Li SN, Ihsan M, Shaykevich A, Girard O. Exercise responses to heart rate clamped cycling with graded blood flow restriction.
J Sci Med Sport 2023;
26:434-439. [PMID:
37394395 DOI:
10.1016/j.jsams.2023.06.008]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
OBJECTIVES
To quantify the acute effects of graded blood flow restriction on the interaction between changes in mechanical output, muscle oxygenation trends and perceptual responses to heart rate clamped cycling.
DESIGN
Repeated measures.
METHODS
Twenty-five adults (21 men) performed six, 6-min cycling bouts (24 min of recovery) at a clamped heart rate corresponding to their first ventilatory threshold at 0 % (unrestricted), 15 %, 30 %, 45 %, 60 % and 75 % of arterial occlusion pressure with the cuffs inflated bilaterally from the fourth to the sixth minute. Power output, arterial oxygen saturation (pulse oximetry) and vastus lateralis muscle oxygenation (near-infrared spectroscopy) were monitored during the final 3 min of pedalling, whilst perceptual responses (modified Borg CR10 scales) were obtained immediately after exercise.
RESULTS
Compared to unrestricted cycling, average power output for minutes 4-6 decreased exponentially for cuff pressures ranging 45-75 % of arterial occlusion pressure (P < 0.001). Peripheral oxygen saturation averaged ∼96 % across all cuff pressures (P = 0.318). Deoxyhemoglobin changes were larger at 45-75 % versus 0 % of arterial occlusion pressure (P < 0.05), whereas higher total haemoglobin values occurred at 60-75 % of arterial occlusion pressure (P < 0.05). Sense of effort, ratings of perceived exertion, pain from cuff pressure, and limb discomfort were exaggerated at 60-75 % versus 0 % of arterial occlusion pressure (P < 0.001).
CONCLUSIONS
Blood flow restriction of at least 45 % of arterial occlusion pressure is required to reduce mechanical output during heart rate clamped cycling at the first ventilatory threshold. Whilst power decreases non-linearly above this pressure threshold, higher occlusion levels ranging 60-75 % of arterial occlusion pressure also accentuate muscle deoxygenation and exercise-related sensations.
Collapse