1
|
Baxter BA, Baross AW, Ryan DJ, Kay AD. Effects of detraining on neuromuscular function and structural adaptations following once- or twice-weekly eccentric resistance training in older adults. Aging Clin Exp Res 2024; 36:177. [PMID: 39172298 PMCID: PMC11341597 DOI: 10.1007/s40520-024-02828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Eccentric resistance training elicits greater preservation of training-induced muscular adaptations compared with other training modalities, however the detraining profiles of different training dosages remain unknown. AIMS To examine the detraining effects following once- or twice-weekly eccentric-specific resistance training in older adults. METHODS Twenty-one older adults (age = 70.5 ± 6.0 year) completed a 12-week detraining period following the 12-week eccentric training programmes with neuromuscular function and muscle structure assessed six (mid-detraining) and 12 (post-detraining) weeks following training cessation. RESULTS From post-training to post-detraining, no significant regression of the training-induced improvements (collapsed group data reported) occurred in power (0%), strength (eccentric = 0%, isometric = 39%), or explosive strength over numerous epochs (0-32%), resulting in values that remained significantly greater than at pre-training. However, significant regression in the improvements in muscle thickness (91%) and fascicle angle (100%) occurred, resulting in values that were not significantly greater than pre-training. DISCUSSION The limited regression in neuromuscular function following a 12-week detraining period has important implications for supporting eccentric exercise prescription in older adults who often face periods of inactivity. However, further work is required to develop an effective maintenance dosage strategy that preserves improvements in muscle structure. CONCLUSIONS Eccentric resistance training elicits improvements in the neuromuscular function of older adults, which are sustained for at least 12 weeks after eccentric training cessation.
Collapse
Affiliation(s)
- Brett A Baxter
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, NN1 5PH, UK.
| | - Anthony W Baross
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, NN1 5PH, UK
| | - Declan J Ryan
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, NN1 5PH, UK
| | - Anthony D Kay
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, NN1 5PH, UK
| |
Collapse
|
2
|
Kay AD, Blazevich AJ, Tysoe JC, Baxter BA. Cross-Education Effects of Isokinetic Eccentric Plantarflexor Training on Flexibility, Strength, and Muscle-Tendon Mechanics. Med Sci Sports Exerc 2024; 56:1242-1255. [PMID: 38451696 DOI: 10.1249/mss.0000000000003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
INTRODUCTION Large increases in joint range of motion (ROM) have been reported after eccentric resistance training; however, limited data exist describing the associated mechanisms or potential cross-education effects in the contralateral limb. Therefore, the effects of a 6-wk isokinetic eccentric plantarflexor training program were examined in 26 participants. METHODS Before and after the training program, dorsiflexion ROM, plantarflexor strength, and muscle-tendon unit (MTU) morphology and mechanics were measured in control ( n = 13) and experimental ( n = 13) young adult groups. Training consisted of 5 sets of 12 maximal isokinetic eccentric plantarflexor contractions twice weekly on the right limb. RESULTS Significant ( P < 0.05) increases in dorsiflexion ROM (4.0-9.5°), stretch tolerance (40.3-95.9%), passive elastic energy storage (47.5-161.3%), and isometric (38.1-40.6%) and eccentric (46.7-67.0%) peak plantarflexor torques were detected in both trained and contralateral limbs in the experimental group. Significant increases in gastrocnemius medialis and soleus thickness (5.4-6.1%), gastrocnemius medialis fascicle length (7.6 ± 8.5%), passive plantarflexor MTU stiffness (30.1 ± 35.5%), and Achilles tendon stiffness (5.3 ± 4.9%) were observed in the trained limb only. Significant correlations were detected between the changes in trained and contralateral limbs for dorsiflexion ROM ( r = 0.59) and both isometric ( r = 0.79) and eccentric ( r = 0.73) peak torques. No significant changes in any metric were detected in the control group. CONCLUSIONS Large ROM increases in the trained limb were associated with neurological, mechanical, and structural adaptations, with evidence of a cross-education effect in the contralateral limb being primarily driven by neurological adaptation (stretch tolerance). The large improvements in ROM, muscle size, and strength confirm that isokinetic eccentric training is a highly effective training tool, with potential for use in athletic and clinical populations where MTU function is impaired and current therapies are ineffective.
