1
|
Popesco T, Bet da Rosa Orssatto L, Hug F, Blazevich AJ, Trajano GS, Place N. Motoneuron persistent inward current contribution to increased torque responses to wide-pulse high-frequency neuromuscular electrical stimulation. Eur J Appl Physiol 2024; 124:3377-3386. [PMID: 38940932 PMCID: PMC11519318 DOI: 10.1007/s00421-024-05538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
PURPOSE To assess the effect of a remote handgrip contraction during wide-pulse high-frequency (WPHF) neuromuscular electrical stimulation (NMES) on the magnitude of extra torque, progressive increase in torque during stimulation, and estimates of the persistent inward current (PIC) contribution to motoneuron firing in the plantar flexors. METHODS Ten participants performed triangular shaped contractions to 20% of maximal plantar flexion torque before and after WPHF NMES with and without a handgrip contraction, and control conditions. Extra torque, the relative difference between the initial and final torque during stimulation, and sustained electromyographic (EMG) activity were assessed. High-density EMG was recorded during triangular shaped contractions to calculate ∆F, an estimate of PIC contribution to motoneuron firing, and its variation before vs after the intervention referred to as ∆F change score. RESULTS While extra torque was not significantly increased with remote contraction (WPHF + remote) vs WPHF (+ 37 ± 63%, p = 0.112), sustained EMG activity was higher in this condition than WPHF (+ 3.9 ± 4.3% MVC EMG, p = 0.017). Moreover, ∆F was greater (+ 0.35 ± 0.30 Hz) with WPHF + remote than control (+ 0.03 ± 0.1 Hz, p = 0.028). A positive correlation was found between ∆F change score and extra torque in the WPHF + remote (r = 0.862, p = 0.006). DISCUSSION The findings suggest that the addition of remote muscle contraction to WPHF NMES enhances the central contribution to torque production, which may be related to an increased PIC contribution to motoneuron firing. Gaining a better understanding of these mechanisms should enable NMES intervention optimization in clinical and rehabilitation settings, improving neuromuscular function in clinical populations.
Collapse
Affiliation(s)
- Timothée Popesco
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Lucas Bet da Rosa Orssatto
- Faculty of Health, School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia
| | - François Hug
- LAMHESS, Université Côte d'Azur, Nice, France
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Anthony John Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, WA, Australia
| | - Gabriel Siqueira Trajano
- Faculty of Health, School of Exercise and Nutrition Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
2
|
Popesco T, Gardet Q, Bossard J, Maffiuletti NA, Place N. Centrally mediated responses to NMES are influenced by muscle group and stimulation parameters. Sci Rep 2024; 14:24918. [PMID: 39438501 PMCID: PMC11496505 DOI: 10.1038/s41598-024-75145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Wide-pulse high-frequency neuromuscular electrical stimulation (WPHF NMES) can generate a progressive increase in tetanic force through reflexive recruitment of motor units, called extra force. This phenomenon has previously been observed on different muscle groups, but little is known on potential inter-muscle differences. We compared extra force and sustained electromyographic (EMG) activity induced by NMES between plantar flexors, knee extensors, elbow flexors and within muscle groups using pulse durations of 0.2, 1 and 2 ms and stimulation frequencies of 20, 50, 100 and 147 Hz. Extra force production and sustained EMG activity were higher for plantar flexors compared to elbow flexors at all tested parameters (except 0.2 ms for extra force). When compared to elbow flexors, extra force of the knee extensors was only higher at 100 Hz and with 1 ms while sustained EMG activity was higher at all frequencies with pulse durations of 0.2 and 2 ms. Peripheral nerve architecture as well as muscle typology and function could influence the occurrence and magnitude of centrally-mediated responses to NMES. The present findings suggest that the use of wide-pulse high-frequency NMES to promote reflexive recruitment seems to be more pertinent for lower limb muscles, plantar flexors in particular.
