1
|
Chang G, Weijie Z, Jinying H, Bingzhang Q, Rexiati M, Zebibula A. Research progress of near-infrared fluorescence imaging in accurate theranostics in bladder cancer. Photodiagnosis Photodyn Ther 2025:104480. [PMID: 39798775 DOI: 10.1016/j.pdpdt.2025.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
(BACKGROUND) With the highest 5-year recurrence rate among malignancies, bladder cancer is a relatively common type of cancer that typically originates from the urothelial cells lining the bladder. Additionally, bladder cancer is one of the most financially burdensome neoplasms to medical institutions in terms of management. Hence, prompt identification and accurate handling of bladder cancer are pivotal for enhancing patient prognosis. Optical imaging has experienced remarkable advancements in fundamental medical research owing to its cost-effectiveness and capacity for real-time imaging. The utilization of near-infrared imaging techniques has also become a prominent area of research in recent times. By effectively decreasing the adverse effects of light scattering and tissue autofluorescence, this technique offers a deeper penetration depth, a better signal-to-noise ratio of images, and a clear resolution for imaging. Thus, this article introduces the application of near-infrared fluorescence imaging in diagnosing and treating bladder cancer. Furthermore, the paper delves into the field's obstacles, possibilities, and upcoming prospects. (RESULTS) Near-infrared fluorescence has advantages over white or blue light in theory and in most articles. However, the lack of penetration depth of NIR fluorescence imaging is still a challenge. (CONCLUSION) Despite notable improvements in the depth of near-infrared fluorescence imaging, the penetration of deeper tissues remains a barrier. It is our hope and pursuit that NIR fluorescence imaging technology can achieve good depth and precision in surgery.
Collapse
Affiliation(s)
- Ge Chang
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System.
| | - Zhang Weijie
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System.
| | - Huang Jinying
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System.
| | - Qiao Bingzhang
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System.
| | - Mulati Rexiati
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System; State Key Laboratory of Patho-genesis, Prevention and Treatment of High Incidence Diseases in Central Asia.
| | - Abudureheman Zebibula
- Urology Department, the First Affiliated Hospital of Xinjiang Medical University. Xinjiang Clinical Reseach Center for Genitourinary System; State Key Laboratory of Patho-genesis, Prevention and Treatment of High Incidence Diseases in Central Asia.
| |
Collapse
|
2
|
Wu Y, Shang J, Zhang X, Li N. Advances in molecular imaging and targeted therapeutics for lymph node metastasis in cancer: a comprehensive review. J Nanobiotechnology 2024; 22:783. [PMID: 39702277 PMCID: PMC11657939 DOI: 10.1186/s12951-024-02940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/19/2024] [Indexed: 12/21/2024] Open
Abstract
Lymph node metastasis is a critical indicator of cancer progression, profoundly affecting diagnosis, staging, and treatment decisions. This review article delves into the recent advancements in molecular imaging techniques for lymph nodes, which are pivotal for the early detection and staging of cancer. It provides detailed insights into how these techniques are used to visualize and quantify metastatic cancer cells, resident immune cells, and other molecular markers within lymph nodes. Furthermore, the review highlights the development of innovative, lymph node-targeted therapeutic strategies, which represent a significant shift towards more precise and effective cancer treatments. By examining cutting-edge research and emerging technologies, this review offers a comprehensive overview of the current and potential impact of lymph node-centric approaches on cancer diagnosis, staging, and therapy. Through its exploration of these topics, the review aims to illuminate the increasingly sophisticated landscape of cancer management strategies focused on lymph node assessment and intervention.