Collapse
Affiliation(s)
- Anthony D Kay
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, UNITED KINGDOM
| | - Anthony J Blazevich
- Centre for Human Performance (CHP), School of Medical and Health Sciences, Edith Cowan University, Joondalup, AUSTRALIA
| | - Jessica C Tysoe
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, UNITED KINGDOM
| | - Brett A Baxter
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, UNITED KINGDOM
| |
Collapse
|
3
|
Nuzzo JL, Pinto MD, Kirk BJC, Nosaka K. Resistance Exercise Minimal Dose Strategies for Increasing Muscle Strength in the General Population: an Overview. Sports Med 2024; 54:1139-1162. [PMID: 38509414 PMCID: PMC11127831 DOI: 10.1007/s40279-024-02009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Many individuals do not participate in resistance exercise, with perceived lack of time being a key barrier. Minimal dose strategies, which generally reduce weekly exercise volumes to less than recommended guidelines, might improve muscle strength with minimal time investment. However, minimal dose strategies and their effects on muscle strength are still unclear. Here our aims are to define and characterize minimal dose resistance exercise strategies and summarize their effects on muscle strength in individuals who are not currently engaged in resistance exercise. The minimal dose strategies overviewed were: "Weekend Warrior," single-set resistance exercise, resistance exercise "snacking," practicing the strength test, and eccentric minimal doses. "Weekend Warrior," which minimizes training frequency, is resistance exercise performed in one weekly session. Single-set resistance exercise, which minimizes set number and session duration, is one set of multiple exercises performed multiple times per week. "Snacks," which minimize exercise number and session duration, are brief bouts (few minutes) of resistance exercise performed once or more daily. Practicing the strength test, which minimizes repetition number and session duration, is one maximal repetition performed in one or more sets, multiple days per week. Eccentric minimal doses, which eliminate or minimize concentric phase muscle actions, are low weekly volumes of submaximal or maximal eccentric-only repetitions. All approaches increase muscle strength, and some approaches improve other outcomes of health and fitness. "Weekend Warrior" and single-set resistance exercise are the approaches most strongly supported by current research, while snacking and eccentric minimal doses are emerging concepts with promising results. Public health programs can promote small volumes of resistance exercise as being better for muscle strength than no resistance exercise at all.
Collapse
Affiliation(s)
- James L Nuzzo
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia.
| | - Matheus D Pinto
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Benjamin J C Kirk
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
| |
Collapse
|
4
|
Baxter BA, Baross AW, Ryan DJ, Tkadlec S, Kay AD. Effects of once- versus twice-weekly eccentric resistance training on muscular function and structure in older adults: a randomised controlled trial. Sci Rep 2024; 14:9638. [PMID: 38671049 PMCID: PMC11053087 DOI: 10.1038/s41598-024-59788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Adherence rates to current twice-weekly strength training guidelines are poor among older adults. Eccentric-only training elicits substantial improvements in muscle function/size so the aim of this study was to compare the effects of once- versus twice-weekly eccentric training programmes on muscle function/size in older adults. Thirty-six participants (69.4 ± 6.0 yr) were randomised into non-active control, once-, or twice-weekly training groups. Lower-limb muscle power, strength, and size were assessed at baseline, mid-, and post-eccentric training. Training was performed for 12 min per session at 50% of maximum eccentric strength. Significant increases in power (13%), isometric (17-36%) and eccentric (40-50%) strength, and VL muscle thickness (9-18%) occurred in both training groups following 12 weeks. Minimal muscle soreness was induced throughout the 12 weeks and perceived exertion was consistently lower in the twice-weekly training group. One weekly submaximal eccentric resistance training session over 12 weeks elicits similar improvements in neuromuscular function compared to the currently recommended twice-weekly training dose. Given the substantial improvements in neuromuscular function and previously reported low adherence to current twice-weekly training guidelines, eccentric training may be pivotal to developing a minimal-dose strategy to counteract neuromuscular decline. The trial was registered retrospectively on 24/01/2024 with ISRCTN (trial registration number: ISRCTN68730580).
Collapse
Affiliation(s)
- Brett A Baxter
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, NN1 5PH, UK.