Collapse
Affiliation(s)
- Timothée Popesco
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | - Quentin Gardet
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jonathan Bossard
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland
| | | | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, Lausanne, 1015, Switzerland.
| |
Collapse
|
3
|
Pineau A, Martin A, Lepers R, Papaiordanidou M. Influence of stimulation parameters on torque development during the combined application of electrical nerve stimulation and muscle lengthening. J Neurophysiol 2024; 132:1255-1264. [PMID: 39258773 DOI: 10.1152/jn.00136.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
This study investigated the influence of stimulation parameters on torque production when combining a brief muscle lengthening with electrical stimulation. Fifteen volunteers participated in one experimental session where two distinct stimulation modalities were compared: wide-pulse high-frequency (WPHF; pulse duration: 1 ms, frequency: 100 Hz), favoring afferent pathway activation, and narrow-pulse low-frequency (NPLF; pulse duration: 0.05 ms, frequency: 20 Hz), favoring activation of the efferent pathway. Both stimulation modalities were applied to evoke 5-10% of maximal voluntary contraction either in isometric conditions (WPHF and NPLF) or in combination with a muscle lengthening (lengthening condition: WPHF + LEN and NPLF + LEN). The torque-time integral (TTI) during the stimulation trains and the muscle activity after the cessation of the stimulation trains [sustained electromyographic (EMG) activity, normalized to the maximal EMG activity] were assessed and compared between the stimulation modalities and the conditions (2-way ANOVA). An interaction effect was obtained, revealing significant differences in TTI and sustained EMG activity between WPHF + LEN and the other tested conditions (P = 0.048 and P = 0.044, respectively). TTI and sustained EMG activity were higher for WPHF + LEN (228.4 ± 105.3 Nm·s and 0.085 ± 0.070, respectively) compared to WPHF (168.4 ± 72.9 Nm·s; 0.052 ± 0.026), NPLF + LEN (136.4 ± 38.9 Nm·s; 0.031 ± 0.016), and NPLF (125.2 ± 36.1 Nm·s; 0.028 ± 0.015). The increased TTI during the WPHF + LEN condition suggests that the contribution of afferent pathways to the evoked torque can be enhanced with the muscle lengthening superimposition. They highlight the importance of using WPHF stimulation that already solicits Ia afferents, to benefit from the cumulative afferent activation induced by the muscle lengthening to further increase torque production.NEW & NOTEWORTHY The results of the present study highlight the importance of using electrical stimulation modalities that preferentially activate Ia afferents to take advantage of the superimposition of muscle lengthening to further enhance afferent pathways' contribution to evoked torque and, in turn, increase torque production. These results offer the opportunity to improve the efficacy of the wide-pulse high-frequency stimulation modality.
Collapse
Affiliation(s)
- Antoine Pineau
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| | - Romuald Lepers
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| | - Maria Papaiordanidou
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| |
Collapse
|
4
|
Mesquita RNO, Taylor JL, Heckman CJ, Trajano GS, Blazevich AJ. Persistent inward currents in human motoneurons: emerging evidence and future directions. J Neurophysiol 2024; 132:1278-1301. [PMID: 39196985 DOI: 10.1152/jn.00204.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/30/2024] Open
Abstract