Collapse
Affiliation(s)
- Yunhao Wu
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jin Shang
- Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinyue Zhang
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - Nu Li
- The First Hospital of China Medical University, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
3
|
Wang X, Dai G, Jiang G, Zhang D, Wang L, Zhang W, Chen H, Cheng T, Zhou Y, Wei X, Li F, Ma D, Tan S, Wei R, Xi L. A TMVP1-modified near-infrared nanoprobe: molecular imaging for tumor metastasis in sentinel lymph node and targeted enhanced photothermal therapy. J Nanobiotechnology 2023; 21:130. [PMID: 37069646 PMCID: PMC10108508 DOI: 10.1186/s12951-023-01883-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/06/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND TMVP1 is a novel tumor targeting polypeptide screened by our laboratory with a core sequence of five amino acids LARGR. It specially binds to vascular endothelial growth factor receptor-3 (VEGFR-3), which is mainly expressed on neo-lymphatic vessels in sentinel lymph node (SLN) with tumor metastasis in adults. Here, we prepared a targeted nanoprobe using TMVP1-modified nanomaterials for tumor metastasis SLN imaging. RESULTS In this study, TMVP1-modified polymer nanomaterials were loaded with the near-infrared (NIR) fluorescent dye, indocyanine green (ICG), to prepare a molecular imaging TMVP1-ICG nanoparticles (NPs) to identify tumor metastasis in SLN at molecular level. TMVP1-ICG-NPs were successfully prepared using the nano-precipitation method. The particle diameter, morphology, drug encapsulation efficiency, UV absorption spectrum, cytotoxicity, safety, and pharmacokinetic properties were determined. The TMVP1-ICG-NPs had a diameter of approximately 130 nm and an ICG loading rate of 70%. In vitro cell experiments and in vivo mouse experiments confirmed that TMVP1-ICG-NPs have good targeting ability to tumors in situ and to SLN with tumor metastasis by binding to VEGFR-3. Effective photothermal therapy (PTT) with TMVP1-ICG-NPs was confirmed in vitro and in vivo. As expected, TMVP1-ICG-NPs improved ICG blood stability, targeted tumor metastasis to SLN, and enhanced PTT/photodynamic (PDT) therapy, without obvious cytotoxicity, making it a promising theranostic nanomedicine. CONCLUSION TMVP1-ICG-NPs identified SLN with tumor metastasis and were used to perform imaging-guided PTT, which makes it a promising strategy for providing real-time NIR fluorescence imaging and intraoperative PTT for patients with SLN metastasis.
Collapse
Affiliation(s)
- Xueqian Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Geyang Dai
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Guiying Jiang
- Department of Gynecology, West China Second University Hospital, Chengdu, 610000, China
| | - Danya Zhang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ling Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wen Zhang
- Hubei University of Medicine, Shiyan, 442000, China
| | - Huang Chen
- School of Medicine, Jianghan University, Wuhan, 430000, China
| | - Teng Cheng
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Xiao Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Fei Li
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Songwei Tan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Rui Wei
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| | - Ling Xi
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
4
|
Zhang S, Ji X, Zhang R, Zhao W, Dong X. Water-soluble near-infrared fluorescent heptamethine dye for lymphatic mapping applications. Bioorg Med Chem Lett 2022; 73:128910. [PMID: 35907605 DOI: 10.1016/j.bmcl.2022.128910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/16/2022] [Accepted: 07/23/2022] [Indexed: 11/24/2022]
Abstract
The identification of sentinel lymph node (SLN) is an important method for prognostic evaluation and minimally invasive staging of metastatic tumors. Here, we report a series of near-infrared fluorescent heptamethylamine dyes (series A, B and C) with central cycloalkene ring modified by tyrosine or N-Boc tyrosine via ether linkage. N-Boc tyrosine/tyrosine modification provided enhanced absorption coefficient and fluorescence quantum yield in DMSO, however with slight hypsochromic shift compared to the mother dyes in DMSO. In PBS, series A and B were found to be more fluorescent than ICG and showed brighter images. Compound A1 was found to exhibit the most favorable imaging performance among all the dyes investigated and was selected for in vivo sentinel lymph node mapping experiments in mice. A1 showed faster response and stronger fluorescence emission than FDA-approved ICG. The lymph node tracing with A1 could be assisted by MB staining. Ex vivo imaging of harvested organs indicated that similar metabolic characteristics of A1 and ICG. Overall, A1 is advantageous over ICG and is very promising for non-invasive lymph node imaging.