| | - Anthony W Baross
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, NN1 5PH, UK
| | - Declan J Ryan
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, NN1 5PH, UK
| | - Stepan Tkadlec
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, NN1 5PH, UK
- Healthy Longevity Clinic, 165 East Palmetto Park Road, Boca Raton, FL, 33432, USA
- Healthy Longevity Clinic, Zlatniky-Hodkovice, 252 41, Prague, Czech Republic
| | - Anthony D Kay
- Centre for Physical Activity and Life Sciences, Faculty of Art, Science and Technology, University of Northampton, Northamptonshire, NN1 5PH, UK
| |
Collapse
|
5
|
Wang M, Wu F, Callisaya ML, Jones G, Winzenberg TM. Longitudinal associations of objectively measured physical activity and sedentary time with leg muscle strength, balance and falls in middle-aged women. Eur J Sport Sci 2023; 23:2240-2250. [PMID: 37272369 DOI: 10.1080/17461391.2023.2222096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We examined the longitudinal associations of accelerometer-measured physical activity and sedentary time with leg muscle strength (LMS), balance, and falls in middle-aged women. This was a 5-year cohort study among 308 women aged 36-56 years. We used linear mixed-effects models to examine associations of baseline and change in accelerometer-measured sedentary time, light physical activity (LPA) and moderate-to-vigorous physical activity (MVPA) with baseline and 5-year change in LMS and balance (timed up and go test [TUG], functional reach test [FRT], lateral reach test [LRT], and step test [ST]), and negative binomial/Poisson and log-binomial regression as appropriate to assess associations with falls after 5-year follow-up. Greater baseline MVPA was associated with better baseline LMS (β = 4.65 kg/SD, 95% CI: 1.37, 7.93) and TUG (β = -0.09 s/SD, 95% CI: -0.18, -0.01) but not with change in them over 5 years. Baseline MVPA was not associated with FRT at baseline but associated with a greater decrease in FRT (β = -0.87 cm/SD, 95% CI: -1.57, -0.17). Increased MVPA over 5 years was associated with less deterioration in FRT (β = 0.88 cm/SD, 95% CI: 0.14, 1.61). Increased sedentary time over 5 years was associated with a larger decrease in FRT (β = -0.82 cm/SD, 95% CI: -1.58, -0.07). Higher baseline LPA was associated with higher falls risk (IRR = 1.27, 95% CI: 1.02, 1.57). Higher baseline MVPA may benefit LMS and balance, while increasing MVPA in the medium term has little effect on change in these outcomes in mid-life. Detrimental association of LPA with falls may be due to greater exposures to environmental hazards.HighlightsOur study for the first time examined the longitudinal associations of objectively measured physical activity and sedentary time with leg muscle strength, balance and falls in middle-aged women.Higher baseline moderate-to-vigorous physical activity (MVPA) may be beneficial for muscle strength and balance at baseline but increasing MVPA in the medium term has little effect on change in LMS or balance outcomes in middle-aged women.Higher baseline light physical activity (LPA) was associated with an increased risk of falls.The detrimental association of LPA with falls may be due to a greater exposure to environmental hazards in midlife, which needs to be clarified in future research.
Collapse
Affiliation(s)
- Mengmeng Wang
- School of Public Health, Anhui Medical University, Hefei, People's Republic of China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Feitong Wu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Michele L Callisaya
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Peninsula Clinical School, Central Clinical School, Monash University, Clayton, Australia
| | - Graeme Jones
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Tania M Winzenberg
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
6
|
Nakanishi K, Norimatsu K, Tani A, Matsuoka T, Matsuzaki R, Kakimoto S, Nojima N, Tachibe Y, Kato Y, Inadome M, Kitazato R, Otsuka S, Takada S, Sumizono M, Sakakima H. Effects of early exercise intervention and exercise cessation on neuronal loss and neuroinflammation in a senescence-accelerated mouse prone 8. Neurosci Lett 2023; 808:137297. [PMID: 37182575 DOI: 10.1016/j.neulet.2023.137297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
Physical exercise is beneficial for preventing Alzheimer's disease (AD) and cognitive decline through several mechanisms, including suppression of neuroinflammation and neuronal loss in the hippocampus. Despite these exercise-induced benefits in AD pathology, less attention has been paid to the importance of maintaining exercise and the consequences of detraining. This study aimed to investigate the effects of early exercise intervention and detraining on age-related cognitive decline and its protective mechanisms using senescence-accelerated mouse prone 8 (SAMP8). These mice were divided to four groups: no-exercise (No-Ex, n = 9), 4 months (4M)-detraining (n = 11), 2 months (2M)-detraining (n = 11), and long-term exercise (LT-Ex, n = 13). Age-related cognitive decline was prevented in the LT-Ex group compared with the No-Ex group through the suppression of neuronal loss, enhanced brain-derived neurotrophic factor (BDNF), and inhibition of neuroinflammation corresponding to reduced M1 and increased M2 microglia in the hippocampus. No significant differences were observed in cognitive function between the detraining and No-Ex groups. However, the 2M-detraining group showed increased BDNF positive area in the CA1 region and the enhancement of anti-inflammatory M2 phenotype microglia. In contrast, no statistically beneficial exercise-induced changes in the hippocampus were observed in the 4M-detrainig group. These results showed that early exercise intervention prevented age-related cognitive deficits in AD progression by suppressing neuronal loss and neuroinflammation in the hippocampus. Exercise-induced benefits, including the anti-inflammation in the hippocampus, may be retained after exercise cessation, even if exercise-induced beneficial effects decline in a time-dependent manner.