The manner in which motoneurons respond to excitatory and inhibitory inputs depends strongly on how their intrinsic properties are influenced by the neuromodulators serotonin and noradrenaline. These neuromodulators enhance the activation of voltage-gated channels that generate persistent (long-lasting) inward sodium and calcium currents (PICs) into the motoneurons. PICs are crucial for initiating, accelerating, and maintaining motoneuron firing. A greater accessibility to state-of-the-art techniques that allows both the estimation and examination of PIC modulation in tens of motoneurons in vivo has rapidly evolved our knowledge of how motoneurons amplify and prolong the effects of synaptic input. We are now in a position to gain substantial mechanistic insight into the role of PICs in motor control at an unprecedented pace. The present review briefly describes the effects of PICs on motoneuron firing and the methods available for estimating them before presenting the emerging evidence of how PICs can be modulated in health and disease. Our rapidly developing knowledge of the potent effects of PICs on motoneuron firing has the potential to improve our understanding of how we move, and points to new approaches to improve motor control. Finally, gaps in our understanding are highlighted and methodological advancements are suggested to encourage readers to explore outstanding questions to further elucidate PIC physiology.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - C J Heckman
- Departments of Neuroscience, Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Anthony J Blazevich
- Discipline of Exercise and Sports Science, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
5
|
Blazevich AJ, Mesquita RNO, Pinto RS, Pulverenti T, Ratel S. Reduction and recovery of self-sustained muscle activity after fatiguing plantar flexor contractions. Eur J Appl Physiol 2024; 124:1781-1794. [PMID: 38340155 PMCID: PMC11130039 DOI: 10.1007/s00421-023-05403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
PURPOSE Persistent inward calcium and sodium currents (PICs) are crucial for initiation and maintenance of motoneuron firing, and thus muscular force. However, there is a lack of data describing the effects of fatiguing exercise on PIC activity in humans. We simultaneously applied tendon vibration and neuromuscular electrical stimulation (VibStim) before and after fatiguing exercise. VibStim induces self-sustained muscle activity that is proposed to result from PIC activation. METHODS Twelve men performed 5-s maximal isometric plantar flexor contractions (MVC) with 5-s rests until joint torque was reduced to 70%MVC. VibStim trials consisted of five 2-s trains of neuromuscular electrical stimulation (20 Hz, evoking 10% MVC) of triceps surae with simultaneous Achilles tendon vibration (115 Hz) without voluntary muscle activation. VibStim was applied before (PRE), immediately (POST), 5-min (POST-5), and 10-min (POST-10) after exercise completion. RESULTS Sustained torque (Tsust) and soleus electromyogram amplitudes (EMG) measured 3 s after VibStim were reduced (Tsust: -59.0%, p < 0.001; soleus EMG: -38.4%, p < 0.001) but largely recovered by POST-5, and changes in MVC and Tsust were correlated across the four time points (r = 0.69; p < 0.001). After normalisation to values obtained at the end of the vibration phase to control for changes in fibre-specific force and EMG signal characteristics, decreases in Tsust (-42.9%) and soleus EMG (-22.6%) remained significant and were each correlated with loss and recovery of MVC (r = 0.41 and 0.46, respectively). CONCLUSION The parallel changes observed in evoked self-sustained muscle activity and force generation capacity provide motivation for future examinations on the potential influence of fatigue-induced PIC changes on motoneuron output.
Collapse
Affiliation(s)
- Anthony J Blazevich
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia.