Collapse
Affiliation(s)
- Shaohui Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Xin Ji
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Rong Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Weili Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China; Key Laboratory for Special Functional Materials of the Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, P. R. China.
| | - Xiaochun Dong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China.
| |
Collapse
|
5
|
Géczi T, Simonka Z, Lantos J, Wetzel M, Szabó Z, Lázár G, Furák J. Near-infrared fluorescence guided surgery: State of the evidence from a health technology assessment perspective. Front Surg 2022; 9:919739. [PMID: 35959120 PMCID: PMC9360526 DOI: 10.3389/fsurg.2022.919739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Different applications of near-infrared fluorescence-guided surgery are very promising, and techniques that help surgeons in intraoperative guidance have been developed, thereby bridging the gap between preoperative imaging and intraoperative visualization and palpation. Thus, these techniques are advantageous in terms of being faster, safer, less invasive, and cheaper. There are a few fluorescent dyes available, but the most commonly used dye is indocyanine green. It can be used in its natural form, but different nanocapsulated and targeted modifications are possible, making this dye more stable and specific. A new active tumor-targeting strategy is the conjugation of indocyanine green nanoparticles with antibodies, making this dye targeted and highly selective to various tumor proteins. In this mini-review, we discuss the application of near-infrared fluorescence-guided techniques in thoracic surgery. During lung surgery, it can help find small, non-palpable, or additional tumor nodules, it is also useful for finding the sentinel lymph node and identifying the proper intersegmental plane for segmentectomies. Furthermore, it can help visualize the thoracic duct, smaller bullae of the lung, phrenic nerve, or pleural nodules. We summarize current applications and provide a framework for future applications and development.
Collapse
Affiliation(s)
- Tibor Géczi
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Correspondence: Tibor Géczi
| | - Zsolt Simonka
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Judit Lantos
- Department of Neurology, Bács-Kiskun County Hospital, Kecskemét, Hungary
| | - Melinda Wetzel
- Department of Anesthesiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Szabó
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Lázár
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Furák
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Egloff-Juras C, Bezdetnaya L, Dolivet G, Lassalle HP. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green. Int J Nanomedicine 2019; 14:7823-7838. [PMID: 31576126 PMCID: PMC6768149 DOI: 10.2147/ijn.s207486] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022] Open
Abstract
Surgery is the frontline treatment for a large number of cancers. The objective of these excisional surgeries is the complete removal of the primary tumor with sufficient safety margins. Removal of the entire tumor is essential to improve the chances of a full recovery. To help surgeons achieve this objective, near-infrared fluorescence-guided surgical techniques are of great interest. The concomitant use of fluorescence and indocyanine green (ICG) has proved effective in the identification and characterization of tumors. Moreover, ICG is authorized by the Food and Drug Administration and the European Medicines Agency and is therefore the subject of a large number of studies. ICG is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, it also has some disadvantages, such as limited photostability, a moderate fluorescence quantum yield, a high plasma protein binding rate, and undesired aggregation in aqueous solution. In addition, ICG does not specifically target tumor cells. One way to exploit the capabilities of ICG while offsetting these drawbacks is to develop high-performance near-infrared nanocomplexes formulated with ICG (with high selectivity for tumors, high tumor-to-background ratios, and minimal toxicity). In this review article, we focus on recent developments in ICG complexation strategies to improve near-infrared fluorescence-guided tumor surgery. We describe targeted and nontargeted ICG nanoparticle models and ICG complexation with targeting agents.
