase in tidal volume (1.4 ± 0.4 vs. 1.8 ± 0.4 L; p = 0.006, d = 0.83) despite unchanged minute ventilation. Cardiorespiratory parameters returned to baseline within 4 min of the rest period. In conclusion, competitive bouldering elicits substantial cardiorespiratory demand and evidence of tidal volume constraint. Further studies are warranted to explore the effect of cardiorespiratory training on climbing performance. Novelty: Competitive bouldering evokes a high fraction of maximal oxygen uptake and prolonged periods above the gas exchange threshold. Climbing appears to impose a constraint on tidal volume expansion. Cardiorespiratory indices in elite climbers return to baseline within 2-4 min.
Collapse
Affiliation(s)
- Nigel A Callender
- Department of Anaesthetics, Northumbria Specialist Emergency Care Hospital, Cramlington, Northumberland, NE23 6NZ, UK.,School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Tara N Hayes
- Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, S10 2BP, UK
| | - Nicholas B Tiller
- Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Centre, Torrance, CA 90502, USA
| |
Collapse
|
4
|
Takahata M, Ishizawa M, Uchiumi T, Yamaki M, Sato T. Effects of maneuver of hair-washing motion and gender on oxygen uptake and ventilation in healthy people. Sci Rep 2020; 10:13142. [PMID: 32753680 PMCID: PMC7403424 DOI: 10.1038/s41598-020-69945-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022] Open
Abstract
It is known that patients with chronic obstructive pulmonary disease experience dyspnea during unsupported arm exercise (UAE). We examined the respiratory variables in during a hair-washing motion for healthy young people requiring the UAE to find the effects across gender, motion, and speed. In this study, 33 healthy young people were enrolled. Participants performed the following four types of hair-washing motions: both hands with fast speed, both hands with slow speed, one hand with fast speed, and one hand with slow speed. The respiratory variables such as oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙O2), carbon dioxide output (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙CO2), and respiratory rate (RR), or minute ventilation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙E) were measured. Regarding \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙O2, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙CO2, and RR during the rest period and in each motion, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙O2 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙CO2 in males were significantly greater than those in females. RR in the female participants had greater value than that in males. Among the maneuvers, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙O2, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙CO2 or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙E during a hair-washing motion with both hands were greater than those during hair-washing motion with one hand. \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙O2, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙CO2, RR, or \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{\text{V}}}$$\end{document}V˙E during a hair-washing motion with both hands fast speed was greater than those during a hair-washing motion with slow speed. In conclusion, this study showed the effects owing to the differences in motion maneuvers and gender during UAE in healthy young people. These suggest a need to consider motion maneuver or gender when teaching motion methods of activities of daily living on the patients.
Collapse
Affiliation(s)
- Miki Takahata
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan.
| | - Masao Ishizawa
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan.,Department of Occupational Therapy, Yamagata College of Medical Arts and Sciences, Yamagata, Japan
| | - Takuya Uchiumi
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan.,Department of Occupational Therapy, Yamagata College of Medical Arts and Sciences, Yamagata, Japan
| | - Michiyasu Yamaki
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Toshiaki Sato
- Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| |
Collapse
|
5
|
Watanabe M, Zhang J, Mansuri MS, Duan J, Karimy JK, Delpire E, Alper SL, Lifton RP, Fukuda A, Kahle KT. Developmentally regulated KCC2 phosphorylation is essential for dynamic GABA-mediated inhibition and survival. Sci Signal 2019; 12:eaaw9315. [PMID: 31615901 DOI: 10.1126/scisignal.aaw9315.(#,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2024]
Abstract
Despite its importance for γ-aminobutyric acid (GABA) inhibition and involvement in neurodevelopmental disease, the regulatory mechanisms of the K+/Cl- cotransporter KCC2 (encoded by SLC12A5) during maturation of the central nervous system (CNS) are not entirely understood. Here, we applied quantitative phosphoproteomics to systematically map sites of KCC2 phosphorylation during CNS development in the mouse. KCC2 phosphorylation at Thr906 and Thr1007, which inhibits KCC2 activity, underwent dephosphorylation in parallel with the GABA excitatory-inhibitory sequence in vivo. Knockin mice expressing the homozygous phosphomimetic KCC2 mutations T906E/T1007E (Kcc2E/E ), which prevented the normal developmentally regulated dephosphorylation of these sites, exhibited early postnatal death from respiratory arrest and a marked absence of cervical spinal neuron respiratory discharges. Kcc2E/E mice also displayed disrupted lumbar spinal neuron locomotor rhythmogenesis and touch-evoked status epilepticus associated with markedly impaired KCC2-dependent Cl- extrusion. These data identify a previously unknown phosphorylation-dependent KCC2 regulatory mechanism during CNS development that is essential for dynamic GABA-mediated inhibition and survival.