| | - Ricardo N O Mesquita
- School of Medical and Health Sciences, Centre for Human Performance, Edith Cowan University, Joondalup, Australia
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Neuroscience Research Australia, Sydney, Australia
| | - Ronei S Pinto
- Exercise Research Laboratory, School of Physical Education, Physiotherapy and Dance, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Timothy Pulverenti
- Department of Physical Therapy, College of Staten Island, Staten Island, NY, USA
| | - Sébastien Ratel
- UFR STAPS - Laboratoire AME2P, Université Clermont Auvergne, Campus Universitaire des Cézeaux, 3 Rue de la Chebarde, 63170, Clermont-Ferrand, France
| |
Collapse
|
6
|
Mesquita RNO, Taylor JL, Trajano GS, Holobar A, Gonçalves BAM, Blazevich AJ. Effects of jaw clenching and mental stress on persistent inward currents estimated by two different methods. Eur J Neurosci 2023; 58:4011-4033. [PMID: 37840191 DOI: 10.1111/ejn.16158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
Spinal motoneuron firing depends greatly on persistent inward currents (PICs), which in turn are facilitated by the neuromodulators serotonin and noradrenaline. The aim of this study was to determine whether jaw clenching (JC) and mental stress (MS), which may increase neuromodulator release, facilitate PICs in human motoneurons. The paired motor unit (MU) technique was used to estimate PIC contribution to motoneuron firing. Surface electromyograms were collected using a 32-channel matrix on gastrocnemius medialis (GM) during voluntary, ramp, plantar flexor contractions. MU discharges were identified, and delta frequency (ΔF), a measure of recruitment-derecruitment hysteresis, was calculated. Additionally, another technique was used (VibStim) that evokes involuntary contractions that persist after cessation of combined Achilles tendon vibration and triceps surae neuromuscular electrical stimulation. VibStim measures of plantar flexor torque and soleus activity may reflect PIC activation. ΔF was not significantly altered by JC (p = .679, n = 18, 9 females) or MS (p = .147, n = 14, 5 females). However, all VibStim variables quantifying involuntary torque and muscle activity during and after vibration cessation were significantly increased in JC (p < .011, n = 20, 10 females) and some, but not all, increased in MS (p = .017-.05, n = 19, 10 females). JC and MS significantly increased the magnitude of involuntary contractions (VibStim) but had no effect on GM ΔF during voluntary contractions. Effects of increased neuromodulator release on PIC contribution to motoneuron firing might differ between synergists or be context dependent. Based on these data, the background level of voluntary contraction and, hence, both neuromodulation and ionotropic inputs could influence neuromodulatory PIC enhancement.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Janet L Taylor
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Basílio A M Gonçalves
- Neuromechanics Research Group, Centre for Sport Science and University Sports, University of Vienna, Vienna, Austria
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| |
Collapse
|
7
|
Yunoki T, Zang K, Hatano K, Matsuura R, Ohtsuka Y. Relationship between disturbances of CO 2 homeostasis and force output characteristics during isometric knee extension. Respir Physiol Neurobiol 2023; 315:104119. [PMID: 37468055 DOI: 10.1016/j.resp.2023.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
To determine whether disturbances of CO2 homeostasis alter force output characteristics of lower limb muscles, participants performed four isometric knee extension trials (MVC30%, 10s each with 20-s rest intervals) in three CO2 conditions (normocapnia [NORM], hypercapnia [HYPER], and hypocapnia [HYPO]). Respiratory frequency and tidal volume were matched between CO2 conditions. In each MVC30%, the participants exerted a constant force (30% of maximum voluntary contraction [MVC]). The force coefficient of variation (Fcv) during each MVC30% and MVC before and after the four MVC30% trials were measured. For the means of the four trials, Fcv was significantly lower in HYPER than in HYPO. However, within HYPER, a significant positive correlation was found between the increase in end-tidal CO2 partial pressure and the increase in Fcv. MVCs in NORM and HYPO decreased significantly over the four trials, while no such reduction was observed in HYPER. These results suggest that perturbed CO2 homeostasis influences the force output characteristics independently of breathing pattern variables.
Collapse
Affiliation(s)
- Takahiro Yunoki
- Department of Health and Physical Education, Graduate School of Education, Hokkaido University, Sapporo, Japan.