Collapse
Affiliation(s)
- Kazuki Nakanishi
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Kosuke Norimatsu
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Akira Tani
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Teruki Matsuoka
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Ryoma Matsuzaki
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Syogo Kakimoto
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Nao Nojima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Yuta Tachibe
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Yuki Kato
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Masaki Inadome
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Riho Kitazato
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Shotaro Otsuka
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Seiya Takada
- Department of Systems Biology in Thromboregulation, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Megumi Sumizono
- Department of Rehabilitation, Kyushu University of Nursing and Social Welfare, Kumamoto, Japan
| | - Harutoshi Sakakima
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
7
|
Cvečka J, Vajda M, Novotná A, Löfler S, Hamar D, Krčmár M. Benefits of Eccentric Training with Emphasis on Demands of Daily Living Activities and Feasibility in Older Adults: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3172. [PMID: 36833867 PMCID: PMC9958977 DOI: 10.3390/ijerph20043172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Aging is associated with a decline in physical capabilities and several other health-related conditions. One of the most common age-related processes is sarcopenia. Sarcopenia is usually accompanied with a decline in skeletal muscle mass and physical functioning. A decrease in these markers usually impacts basic daily living activities (DLAs), which become somewhat harder to accomplish for older individuals. Several research studies have examined the demands of DLA in older individuals with results indicating that activities such as walking, sitting, standing, stair climbing, stair descending, and running generate high demands on older adults. The forces that act on individuals are in most cases equal or multiple times higher relative to their body mass. For instance, it was reported that the GRF (ground reaction force) during stair descent ranged from 1.43 to 1.50 of BW (body weight) in an older population. Even higher demands were recorded during other related activities. These demands of DLA raise the question of appropriate rehabilitative or training management procedures. During the past decades, an eccentric form of resistance training gained popularity due to its effectiveness and lower metabolic demands, which seems to be an appropriate method to develop and maintain a basic level of strength capabilities in higher age. Multiple factors of eccentric training have been examined including modality of exercise, intensity, frequency, and safety of the elderly. Several modalities of eccentric exercise have been shown to be effective including traditional methods, as well as machine-based ones, with or without using some equipment. The studies included in this review varied in intensity from low to high; however, the most frequently used intensity was ≥50% of the maximal eccentric strength during two or three eccentric sessions per week. Importantly, the prevalence of injury of older adults appears to have been low to none, highlighting the safety of this approach. In summary, eccentric training prescriptions for older adults should consider the demands of DLA and the characteristics of the elderly for appropriate management of training recommendations.
Collapse
Affiliation(s)
- Ján Cvečka
- Hamar Institute for Human Performance, Faculty of Physical Education and Sports, Comenius University in Bratislava, 814 69 Bratislava, Slovakia
| | - Matej Vajda
- Hamar Institute for Human Performance, Faculty of Physical Education and Sports, Comenius University in Bratislava, 814 69 Bratislava, Slovakia
| | - Alexandra Novotná
- Hamar Institute for Human Performance, Faculty of Physical Education and Sports, Comenius University in Bratislava, 814 69 Bratislava, Slovakia
| | - Stefan Löfler
- Ludwig Boltzmann Institute for Rehabilitation Research, 1100 Vienna, Austria
| | - Dušan Hamar
- Hamar Institute for Human Performance, Faculty of Physical Education and Sports, Comenius University in Bratislava, 814 69 Bratislava, Slovakia
| | - Matúš Krčmár
- Department of Physical Education and Sports, Faculty of Education, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia
| |
Collapse
|
8
|
Transfer Effects of a Multiple-Joint Isokinetic Eccentric Resistance Training Intervention to Nontraining-Specific Traditional Muscle Strength Measures. Sports (Basel) 2023; 11:sports11010009. [PMID: 36668713 PMCID: PMC9865736 DOI: 10.3390/sports11010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Relatively few investigations have examined the transfer effects of multiple-joint isokinetic eccentric only (MJIE) resistance training on non-specific measures of muscle strength. This study investigated the transfer effects of a short-term MJIE leg press (Eccentron) resistance training program on several non-specific measures of lower-body strength. Fifteen participants performed Eccentron training three times/week for four weeks and were evaluated on training-specific Eccentron peak force (EccPF), nontraining-specific leg press DCER one-repetition maximum (LP 1 RM), and peak torques of the knee extensors during isokinetic eccentric (Ecc30), isokinetic concentric (Con150) and isometric (IsomPT) tasks before and after the training period. The training elicited a large improvement in EccPF (37.9%; Cohen's d effect size [ES] = 0.86). A moderate transfer effect was observed on LP 1 RM gains (19.0%; ES = 0.48) with the magnitude of the strength improvement being about one-half that of EccPF. A small effect was observed on IsomPT and Ecc30 (ES = 0.29 and 0.20, respectively), however, pre-post changes of these measures were not significant. Con150 testing showed no effect (ES = 0.04). These results suggest a short term MJIE training program elicits a large strength improvement in training-specific measures, a moderate strength gain transfer effect to DCER concentric-based strength of a similar movement (i.e., LP 1 RM), and poor transfer to single-joint knee extension measures.