Collapse
Affiliation(s)
- Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - M Shahid Mansuri
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jingjing Duan
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
6
|
Watanabe M, Zhang J, Mansuri MS, Duan J, Karimy JK, Delpire E, Alper SL, Lifton RP, Fukuda A, Kahle KT. Developmentally regulated KCC2 phosphorylation is essential for dynamic GABA-mediated inhibition and survival. Sci Signal 2019; 12:eaaw9315. [PMID: 31615901 PMCID: PMC7219477 DOI: 10.1126/scisignal.aaw9315] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite its importance for γ-aminobutyric acid (GABA) inhibition and involvement in neurodevelopmental disease, the regulatory mechanisms of the K+/Cl- cotransporter KCC2 (encoded by SLC12A5) during maturation of the central nervous system (CNS) are not entirely understood. Here, we applied quantitative phosphoproteomics to systematically map sites of KCC2 phosphorylation during CNS development in the mouse. KCC2 phosphorylation at Thr906 and Thr1007, which inhibits KCC2 activity, underwent dephosphorylation in parallel with the GABA excitatory-inhibitory sequence in vivo. Knockin mice expressing the homozygous phosphomimetic KCC2 mutations T906E/T1007E (Kcc2E/E ), which prevented the normal developmentally regulated dephosphorylation of these sites, exhibited early postnatal death from respiratory arrest and a marked absence of cervical spinal neuron respiratory discharges. Kcc2E/E mice also displayed disrupted lumbar spinal neuron locomotor rhythmogenesis and touch-evoked status epilepticus associated with markedly impaired KCC2-dependent Cl- extrusion. These data identify a previously unknown phosphorylation-dependent KCC2 regulatory mechanism during CNS development that is essential for dynamic GABA-mediated inhibition and survival.
Collapse
Affiliation(s)
- Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - M Shahid Mansuri
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jingjing Duan
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan.
- Advanced Research Facilities and Services, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular and Molecular Physiology, Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
7
|
Usuda N, Shirakawa K, Hatano K, Abe MO, Yunoki T, Yano T. Coherence between oscillations in the cardiorespiratory system and tissue oxygen index in muscle recovering from intensive exercise in humans. Physiol Int 2019; 106:261-271. [PMID: 31602997 DOI: 10.1556/2060.106.2019.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been shown that the tissue oxygen index (TOI) measured by near-infrared spectroscopy oscillates at very low frequencies during recovery after exercise and that this oscillation is derived from interactions among biochemical substances involved in oxidative metabolism in skeletal muscle. As a further step, we examined whether TOI in muscle interacts through oscillation with factors related to oxygen in the cardiorespiratory system. For this examination, coherence and phase difference between the TOI in the vastus lateralis and heart rate (HR) and between TOI and arterial oxygen saturation (SpO2) were sequentially determined during recovery (2-60 min) after severe cycle exercise with a workload of 7.5% of body weight for 20 s. Significant coherence between TOI and HR was obtained in the very low-frequency band (approximate range: 0.002-0.03 Hz) and in the low-frequency band (approximate range: 0.06-0.12 Hz). The phase difference was negative in the low-frequency band and positive in the very low-frequency band. The coherence between TOI and SpO2 was significant in the very low-frequency band. The phase difference was negative. There were no sequential changes in these coherences and phase differences. The results suggest that TOI in skeletal muscle interrelates with factors related to the heart and lungs.