| | - Kejun Zang
- Department of Health and Physical Education, Graduate School of Education, Hokkaido University, Sapporo, Japan
| | - Kei Hatano
- Japan Institute of Sports Sciences, Japan
| | - Ryouta Matsuura
- Graduate School of Education, Joetsu University of Education, Japan
| | - Yoshinori Ohtsuka
- Department of Sports and Human Studies, Sapporo International University, Japan
| |
Collapse
|
8
|
Jenz ST, Beauchamp JA, Gomes MM, Negro F, Heckman CJ, Pearcey GEP. Estimates of persistent inward currents in lower limb motoneurons are larger in females than in males. J Neurophysiol 2023; 129:1322-1333. [PMID: 37096909 PMCID: PMC10202474 DOI: 10.1152/jn.00043.2023] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Noninvasive recordings of motor unit (MU) spike trains help us understand how the nervous system controls movement and how it adapts to various physiological conditions. The majority of participants in human and nonhuman animal physiology studies are male, and it is assumed that mechanisms uncovered in these studies are shared between males and females. However, sex differences in neurological impairment and physical performance warrant the study of sex as a biological variable in human physiology and performance. To begin addressing this gap in the study of biophysical properties of human motoneurons, we quantified MU discharge rates and estimates of persistent inward current (PIC) magnitude in both sexes. We decomposed MU spike trains from the tibialis anterior (TA), medial gastrocnemius (MG), and soleus (SOL) using high-density surface electromyography and blind source separation algorithms. Ten participants of each sex performed slow triangular (10 s up and down) isometric contractions to a peak of 30% of their maximum voluntary contraction. We then used linear mixed-effects models to determine if peak discharge rate and estimates of PICs were predicted by the fixed effects of sex, muscle, and their interaction. Despite a lack of sex-differences in peak discharge rates across all muscles, estimates of PICs were larger [χ2(1) = 6.26, P = 0.012] in females [4.73 ± 0.242 pulses per second (pps)] than in males (3.81 ± 0.240 pps). These findings suggest that neuromodulatory drive, inhibitory input, and/or biophysical properties of motoneurons differ between the sexes and may contribute to differences in MU discharge patterns.NEW & NOTEWORTHY Sex-related differences in motoneuron analyses have emerged with greater inclusion of female participants, however, mechanisms for these differences remain unclear. Estimates of persistent inward currents (i.e., ΔF) in motoneurons of the lower limb muscles were larger in females than in males. This suggests neuromodulatory drive, monoaminergic signaling, intrinsic motoneuron properties, and/or descending motor commands may differ between the sexes, which provides a potential mechanism underlying previously reported sex-related differences in motoneuron discharge patterns.
Collapse
Affiliation(s)
- Sophia T Jenz
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - James A Beauchamp
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States
| | - Matheus M Gomes
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Universita degli Studi di Brescia, Brescia, Italy
| | - C J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- Shirley Ryan AbilityLab, Chicago, Illinois, United States
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
9
|
Lapole T, Mesquita RNO, Baudry S, Souron R, Brownstein CG, Rozand V. Can local vibration alter the contribution of persistent inward currents to human motoneuron firing? J Physiol 2023; 601:1467-1482. [PMID: 36852473 DOI: 10.1113/jp284210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
The response of spinal motoneurons to synaptic input greatly depends on the activation of persistent inward currents (PICs), which in turn are enhanced by the neuromodulators serotonin and noradrenaline. Local vibration (LV) induces excitatory Ia input onto motoneurons and may alter neuromodulatory inputs. Therefore, we investigated whether LV influences the contribution of PICs to motoneuron firing. This was assessed in voluntary contractions with concurrent, ongoing LV, as well as after a bout of prolonged LV. High-density surface electromyograms (HD-EMG) of the tibialis anterior were recorded with a 64-electrode matrix. Twenty males performed isometric, triangular, dorsiflexion contractions to 20% and 50% of maximal torque at baseline, during LV of the tibialis anterior muscle, and after 30-min of LV. HD-EMG signals were decomposed, and motor units tracked across time points to estimate PICs through a paired motor unit analysis, which quantifies motor unit recruitment-derecruitment hysteresis (ΔF). During ongoing LV, ΔF was lower for both 20% and 50% ramps. Although significant changes in ΔF were not observed after prolonged LV, a differential effect across the motoneuron pool was observed. This study demonstrates that PICs can be non-pharmacologically modulated by LV. Given that LV leads to reflexive motor unit activation, it is postulated that lower PIC contribution to motoneuron firing during ongoing LV results from decreased neuromodulatory inputs associated with lower descending corticospinal drive. A differential effect in motoneurons of different recruitment thresholds after prolonged LV is provocative, challenging the interpretation of previous observations and motivating future investigations. KEY POINTS: Neuromodulatory inputs from the brainstem influence motoneuron intrinsic excitability through activation of persistent inward currents (PICs). PICs make motoneurons more responsive to excitatory input. We demonstrate that vibration applied on the muscle modulates the contribution of PICs to motoneuron firing, as observed through analysis of the firing of single motor units. The effects of PICs on motoneuron firing were lower when vibration was concurrently applied during voluntary ramp contractions, likely due to lower levels of neuromodulation. Additionally, prolonged exposure to vibration led to differential effects of lower- vs. higher-threshold motor units on PICs, with lower-threshold motor units tending to present an increased and higher-threshold motor units a decreased contribution of PICs to motoneuron firing. These results demonstrate that muscle vibration has the potential to influence the effects of neuromodulation on motoneuron firing. The potential of using vibration as a non-pharmacological neuromodulatory intervention should be further investigated.
