1
|
Blum Moyse L, Berry H. A coupled neural field model for the standard consolidation theory. J Theor Biol 2024; 588:111818. [PMID: 38621583 DOI: 10.1016/j.jtbi.2024.111818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
The standard consolidation theory states that short-term memories located in the hippocampus enable the consolidation of long-term memories in the neocortex. In other words, the neocortex slowly learns long-term memories with a transient support of the hippocampus that quickly learns unstable memories. However, it is not clear yet what could be the neurobiological mechanisms underlying these differences in learning rates and memory time-scales. Here, we propose a novel modeling approach of the standard consolidation theory, that focuses on its potential neurobiological mechanisms. In addition to synaptic plasticity and spike frequency adaptation, our model incorporates adult neurogenesis in the dentate gyrus as well as the difference in size between the neocortex and the hippocampus, that we associate with distance-dependent synaptic plasticity. We also take into account the interconnected spatial structure of the involved brain areas, by incorporating the above neurobiological mechanisms in a coupled neural field framework, where each area is represented by a separate neural field with intra- and inter-area connections. To our knowledge, this is the first attempt to apply neural fields to this process. Using numerical simulations and mathematical analysis, we explore the short-term and long-term dynamics of the model upon alternance of phases of hippocampal replay and retrieval cue of an external input. This external input is encodable as a memory pattern in the form of a multiple bump attractor pattern in the individual neural fields. In the model, hippocampal memory patterns become encoded first, before neocortical ones, because of the smaller distances between the bumps of the hippocampal memory patterns. As a result, retrieval of the input pattern in the neocortex at short time-scales necessitates the additional input delivered by the memory pattern of the hippocampus. Neocortical memory patterns progressively consolidate at longer times, up to a point where their retrieval does not need the support of the hippocampus anymore. At longer times, perturbation of the hippocampal neural fields by neurogenesis erases the hippocampus pattern, leading to a final state where the memory pattern is exclusively evoked in the neocortex. Therefore, the dynamics of our model successfully reproduces the main features of the standard consolidation theory. This suggests that neurogenesis in the hippocampus and distance-dependent synaptic plasticity coupled to synaptic depression and spike frequency adaptation, are indeed critical neurobiological processes in memory consolidation.
Collapse
Affiliation(s)
- Lisa Blum Moyse
- LIRIS, CNRS UMR 5205, Villeurbanne, F-69621, France; AIstroSight, Inria, Hospices Civils de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, F-69603, France.
| | - Hugues Berry
- AIstroSight, Inria, Hospices Civils de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, F-69603, France.
| |
Collapse
|
2
|
Abstract
A schema refers to a structured body of prior knowledge that captures common patterns across related experiences. Schemas have been studied separately in the realms of episodic memory and spatial navigation across different species and have been grounded in theories of memory consolidation, but there has been little attempt to integrate our understanding across domains, particularly in humans. We propose that experiences during navigation with many similarly structured environments give rise to the formation of spatial schemas (for example, the expected layout of modern cities) that share properties with but are distinct from cognitive maps (for example, the memory of a modern city) and event schemas (such as expected events in a modern city) at both cognitive and neural levels. We describe earlier theoretical frameworks and empirical findings relevant to spatial schemas, along with more targeted investigations of spatial schemas in human and non-human animals. Consideration of architecture and urban analytics, including the influence of scale and regionalization, on different properties of spatial schemas may provide a powerful approach to advance our understanding of spatial schemas.
