1
|
Lu Y, Rinzel J. Firing rate models for gamma oscillations in I-I and E-I networks. J Comput Neurosci 2024; 52:247-266. [PMID: 39160322 DOI: 10.1007/s10827-024-00877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Firing rate models for describing the mean-field activities of neuronal ensembles can be used effectively to study network function and dynamics, including synchronization and rhythmicity of excitatory-inhibitory populations. However, traditional Wilson-Cowan-like models, even when extended to include an explicit dynamic synaptic activation variable, are found unable to capture some dynamics such as Interneuronal Network Gamma oscillations (ING). Use of an explicit delay is helpful in simulations at the expense of complicating mathematical analysis. We resolve this issue by introducing a dynamic variable, u, that acts as an effective delay in the negative feedback loop between firing rate (r) and synaptic gating of inhibition (s). In effect, u endows synaptic activation with second order dynamics. With linear stability analysis, numerical branch-tracking and simulations, we show that our r-u-s rate model captures some key qualitative features of spiking network models for ING. We also propose an alternative formulation, a v-u-s model, in which mean membrane potential v satisfies an averaged current-balance equation. Furthermore, we extend the framework to E-I networks. With our six-variable v-u-s model, we demonstrate in firing rate models the transition from Pyramidal-Interneuronal Network Gamma (PING) to ING by increasing the external drive to the inhibitory population without adjusting synaptic weights. Having PING and ING available in a single network, without invoking synaptic blockers, is plausible and natural for explaining the emergence and transition of two different types of gamma oscillations.
Collapse
Affiliation(s)
- Yiqing Lu
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - John Rinzel
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Pietras B. Pulse Shape and Voltage-Dependent Synchronization in Spiking Neuron Networks. Neural Comput 2024; 36:1476-1540. [PMID: 39028958 DOI: 10.1162/neco_a_01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 07/21/2024]
Abstract
Pulse-coupled spiking neural networks are a powerful tool to gain mechanistic insights into how neurons self-organize to produce coherent collective behavior. These networks use simple spiking neuron models, such as the θ-neuron or the quadratic integrate-and-fire (QIF) neuron, that replicate the essential features of real neural dynamics. Interactions between neurons are modeled with infinitely narrow pulses, or spikes, rather than the more complex dynamics of real synapses. To make these networks biologically more plausible, it has been proposed that they must also account for the finite width of the pulses, which can have a significant impact on the network dynamics. However, the derivation and interpretation of these pulses are contradictory, and the impact of the pulse shape on the network dynamics is largely unexplored. Here, I take a comprehensive approach to pulse coupling in networks of QIF and θ-neurons. I argue that narrow pulses activate voltage-dependent synaptic conductances and show how to implement them in QIF neurons such that their effect can last through the phase after the spike. Using an exact low-dimensional description for networks of globally coupled spiking neurons, I prove for instantaneous interactions that collective oscillations emerge due to an effective coupling through the mean voltage. I analyze the impact of the pulse shape by means of a family of smooth pulse functions with arbitrary finite width and symmetric or asymmetric shapes. For symmetric pulses, the resulting voltage coupling is not very effective in synchronizing neurons, but pulses that are slightly skewed to the phase after the spike readily generate collective oscillations. The results unveil a voltage-dependent spike synchronization mechanism at the heart of emergent collective behavior, which is facilitated by pulses of finite width and complementary to traditional synaptic transmission in spiking neuron networks.
Collapse
Affiliation(s)
- Bastian Pietras
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018, Barcelona, Spain
| |
Collapse
|
3
|
Zhao Z, Shirinpour S, Tran H, Wischnewski M, Opitz A. intensity- and frequency-specific effects of transcranial alternating current stimulation are explained by network dynamics. J Neural Eng 2024; 21:026024. [PMID: 38530297 DOI: 10.1088/1741-2552/ad37d9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective. Transcranial alternating current stimulation (tACS) can be used to non-invasively entrain neural activity and thereby cause changes in local neural oscillatory power. Despite its increased use in cognitive and clinical neuroscience, the fundamental mechanisms of tACS are still not fully understood.Approach. We developed a computational neuronal network model of two-compartment pyramidal neurons (PY) and inhibitory interneurons, which mimic the local cortical circuits. We modeled tACS with electric field strengths that are achievable in human applications. We then simulated intrinsic network activity and measured neural entrainment to investigate how tACS modulates ongoing endogenous oscillations.Main results. The intensity-specific effects of tACS are non-linear. At low intensities (<0.3 mV mm-1), tACS desynchronizes neural firing relative to the endogenous oscillations. At higher intensities (>0.3 mV mm-1), neurons are entrained to the exogenous electric field. We then further explore the stimulation parameter space and find that the entrainment of ongoing cortical oscillations also depends on stimulation frequency by following an Arnold tongue. Moreover, neuronal networks can amplify the tACS-induced entrainment via synaptic coupling and network effects. Our model shows that PY are directly entrained by the exogenous electric field and drive the inhibitory neurons.Significance. The results presented in this study provide a mechanistic framework for understanding the intensity- and frequency-specific effects of oscillating electric fields on neuronal networks. This is crucial for rational parameter selection for tACS in cognitive studies and clinical applications.