Collapse
Affiliation(s)
- T Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| | - R N O Mesquita
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Neuroscience Research Australia, Sydney, Australia
| | - S Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Faculty of Motor Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - R Souron
- Movement-Interactions-Performance, MIP, UR 4334, Nantes Université, 44000 Nantes, France
| | - C G Brownstein
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| | - V Rozand
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, Saint-Etienne, France
| |
Collapse
|
10
|
Alahmari SK, Shield AJ, Trajano GS. Effects of three neuromuscular electrical stimulation methods on muscle force production and neuromuscular fatigue. Scand J Med Sci Sports 2022; 32:1456-1463. [PMID: 35844045 PMCID: PMC9545897 DOI: 10.1111/sms.14210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/18/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
This study compared the acute responses of three neuromuscular electrical stimulation (NMES) methods on muscle torque-time integral (TTI) and neuromuscular fatigue. Narrow-pulse (0.2 ms; NP), wide-pulse (1 ms; WP), and tendon vibration superimposed onto wide-pulse (WP + VIB)-NMES conditions were applied to sixteen healthy individuals (n = 16) in three separate sessions in a randomized order. Stimulation intensity was set to elicit 20% of maximal voluntary contraction (MVC); the stimulus pattern comprised four sets of 20 repetitions (5 s On and 5 s Off) with a one-minute inter-set interval. TTI was measured for each NMES condition and MVC, voluntary activation (VA), peak twitch torque (Peaktwitch ), and peak soleus (EMGSOL ), medial (EMGMG ), and lateral gastrocnemius (EMGLG ) electromyography were measured before and immediately after each NMES condition. TTI was higher during WP + VIB (19.63 ± 6.34 MVC.s, mean difference = 3.66, p < 0.001, Cohen's d = 0.501) than during WP (15.97 ± 4.79 MVC.s) condition. TTI was higher during WP + VIB (mean difference = 3.79, p < 0.001, Cohen's d = 0.626) than during NP (15.84 ± 3.73 MVC.s) condition. MVC and Peaktwitch forces decreased (p ≤ 0.001) immediately after all conditions. No changes were observed for VA (p = 0.365). EMGSOL amplitude reduced (p = 0.040) only after NP, yet EMGLG and EMGMG amplitudes decreased immediately after all conditions (p = 0.003 and p = 0.013, respectively). WP + VIB produced a higher TTI than WP and NP-NMES, with similar amounts of neuromuscular fatigue across protocols. All NMES protocols induced similar amounts of peripheral fatigue and reduced EMG amplitudes.