Collapse
Affiliation(s)
- N Usuda
- Graduate school of Education, Hokkaido University, Sapporo, Japan
| | - K Shirakawa
- Graduate school of Education, Hokkaido University, Sapporo, Japan
| | - K Hatano
- Graduate school of Education, Hokkaido University, Sapporo, Japan
| | - M O Abe
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Sapporo, Japan
| | - T Yunoki
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Sapporo, Japan
| | - T Yano
- Department of Human Developmental Sciences, Faculty of Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Tiller NB, Campbell IG, Romer LM. Mechanical-ventilatory responses to peak and ventilation-matched upper- versus lower-body exercise in normal subjects. Exp Physiol 2019; 104:920-931. [PMID: 30919515 PMCID: PMC6594000 DOI: 10.1113/ep087648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
Abstract
New Findings What is the central question of this study? To what extent are the mechanical‐ventilatory responses to upper‐body exercise influenced by task‐specific locomotor mechanics? What is the main finding and its importance? When compared with lower‐body exercise performed at similar ventilations, upper‐body exercise was characterized by tidal volume constraint, dynamic lung hyperinflation and an increased propensity towards neuromechanical uncoupling of the respiratory system. Importantly, these responses were independent of respiratory dysfunction and flow limitation. Thus, the mechanical ventilatory responses to upper‐body exercise are attributable, in part, to task‐specific locomotor mechanics (i.e. non‐respiratory loading of the thorax).
Abstract The aim of this study was to determine the extent to which the mechanical ventilatory responses to upper‐body exercise are influenced by task‐specific locomotor mechanics. Eight healthy men (mean ± SD: age, 24 ± 5 years; mass, 74 ± 11 kg; and stature, 1.79 ± 0.07 m) completed two maximal exercise tests, on separate days, comprising 4 min stepwise increments of 15 W during upper‐body exercise (arm‐cranking) or 30 W during lower‐body exercise (leg‐cycling). The tests were repeated at work rates calculated to elicit 20, 40, 60, 80 and 100% of the peak ventilation achieved during arm‐cranking (V˙E, UBE ). Exercise measures included pulmonary ventilation and gas exchange, oesophageal pressure‐derived indices of respiratory mechanics, operating lung volumes and expiratory flow limitation. Subjects exhibited normal resting pulmonary function. Arm‐crank exercise elicited significantly lower peak values for work rate, O2 uptake, CO2 output, minute ventilation and tidal volume (p < 0.05). At matched ventilations, arm‐crank exercise restricted tidal volume expansion relative to leg‐cycling exercise at 60% V˙E, UBE (1.74 ± 0.61 versus 2.27 ± 0.68 l, p < 0.001), 80% V˙E, UBE (2.07 ± 0.70 versus 2.52 ± 0.67 l, p < 0.001) and 100% V˙E, UBE (1.97 ± 0.85 versus 2.55 ± 0.72 l, p = 0.002). Despite minimal evidence of expiratory flow limitation, expiratory reserve volume was significantly higher during arm‐cranking versus leg‐cycling exercise at 100% V˙E, UBE (39 ± 8 versus 29 ± 8% of vital capacity, p = 0.002). At any given ventilation, arm‐cranking elicited greater inspiratory effort (oesophageal pressure) relative to thoracic displacement (tidal volume). Arm‐cranking exercise is sufficient to provoke respiratory mechanical derangements (restricted tidal volume expansion, dynamic hyperinflation and neuromechanical uncoupling) in subjects with normal pulmonary function and expiratory flow reserve. These responses are likely to be attributable to task‐specific locomotor mechanics (i.e. non‐respiratory loading of the thorax).
Collapse
Affiliation(s)
- Nicholas B Tiller
- Academy of Sport and Physical Activity, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, UK.,Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Ian G Campbell
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Lee M Romer
- Centre for Human Performance, Exercise and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, UK.,Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|