Collapse
|
9
|
Harper SA, Thompson BJ. Potential Benefits of a Minimal Dose Eccentric Resistance Training Paradigm to Combat Sarcopenia and Age-Related Muscle and Physical Function Deficits in Older Adults. Front Physiol 2021; 12:790034. [PMID: 34916963 PMCID: PMC8669760 DOI: 10.3389/fphys.2021.790034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022] Open
Abstract
The ability of older adults to perform activities of daily living is often limited by the ability to generate high mechanical outputs. Therefore, assessing and developing maximal neuromuscular capacity is essential for determining age-related risk for functional decline as well as the effectiveness of therapeutic interventions. Interventions designed to enhance neuromuscular capacities underpinning maximal mechanical outputs could positively impact functional performance in daily life. Unfortunately, < 10% of older adults meet the current resistance training guidelines. It has recently been proposed that a more “minimal dose” RT model may help engage a greater proportion of older adults, so that they may realize the benefits of RT. Eccentric exercise offers some promising qualities for such an approach due to its efficiency in overloading contractions that can induce substantial neuromuscular adaptations. When used in a minimal dose RT paradigm, eccentric-based RT may be a particularly promising approach for older adults that can efficiently improve muscle mass, strength, and functional performance. One approach that may lead to improved neuromuscular function capacities and overall health is through heightened exercise tolerance which would favor greater exercise participation in older adult populations. Therefore, our perspective article will discuss the implications of using a minimal dose, submaximal (i.e., low intensity) multi-joint eccentric resistance training paradigm as a potentially effective, and yet currently underutilized, means to efficiently improve neuromuscular capacities and function for older adults.
Collapse
Affiliation(s)
- Sara A Harper
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States.,Sorenson Legacy Foundation Center for Clinical Excellence, Dennis Dolny Movement Research Clinic, Utah State University, Logan, UT, United States
| | - Brennan J Thompson
- Department of Kinesiology and Health Science, Utah State University, Logan, UT, United States.,Sorenson Legacy Foundation Center for Clinical Excellence, Dennis Dolny Movement Research Clinic, Utah State University, Logan, UT, United States
| |
Collapse
|
10
|
Harris-Love MO, Gollie JM, Keogh JWL. Eccentric Exercise: Adaptations and Applications for Health and Performance. J Funct Morphol Kinesiol 2021; 6:96. [PMID: 34842737 PMCID: PMC8628948 DOI: 10.3390/jfmk6040096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
The goals of this narrative review are to provide a brief overview of the muscle and tendon adaptations to eccentric resistance exercise and address the applications of this form of training to aid rehabilitative interventions and enhance sports performance. This work is centered on the author contributions to the Special Issue entitled "Eccentric Exercise: Adaptations and Applications for Health and Performance". The major themes from the contributing authors include the need to place greater attention on eccentric exercise mode selection based on training goals and individual fitness level, optimal approaches to implementing eccentric resistance exercise for therapeutic purposes, factors that affect the use of eccentric exercise across the lifespan, and general recommendations to integrate eccentric exercise in athletic training regimens. The authors propose that movement velocity and the absorption or recovery of kinetic energy are critical components of eccentric exercise programming. Regarding the therapeutic use of eccentric resistance training, patient-level factors regarding condition severity, fitness level, and stage of rehabilitation should govern the plan of care. In athletic populations, use of eccentric exercise may improve movement competency and promote improved safety and performance of sport-specific tasks. Eccentric resistance training is a viable option for youth, young adults, and older adults when the exercise prescription appropriately addresses program goals, exercise tolerability, and compliance. Despite the benefits of eccentric exercise, several key questions remain unanswered regarding its application underscoring the need for further investigation.