Collapse
Affiliation(s)
- Claire Egloff-Juras
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Lina Bezdetnaya
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Gilles Dolivet
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Henri-Pierre Lassalle
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| |
Collapse
|
7
|
Hameed S, Chen H, Irfan M, Bajwa SZ, Khan WS, Baig SM, Dai Z. Fluorescence Guided Sentinel Lymph Node Mapping: From Current Molecular Probes to Future Multimodal Nanoprobes. Bioconjug Chem 2018; 30:13-28. [DOI: 10.1021/acs.bioconjchem.8b00812] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Hong Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Muhammad Irfan
- Department of Medicines, Gujranwala Medical College, Gujranwala 52250, Pakistan
| | - Sadia Zafar Bajwa
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Waheed S Khan
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Shahid Mahmood Baig
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Li M, Liu C, Gong X, Zheng R, Bai Y, Xing M, Du X, Liu X, Zeng J, Lin R, Zhou H, Wang S, Lu G, Zhu W, Fang C, Song L. Linear array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld probe for noninvasive sentinel lymph node mapping. BIOMEDICAL OPTICS EXPRESS 2018; 9:1408-1422. [PMID: 29675292 PMCID: PMC5905896 DOI: 10.1364/boe.9.001408] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 05/04/2023]
Abstract
We developed a linear ultrasound array-based real-time photoacoustic imaging system with a compact coaxial excitation handheld photoacoustic imaging probe for guiding sentinel lymph node (SLN) needle biopsy. Compared with previous studies, our system and probe have the following advantages: (1) the imaging probe is quite compact and user-friendly; (2) laser illumination and ultrasonic detection are achieved coaxially, enabling high signal-to-noise ratio; and (3) GPU-based image reconstruction enables real-time imaging and displaying at a frame rate of 20 Hz. With the system and probe, clear visualization of the SLN at the depth of 2 cm (~human SLN depth) was demonstrated on a living rat. A fine needle was pushed towards the SLN based on the guidance of real-time photoacoustic imaging. The proposed photoacoustic imaging system and probe was shown to have great potential to be used in clinics for guiding SLN needle biopsy, which may reduce the high morbidity rate related to the current gold standard clinical SLN biopsy procedure.
Collapse
Affiliation(s)
- Mucong Li
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Equal Contribution
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Beijing Center for Mathematics and Information Interdisciplinary Sciences (BCMIIS), Beijing 100048, China
- Equal Contribution
| | - Xiaojing Gong
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rongqin Zheng
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yuanyuan Bai
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Muyue Xing
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xuemin Du
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyang Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zeng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Riqiang Lin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huichao Zhou
- Department of Medical Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Shouju Wang
- Department of Medical Imaging, Jinling Hospital, Nanjing University, Nanjing 210002, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Nanjing University, Nanjing 210002, China
| | - Wen Zhu
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Chihua Fang
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Beijing Center for Mathematics and Information Interdisciplinary Sciences (BCMIIS), Beijing 100048, China
| |
Collapse
|
9
|
van Driel PBAA, van de Giessen M, Boonstra MC, Snoeks TJA, Keereweer S, Oliveira S, van de Velde CJH, Lelieveldt BPF, Vahrmeijer AL, Löwik CWGM, Dijkstra J. Characterization and evaluation of the artemis camera for fluorescence-guided cancer surgery. Mol Imaging Biol 2016; 17:413-23. [PMID: 25344146 PMCID: PMC4422838 DOI: 10.1007/s11307-014-0799-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose Near-infrared (NIR) fluorescence imaging can provide the surgeon with real-time visualization of, e.g., tumor margins and lymph nodes. We describe and evaluate the Artemis, a novel, handheld NIR fluorescence camera. Procedures We evaluated minimal detectable cell numbers (FaDu-luc2, 7D12-IRDye 800CW), preclinical intraoperative detection of sentinel lymph nodes (SLN) using indocyanine green (ICG), and of orthotopic tongue tumors using 7D12-800CW. Results were compared with the Pearl imager. Clinically, three patients with liver metastases were imaged using ICG. Results Minimum detectable cell counts for Artemis and Pearl were 2 × 105 and 4 × 104 cells, respectively. In vivo, seven SLNs were detected in four mice with both cameras. Orthotopic OSC-19-luc2-cGFP tongue tumors were clearly identifiable, and a minimum FaDu-luc2 tumor size of 1 mm3 could be identified. Six human malignant lesions were identified during three liver surgery procedures. Conclusions Based on this study, the Artemis system has demonstrated its utility in fluorescence-guided cancer surgery. Electronic supplementary material The online version of this article (doi:10.1007/s11307-014-0799-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P B A A van Driel