Collapse
Affiliation(s)
- Sami K Alahmari
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia.,Department of Physical Therapy, College of Applied Medical Sciences, Taif University (TU), Taif, Mecca, Kingdom of Saudi Arabia
| | - Anthony J Shield
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Australia
| |
Collapse
|
11
|
Mesquita RNO, Taylor JL, Trajano GS, Škarabot J, Holobar A, Gonçalves BAM, Blazevich AJ. Effects of reciprocal inhibition and whole-body relaxation on persistent inward currents estimated by two different methods. J Physiol 2022; 600:2765-2787. [PMID: 35436349 PMCID: PMC9325475 DOI: 10.1113/jp282765] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract Persistent inward currents (PICs) are crucial for initiation, acceleration, and maintenance of motoneuron firing. As PICs are highly sensitive to synaptic inhibition and facilitated by serotonin and noradrenaline, we hypothesised that both reciprocal inhibition (RI) induced by antagonist nerve stimulation and whole‐body relaxation (WBR) would reduce PICs in humans. To test this, we estimated PICs using the well‐established paired motor unit (MU) technique. High‐density surface electromyograms were recorded from gastrocnemius medialis during voluntary, isometric 20‐s ramp, plantarflexor contractions and decomposed into MU discharges to calculate delta frequency (ΔF). Moreover, another technique (VibStim), which evokes involuntary contractions proposed to result from PIC activation, was used. Plantarflexion torque and soleus activity were recorded during 33‐s Achilles tendon vibration and simultaneous 20‐Hz bouts of neuromuscular electrical stimulation (NMES) of triceps surae. ΔF was decreased by RI (n = 15, 5 females) and WBR (n = 15, 7 females). In VibStim, torque during vibration at the end of NMES and sustained post‐vibration torque were reduced by WBR (n = 19, 10 females), while other variables remained unchanged. All VibStim variables remained unaltered in RI (n = 20, 10 females). Analysis of multiple human MUs in this study demonstrates the ability of local, focused inhibition to attenuate the effects of PICs on motoneuron output during voluntary motor control. Moreover, it shows the potential to reduce PICs through non‐pharmacological, neuromodulatory interventions such as WBR. The absence of a consistent effect in VibStim might be explained by a floor effect resulting from low‐magnitude involuntary torque combined with the negative effects of the interventions. Key points Spinal motoneurons transmit signals to skeletal muscles to regulate their contraction. Motoneuron firing partly depends on their intrinsic properties such as the strength of persistent (long‐lasting) inward currents (PICs) that make motoneurons more responsive to excitatory input. In this study, we demonstrate that both reciprocal inhibition onto motoneurons and whole‐body relaxation reduce the contribution of PICs to human motoneuron firing. This was observed through analysis of the firing of single motor units during voluntary contractions. However, an alternative technique that involves tendon vibration and neuromuscular electrical stimulation to evoke involuntary contractions showed less effect. Thus, it remains unclear whether this alternative technique can be used to estimate PICs under all physiological conditions. These results improve our understanding of the mechanisms of PIC depression in human motoneurons. Potentially, non‐pharmacological interventions such as electrical stimulation or relaxation could attenuate unwanted PIC‐induced muscle contractions in conditions characterised by motoneuron hyperexcitability.
Collapse
Affiliation(s)
- Ricardo N O Mesquita
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Janet L Taylor
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia.,Neuroscience Research Australia, Sydney, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Jakob Škarabot
- School of Sport, Exercise and Health Sciences, Loughborough University, Leicestershire, UK
| | - Aleš Holobar
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Basílio A M Gonçalves
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Anthony J Blazevich
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
12
|
Hatano K, Matsuura R, Ohtsuka Y, Yunoki T. Enhancement of self-sustained muscle activity through external dead space ventilation appears to be associated with hypercapnia. Respir Physiol Neurobiol 2021; 295:103777. [PMID: 34425262 DOI: 10.1016/j.resp.2021.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022]
Abstract
We reported that external dead space ventilation (EDSV) enhanced self-sustained muscle activity (SSMA) of the human soleus muscle, which is an indirect observation of plateau potentials. However, the main factor for EDSV to enhance SSMA remains unclear. The purpose of the present study was to examine the effects of EDSV-induced hypercapnia, hypoxia, and hyperventilation on SSMA. In Experiment 1 (n = 11; normal breathing [NB], EDSV, hypoxia, and voluntary hyperventilation conditions) and Experiment 2 (n = 9; NB and normoxic hypercapnia [NH] conditions), SSMA was evoked by electrical train stimulations of the right tibial nerve and measured using surface electromyography under each respiratory condition. In Experiment 1, SSMA was significantly higher than that in the NB condition only in the EDSV condition (P < 0.05). In Experiment 2, SSMA was higher in the NH condition than in the NB condition (P < 0.05). These results suggest that the EDSV-enhanced SSMA is due to hypercapnia, not hypoxia or increased ventilation.