Collapse
Affiliation(s)
- Michael O. Harris-Love
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Geriatric Research Education and Clinical Center, VA Eastern Colorado Healthcare System, Aurora, CO 80045, USA
- Muscle Morphology, Mechanics, and Performance Laboratory, Geriatrics Service, Veterans Affairs Medical Center, Washington, DC 20422, USA;
| | - Jared M. Gollie
- Muscle Morphology, Mechanics, and Performance Laboratory, Geriatrics Service, Veterans Affairs Medical Center, Washington, DC 20422, USA;
- Department of Health, Human Function, and Rehabilitation Sciences, School of Medicine & Health Sciences, George Washington University, Washington, DC 20052, USA
| | - Justin W. L. Keogh
- Faculty of Health Sciences and Medicine, Bond University, Robina, QLD 4226, Australia;
- Sports Performance Research Centre New Zealand, Auckland University of Technology, Auckland 1010, New Zealand
- Cluster for Health Improvement, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD 4556, Australia
- Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
11
|
Response to the Letter to the Editor from Costa do Couto et al. regarding our article 'Isokinetic eccentric exercise substantially improves mobility, muscle strength and size, but not postural sway metrics in older adults with limited regression observed following a detraining period'. Eur J Appl Physiol 2021; 121:1797-1798. [PMID: 33686509 DOI: 10.1007/s00421-021-04658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 10/22/2022]
|
12
|
Hill MW, Hosseini EA, McLellan A, Price MJ, Lord SR, Kay AD. Delayed Impairment of Postural, Physical, and Muscular Functions Following Downhill Compared to Level Walking in Older People. Front Physiol 2020; 11:544559. [PMID: 33192547 PMCID: PMC7609421 DOI: 10.3389/fphys.2020.544559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/18/2020] [Indexed: 11/15/2022] Open
Abstract
Transient symptoms of muscle damage emanating from unaccustomed eccentric exercise can adversely affect muscle function and potentially increase the risk of falling for several days. Therefore, the aims of the present study were to investigate the shorter- and longer-lasting temporal characteristics of muscle fatigue and damage induced by level (i.e., concentrically biased contractions) or downhill (i.e., eccentrically biased contractions) walking on postural, physical, and muscular functions in older people. Nineteen participants were matched in pairs for sex, age and self-selected walking speed and allocated to a level (n = 10, age = 72.3 ± 2.9 years) or downhill (n = 9, age = 72.1 ± 2.2 years) walking group. Postural sway, muscle torque and power, physical function (5× and 60 s sit-to-stand; STS), and mobility (Timed-Up-and-Go; TUG) were evaluated at baseline (pre-exercise), 1 min, 15 min, 30 min, 24 h, and 48 h after 30 min of level (0% gradient) or downhill (−10% gradient) walking on a treadmill. Following downhill walking, postural sway (+66 to 256%), TUG (+29%), 60 s STS (+29%), five times STS (−25%) and concentric power (−33%) did not change at 1–30 min post exercise, but were significantly different (p < 0.05) at 24 and48 h post-exercise when compared to baseline (p < 0.05). Muscle torque decreased immediately after downhill walking and remained impaired at 48 h post-exercise (−27 to −38%). Immediately following level walking there was an increase in postural sway (+52 to +98%), slower TUG performance (+29%), fewer STS cycles in 60 s (−23%), slower time to reach five STS cycles (+20%) and impaired muscle torque (−23%) and power (−19%) which returned to baseline 30-min after exercise cessation (p > 0.05). These findings have established for the first time distinct impairment profiles between concentric and eccentric exercise. Muscle damage emanating from eccentrically biased exercise can lead to muscle weakness, postural instability and impaired physical function persisting for several days, possibly endangering older adult’s safety during activities of daily living by increasing the risk of falls.
Collapse
Affiliation(s)
- Mathew William Hill
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Edyah-Ariella Hosseini
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Abbie McLellan
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Michael James Price
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Stephen Ronald Lord
- Falls, Balance and Injury Research Centre, Neuroscience Research Australia, University of New South Wales, Sydney, NSW, Australia
| | - Anthony David Kay
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
| |
Collapse
|