- Department of Radiology and Molecular Imaging, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sanei MH, Tabatabie SA, Hashemi SM, Cherei A, Mahzouni P, Sanei B. Comparing the efficacy of routine H&E staining and cytokeratin immunohistochemical staining in detection of micro-metastasis on serial sections of dye-mapped sentinel lymph nodes in colorectal carcinoma. Adv Biomed Res 2016; 5:13. [PMID: 26962515 PMCID: PMC4770611 DOI: 10.4103/2277-9175.175246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 07/28/2014] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The significance of techniques used for detecting micro-metastasis (MM) or isolated tumor cells (ITCs) is a controversial issue among investigators. We evaluated the different techniques used on sentinel lymph node (SLN) to detect MM/ITCs. MATERIALS AND METHODS Ninety-one SLNs of 15 patients underwent serial section with 100 μm interval. In each level, two sections were prepared. One section was stained with H&E and another with anti-cytokeratin antibody (immunohistochemistry). Then the sections were evaluated for detecting MM/ITCs. Results were analyzed by chi-square test. RESULTS 1656 sections of 91 SLNs of 15 patients were evaluated by a pathologist; MM was found in 1 and ITCs in 1 case. Overall, 2 out of 15 cases (13.3% of the patients) showed MM/ITCs by IHC staining. So, serial section along with using IHC was superior than serial section and routine H&E staining. But it did not affect the 5-year survival of the patients (P = 0.47). CONCLUSION Using the combined techniques of serial section and IHC staining could up-stage 13.3% of colon cancer patients who were lymph node negative. In other studies with different combination of serial section, IHC staining, and PCR, investigators were able to find MM/ITCs in 3-39% of the cases. In our study, although serial section and IHC staining could up-stage 13.3% of patients, it could not affect the 5-year survival of the patients.
Collapse
Affiliation(s)
- Mohammad Hossein Sanei
- Department of Pathology-Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Abbas Tabatabie
- Department of General Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seid Mozafar Hashemi
- Department of General Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Cherei
- Department of Pathology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Parvin Mahzouni
- Department of Pathology-Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnam Sanei
- Department of General Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Aydogan F, Velidedeoglu M, Kilic F, Yilmaz H. Radio-guided localization of clinically occult breast lesions: current modalities and future directions. Expert Rev Med Devices 2013; 11:53-63. [DOI: 10.1586/17434440.2014.864233] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Noh YW, Park HS, Sung MH, Lim YT. Enhancement of the photostability and retention time of indocyanine green in sentinel lymph node mapping by anionic polyelectrolytes. Biomaterials 2011; 32:6551-7. [PMID: 21663959 DOI: 10.1016/j.biomaterials.2011.05.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
Abstract
Sentinel lymph node (SLN) biopsy techniques have been widely used in the diagnosis of cancer metastasis because lymph node metastasis is one of the most important prognostic signs. Indocyanine green (ICG) has potential application as a molecular imaging probe for SLN mapping due to its fluorescent properties emitting in the near-infrared (NIR) region, where light transmission through biological tissue is maximized. However, its low photostability in an aqueous solution at the physiological temperature and its rapid diffusion behavior through SLN into the second lymph node have limited its wide use in real clinical fields. In this study, we developed a new NIR imaging contrast system consisting of ICG and poly (γ-glutamic acid) (γ-PGA) polymers for efficient sentinel lymph node mapping. By a combination of clinically used ICG and the biocompatible anionic polyelectrolyte, γ-PGA, the photostabilities of aqueous ICG solutions at room and body temperatures were drastically enhanced. When the ICG/γ-PGA complex was injected subcutaneously into the front paw of a mouse, it entered the lymphatics and migrated to the axillary sentinel lymph node (SLN) within 2 min. Furthermore, the NIR fluorescent signal intensity and retention time of ICG/γ-PGA complex in lymph node were superior to those of ICG only. In addition, a histofluorescentstudy of the SLN resected under NIR imaging revealed that ICG and γ-PGA were co-localized in the lymph node.Taken together, the experimental results on the enhanced photostability and retention time of the ICG/γ-PGA complex provide strong evidence that it has promising potential for improved sentinel lymph node mapping.