Collapse
Affiliation(s)
- Kei Hatano
- Graduate School of Education, Hokkaido University, Sapporo, Japan.
| | - Ryouta Matsuura
- Graduate School of Education, Joetsu University of Education, Japan
| | - Yoshinori Ohtsuka
- Department of Sports and Human Studies, Sapporo International University, Japan
| | | |
Collapse
|
13
|
Espeit L, Rozand V, Millet GY, Gondin J, Maffiuletti NA, Lapole T. Influence of wide-pulse neuromuscular electrical stimulation frequency and superimposed tendon vibration on occurrence and magnitude of extra torque. J Appl Physiol (1985) 2021; 131:302-312. [PMID: 34080917 DOI: 10.1152/japplphysiol.00968.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low-frequency and high-frequency wide-pulse neuromuscular electrical stimulation (NMES) can generate extra torque (ET) via afferent pathways. Superimposing tendon vibration (TV) to NMES can increase the activation of these afferent pathways and favor ET generation. Knowledge of the characteristics of ET is essential to implement these stimulation paradigms in clinical practice. Thus, we aimed to investigate the effects of frequency and TV superimposition on the occurrence and magnitude of ET in response to wide-pulse NMES. NMES-induced isometric plantar flexion torque was recorded in 30 healthy individuals who performed five NMES protocols: wide-pulse low-frequency (1 ms; 20 Hz; WPLF) and wide-pulse high-frequency (1 ms; 100 Hz; WPHF) without and with superimposed TV (1 mm; 100 Hz) and conventional NMES (50 µs; 20 Hz; reference protocol). Each NMES protocol consisted of three 20-s trains interspersed by 90 s of rest, with NMES intensity being adjusted to reach 10% of maximal voluntary contraction. The ET occurrence was similar for WPLF and WPHF (P = 0.822). In the responders, the ET magnitude was greater for WPHF than WPLF (P < 0.001). There was no effect of superimposed TV on ET characteristics. This study reported an effect of NMES frequency on ET magnitude, whereas TV superimposition did not affect this parameter. In the context of our experimental design decisions, the present findings question the clinical use of wide-pulse NMES and its combination with superimposed TV. Yet, further research is needed to maximize force production through the occurrence and magnitude of ET.NEW & NOTEWORTHY This study is the first to assess the effect of stimulation frequency and superimposed tendon vibration on extra torque characteristics generated by wide-pulse neuromuscular electrical stimulation. The percentage of subjects showing extra torque (i.e., considered as responders) was similar for low-frequency and high-frequency wide-pulse neuromuscular electrical stimulation. In the responders, the extra torque was greater for high-frequency than for low-frequency wide-pulse neuromuscular electrical stimulation. The superimposition of tendon vibration had no effect on extra torque occurrence or magnitude.
Collapse
Affiliation(s)
- Loïc Espeit
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne, France
| | - Vianney Rozand
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne, France
| | - Guillaume Y Millet
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne, France.,Institut Universitaire de France, Paris, France
| | - Julien Gondin
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, Lyon, France
| | | | - Thomas Lapole
- Univ Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, EA 7424, Saint-Etienne, France
| |
Collapse
|