Collapse
Affiliation(s)
- Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
4
|
Clusella P, Montbrió E. Exact low-dimensional description for fast neural oscillations with low firing rates. Phys Rev E 2024; 109:014229. [PMID: 38366470 DOI: 10.1103/physreve.109.014229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/18/2023] [Indexed: 02/18/2024]
Abstract
Recently, low-dimensional models of neuronal activity have been exactly derived for large networks of deterministic, quadratic integrate-and-fire (QIF) neurons. Such firing rate models (FRM) describe the emergence of fast collective oscillations (>30 Hz) via the frequency locking of a subset of neurons to the global oscillation frequency. However, the suitability of such models to describe realistic neuronal states is seriously challenged by the fact that during episodes of fast collective oscillations, neuronal discharges are often very irregular and have low firing rates compared to the global oscillation frequency. Here we extend the theory to derive exact FRM for QIF neurons to include noise and show that networks of stochastic neurons displaying irregular discharges at low firing rates during episodes of fast oscillations are governed by exactly the same evolution equations as deterministic networks. Our results reconcile two traditionally confronted views on neuronal synchronization and upgrade the applicability of exact FRM to describe a broad range of biologically realistic neuronal states.
Collapse
Affiliation(s)
- Pau Clusella
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, 08242 Manresa, Spain
| | - Ernest Montbrió
- Neuronal Dynamics Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Spain
| |
Collapse
|
5
|
Sanchez-Todo R, Bastos AM, Lopez-Sola E, Mercadal B, Santarnecchi E, Miller EK, Deco G, Ruffini G. A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings. Neuroimage 2023; 270:119938. [PMID: 36775081 DOI: 10.1016/j.neuroimage.2023.119938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Cortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally used to infer cortical circuitry.
Collapse
Affiliation(s)
- Roser Sanchez-Todo
- Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain; Center of Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - André M Bastos
- Department of Psychology and Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Edmundo Lopez-Sola
- Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain
| | - Borja Mercadal
- Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gustavo Deco
- Center of Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Instituci'o Catalana de la Recerca i Estudis Avan,ats (ICREA), Passeig Llu's Companys 23, Barcelona, 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC 3800, Australia
| | - Giulio Ruffini
- Department of Brain Modeling, Neuroelectrics SL, Av. Tibidabo 47b, 08035 Barcelona, Spain; Starlab Barcelona, Av. Tibidabo 47b, 08035 Barcelona, Spain; Haskins Laboratories, 300 George Street, New Haven, CT, 06511, USA.
| |
Collapse
|
6
|
Clusella P, Deco G, Kringelbach ML, Ruffini G, Garcia-Ojalvo J. Complex spatiotemporal oscillations emerge from transverse instabilities in large-scale brain networks. PLoS Comput Biol 2023; 19:e1010781. [PMID: 37043504 PMCID: PMC10124884 DOI: 10.1371/journal.pcbi.1010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/24/2023] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
Spatiotemporal oscillations underlie all cognitive brain functions. Large-scale brain models, constrained by neuroimaging data, aim to trace the principles underlying such macroscopic neural activity from the intricate and multi-scale structure of the brain. Despite substantial progress in the field, many aspects about the mechanisms behind the onset of spatiotemporal neural dynamics are still unknown. In this work we establish a simple framework for the emergence of complex brain dynamics, including high-dimensional chaos and travelling waves. The model consists of a complex network of 90 brain regions, whose structural connectivity is obtained from tractography data. The activity of each brain area is governed by a Jansen neural mass model and we normalize the total input received by each node so it amounts the same across all brain areas. This assumption allows for the existence of an homogeneous invariant manifold, i.e., a set of different stationary and oscillatory states in which all nodes behave identically. Stability analysis of these homogeneous solutions unveils a transverse instability of the synchronized state, which gives rise to different types of spatiotemporal dynamics, such as chaotic alpha activity. Additionally, we illustrate the ubiquity of this route towards complex spatiotemporal activity in a network of next generation neural mass models. Altogehter, our results unveil the bifurcation landscape that underlies the emergence of function from structure in the brain.
Collapse
Affiliation(s)
- Pau Clusella
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Morten L. Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, Barcelona, Spain
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|