Collapse
Affiliation(s)
- Young-Woock Noh
- Graduate School and Department of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | | | | | | |
Collapse
|
13
|
De Nardi P, Carvello M, Canevari C, Passoni P, Staudacher C. Sentinel node biopsy in squamous-cell carcinoma of the anal canal. Ann Surg Oncol 2010; 18:365-70. [PMID: 20803079 DOI: 10.1245/s10434-010-1275-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Indexed: 12/17/2022]
Abstract
BACKGROUND Radiochemotherapy is the standard treatment for patients with carcinoma of the anal canal. Therefore, a surgical specimen is not usually obtained. Inguinal lymph node metastases cannot be accurately predicted by either clinical examination or imaging techniques. In this study, we applied the sentinel node technique in patients with anal canal squamous-cell carcinoma to determine whether this provided more reliable staging of tumors. METHODS From May 2007 to May 2009, we enrolled 11 patients (7 women) with a mean age 65 (range 39-80) years with squamous-cell carcinoma of the anal canal and clinically and radiologically negative groin lymph nodes. The patients were staged with endorectal ultrasound, computed tomographic scan, magnetic resonance imaging of the pelvis, and positron emission tomography. There were two T1, four T2, and five T3 tumors (International Union Against Cancer classification). Lymphoscintigraphy with peritumoral 99mTc colloid injection was performed 16 to 18 h before surgery. During the surgery, patent blue dye was injected peritumorally, and the sentinel inguinal node was identified by a handheld gamma probe and dye visualization. RESULTS The sentinel lymph node was detected in all 11 patients by scintigraphy; in 9 cases, the lymph node was in the inguinal region. All of these patients underwent radioguided node biopsy, and a total of 12 lymph nodes were removed. The average diameter of the resected nodes was 8 (range 4-20) mm. No serious complications occurred. In three patients, metastases were identified in the lymph node. CONCLUSIONS Sentinel node biopsy is a more accurate method than clinical or radiological techniques to stage the disease of patients with anal carcinoma.
Collapse
Affiliation(s)
- Paola De Nardi
- Department of Surgery, Scientific Institute San Raffaele Hospital, Milan, Italy.
| | | | | | | | | |
Collapse
|
14
|
Kachala SS, Servais EL, Park BJ, Rusch VW, Adusumilli PS. Therapeutic sentinel lymph node imaging. Semin Thorac Cardiovasc Surg 2010; 21:327-38. [PMID: 20226346 DOI: 10.1053/j.semtcvs.2009.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2009] [Indexed: 11/11/2022]
Abstract
Improving existing means of sentinel lymph node identification in non-small cell lung cancer will allow for molecular detection of occult micrometastases that may cause recurrence in early stage non-small cell lung cancer. Furthermore, targeted application of chemical and biological cytotoxic agents can potentially improve outcomes in patients with lymph node (LN) metastases. "Therapeutic Sentinel Lymph Node Imaging" incorporates these modalities into a single agent thereby identifying which LNs harbor tumor cells and simultaneously eradicating metastatic disease. In this review, we summarize the novel preclinical agents for identification and treatment of tumor bearing LNs and discuss their potential for clinical translation.