Collapse
|
3
|
Virtual Intelligence: A Systematic Review of the Development of Neural Networks in Brain Simulation Units. Brain Sci 2022; 12:brainsci12111552. [DOI: 10.3390/brainsci12111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
The functioning of the brain has been a complex and enigmatic phenomenon. From the first approaches made by Descartes about this organism as the vehicle of the mind to contemporary studies that consider the brain as an organism with emergent activities of primary and higher order, this organism has been the object of continuous exploration. It has been possible to develop a more profound study of brain functions through imaging techniques, the implementation of digital platforms or simulators through different programming languages and the use of multiple processors to emulate the speed at which synaptic processes are executed in the brain. The use of various computational architectures raises innumerable questions about the possible scope of disciplines such as computational neurosciences in the study of the brain and the possibility of deep knowledge into different devices with the support that information technology (IT) brings. One of the main interests of cognitive science is the opportunity to develop human intelligence in a system or mechanism. This paper takes the principal articles of three databases oriented to computational sciences (EbscoHost Web, IEEE Xplore and Compendex Engineering Village) to understand the current objectives of neural networks in studying the brain. The possible use of this kind of technology is to develop artificial intelligence (AI) systems that can replicate more complex human brain tasks (such as those involving consciousness). The results show the principal findings in research and topics in developing studies about neural networks in computational neurosciences. One of the principal developments is the use of neural networks as the basis of much computational architecture using multiple techniques such as computational neuromorphic chips, MRI images and brain–computer interfaces (BCI) to enhance the capacity to simulate brain activities. This article aims to review and analyze those studies carried out on the development of different computational architectures that focus on affecting various brain activities through neural networks. The aim is to determine the orientation and the main lines of research on this topic and work in routes that allow interdisciplinary collaboration.
Collapse
|
4
|
Krichmar JL, Hwu TJ. Design Principles for Neurorobotics. Front Neurorobot 2022; 16:882518. [PMID: 35692490 PMCID: PMC9174684 DOI: 10.3389/fnbot.2022.882518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
In their book "How the Body Shapes the Way We Think: A New View of Intelligence," Pfeifer and Bongard put forth an embodied approach to cognition. Because of this position, many of their robot examples demonstrated "intelligent" behavior despite limited neural processing. It is our belief that neurorobots should attempt to follow many of these principles. In this article, we discuss a number of principles to consider when designing neurorobots and experiments using robots to test brain theories. These principles are strongly inspired by Pfeifer and Bongard, but build on their design principles by grounding them in neuroscience and by adding principles based on neuroscience research. Our design principles fall into three categories. First, organisms must react quickly and appropriately to events. Second, organisms must have the ability to learn and remember over their lifetimes. Third, organisms must weigh options that are crucial for survival. We believe that by following these design principles a robot's behavior will be more naturalistic and more successful.
Collapse
Affiliation(s)
- Jeffrey L. Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
5
|
Kudithipudi D, Aguilar-Simon M, Babb J, Bazhenov M, Blackiston D, Bongard J, Brna AP, Chakravarthi Raja S, Cheney N, Clune J, Daram A, Fusi S, Helfer P, Kay L, Ketz N, Kira Z, Kolouri S, Krichmar JL, Kriegman S, Levin M, Madireddy S, Manicka S, Marjaninejad A, McNaughton B, Miikkulainen R, Navratilova Z, Pandit T, Parker A, Pilly PK, Risi S, Sejnowski TJ, Soltoggio A, Soures N, Tolias AS, Urbina-Meléndez D, Valero-Cuevas FJ, van de Ven GM, Vogelstein JT, Wang F, Weiss R, Yanguas-Gil A, Zou X, Siegelmann H. Biological underpinnings for lifelong learning machines. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00452-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Tomé DF, Sadeh S, Clopath C. Coordinated hippocampal-thalamic-cortical communication crucial for engram dynamics underneath systems consolidation. Nat Commun 2022; 13:840. [PMID: 35149680 PMCID: PMC8837777 DOI: 10.1038/s41467-022-28339-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 01/13/2022] [Indexed: 11/09/2022] Open
Abstract
Systems consolidation refers to the time-dependent reorganization of memory representations or engrams across brain regions. Despite recent advancements in unravelling this process, the exact mechanisms behind engram dynamics and the role of associated pathways remain largely unknown. Here we propose a biologically-plausible computational model to address this knowledge gap. By coordinating synaptic plasticity timescales and incorporating a hippocampus-thalamus-cortex circuit, our model is able to couple engram reactivations across these regions and thereby reproduce key dynamics of cortical and hippocampal engram cells along with their interdependencies. Decoupling hippocampal-thalamic-cortical activity disrupts systems consolidation. Critically, our model yields testable predictions regarding hippocampal and thalamic engram cells, inhibitory engrams, thalamic inhibitory input, and the effect of thalamocortical synaptic coupling on retrograde amnesia induced by hippocampal lesions. Overall, our results suggest that systems consolidation emerges from coupled reactivations of engram cells in distributed brain regions enabled by coordinated synaptic plasticity timescales in multisynaptic subcortical-cortical circuits.
Collapse
Affiliation(s)
| | - Sadra Sadeh
- Department of Bioengineering, Imperial College London, London, UK
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
7
|
Chen K, Hwu T, Kashyap HJ, Krichmar JL, Stewart K, Xing J, Zou X. Neurorobots as a Means Toward Neuroethology and Explainable AI. Front Neurorobot 2020; 14:570308. [PMID: 33192435 PMCID: PMC7604467 DOI: 10.3389/fnbot.2020.570308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding why deep neural networks and machine learning algorithms act as they do is a difficult endeavor. Neuroscientists are faced with similar problems. One way biologists address this issue is by closely observing behavior while recording neurons or manipulating brain circuits. This has been called neuroethology. In a similar way, neurorobotics can be used to explain how neural network activity leads to behavior. In real world settings, neurorobots have been shown to perform behaviors analogous to animals. Moreover, a neuroroboticist has total control over the network, and by analyzing different neural groups or studying the effect of network perturbations (e.g., simulated lesions), they may be able to explain how the robot's behavior arises from artificial brain activity. In this paper, we review neurorobot experiments by focusing on how the robot's behavior leads to a qualitative and quantitative explanation of neural activity, and vice versa, that is, how neural activity leads to behavior. We suggest that using neurorobots as a form of computational neuroethology can be a powerful methodology for understanding neuroscience, as well as for artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Kexin Chen
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| | - Tiffany Hwu
- HRL Laboratories (formerly Hughes Research Laboratory), LLC, Malibu, CA, United States
| | - Hirak J Kashyap
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Jeffrey L Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States.,Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Kenneth Stewart
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Jinwei Xing
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| | - Xinyun Zou
- Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Chiba AA, Krichmar JL. Neurobiologically Inspired Self-Monitoring Systems. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:976-986. [PMID: 34621081 PMCID: PMC8494143 DOI: 10.1109/jproc.2020.2979233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this article, we explore neurobiological principles that could be deployed in systems requiring self-preservation, adaptive control, and contextual awareness. We start with low-level control for sensor processing and motor reflexes. We then discuss how critical it is at an intermediate level to maintain homeostasis and predict system set points. We end with a discussion at a high-level, or cognitive level, where planning and prediction can further monitor the system and optimize performance. We emphasize the information flow between these levels both from a systems neuroscience and an engineering point of view. Throughout the paper, we describe the brain systems that carry out these functions and provide examples from artificial intelligence, machine learning, and robotics that include these features. Our goal is to show how biological organisms performing self-monitoring can inspire the design of autonomous and embedded systems.
Collapse
Affiliation(s)
- Andrea A Chiba
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093 USA
| | - Jeffrey L Krichmar
- Department of Cognitive Sciences, Department of Computer Science, University of California, Irvine, Irvine, CA, 92697-5100 USA
| |
Collapse
|
9
|
Arbib MA. From spatial navigation via visual construction to episodic memory and imagination. BIOLOGICAL CYBERNETICS 2020; 114:139-167. [PMID: 32285205 PMCID: PMC7152744 DOI: 10.1007/s00422-020-00829-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
This hybrid of review and personal essay argues that models of visual construction are essential to extend spatial navigation models to models that link episodic memory and imagination. The starting point is the TAM-WG model, combining the Taxon Affordance Model and the World Graph model of spatial navigation. The key here is to reject approaches in which memory is restricted to unanalyzed views from familiar places, and their later recall. Instead, we will seek mechanisms for imagining truly novel scenes and episodes. We thus introduce a specific variant of schema theory and VISIONS, a cooperative computation model of visual scene understanding in which a scene is represented by an assemblage of schema instances with links to lower-level "patches" of relevant visual data. We sketch a new conceptual framework for future modeling, Visual Integration of Diverse Multi-Modal Aspects, by extending VISIONS from static scenes to episodes combining agents, actions and objects and assess its relevance to both navigation and episodic memory. We can then analyze imagination as a constructive process that combines aspects of memories of prior episodes along with other schemas and adjusts them into a coherent whole which, through expectations associated with diverse episodes and schemas, may yield the linkage of episodes that constitutes a dream or a narrative. The result is IBSEN, a conceptual model of Imagination in Brain Systems for Episodes and Navigation. The essay closes by analyzing other papers in this Special Issue to assess to what extent their results relate to the research proposed here.
Collapse
|