Collapse
Affiliation(s)
- Stefan S Kachala
- Division of Thoracic Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
15
|
Song L, Kim C, Maslov K, Shung KK, Wang LV. High-speed dynamic 3D photoacoustic imaging of sentinel lymph node in a murine model using an ultrasound array. Med Phys 2009; 36:3724-9. [PMID: 19746805 DOI: 10.1118/1.3168598] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Noninvasive photoacoustic sentinel lymph node (SLN) mapping with high spatial resolution has the potential to improve the false negative rate and eliminate the use of radioactive tracers in SLN identification. In addition, the demonstrated high spatial resolution may enable physicians to replace SLN biopsy with fine needle aspiration biopsy, and thus reduce the risk of associated morbidity. The primary goal of this study is to demonstrate the feasibility of high-speed 3D photoacoustic imaging of the uptake and clearance dynamics of Evans blue dye in SLNs. The photoacoustic imaging system was developed with a 30 MHz ultrasound array and a kHz repetition rate laser system. It acquires one 3D photoacoustic image of 166 B-scan frames in 1 s, with axial, lateral, and elevational resolutions of 25, 70, and 200 microm, respectively. With optic-fiber based light delivery, the entire system is compact and is convenient to use. Upon injection of Evans blue, a blue dye currently used in clinical SLN biopsy, SLNs in mice and rats were accurately and noninvasively mapped in vivo using our imaging system. In our experiments, the SLNs were found to be located at approximately 0.65 mm below the skin surface in mice and approximately 1.2 mm in rats. In some cases, lymph vessels and lymphatic valves were also imaged. The dye dynamics--accumulation and clearance--in SLNs were quantitatively monitored by sequential 3D imaging with temporal resolution of as high as approximately 6 s. The demonstrated capability suggests that high-speed 3D photoacoustic imaging should facilitate the understanding of the dynamics of various dyes in SLNs and potentially help identify SLNs with high accuracy.
Collapse
Affiliation(s)
- Liang Song
- Department of Biomedical Engineering, Optical Imaging Laboratory, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | | | | |
Collapse
|
16
|
Pleijhuis RG, Graafland M, de Vries J, Bart J, de Jong JS, van Dam GM. Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Ann Surg Oncol 2009; 16:2717-30. [PMID: 19609829 PMCID: PMC2749177 DOI: 10.1245/s10434-009-0609-z] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/14/2009] [Indexed: 12/22/2022]
Abstract
Inadequate surgical margins represent a high risk for adverse clinical outcome in breast-conserving therapy (BCT) for early-stage breast cancer. The majority of studies report positive resection margins in 20% to 40% of the patients who underwent BCT. This may result in an increased local recurrence (LR) rate or additional surgery and, consequently, adverse affects on cosmesis, psychological distress, and health costs. In the literature, various risk factors are reported to be associated with positive margin status after lumpectomy, which may allow the surgeon to distinguish those patients with a higher a priori risk for re-excision. However, most risk factors are related to tumor biology and patient characteristics, which cannot be modified as such. Therefore, efforts to reduce the number of positive margins should focus on optimizing the surgical procedure itself, because the surgeon lacks real-time intraoperative information on the presence of positive resection margins during breast-conserving surgery. This review presents the status of pre- and intraoperative modalities currently used in BCT. Furthermore, innovative intraoperative approaches, such as positron emission tomography, radioguided occult lesion localization, and near-infrared fluorescence optical imaging, are addressed, which have to prove their potential value in improving surgical outcome and reducing the need for re-excision in BCT.
Collapse
Affiliation(s)
- Rick G Pleijhuis
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Heckathorne E, Dimock C, Dahlbom M. Radiation dose to surgical staff from positron-emitter-based localization and radiosurgery of tumors. HEALTH PHYSICS 2008; 95:220-226. [PMID: 18617803 DOI: 10.1097/01.hp.0000310962.96089.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Surgical tissue characterization based on radiotracer uptake has become much more common in recent years, particularly due to the advent of the sentinel lymph node biopsy technique. Radiolabeled pharmaceuticals are used with hand-held gamma-sensitive probes, which are capable of localizing small tumors and lymph nodes that are first identified via scintigraphy. The radiation safety of such radioguided procedures, which typically employ 99mTc, has been well established. Now, with the emergence of 18F-fluorodeoxyglucose (18FDG) as a widely used tracer for PET imaging of cancer patients, there is increasing interest in the possibility of utilizing 18FDG for intraoperative tumor detection. First, though, the exposure to operating room personnel must be shown to be at a safe level. Due to the short half-life of 18F, the exposure rate will vary significantly with the start time post-injection as well as the duration of the procedure. The aim of this investigation is to determine empirically an exposure rate equation that can be integrated to estimate the exposure to a surgeon and assistants, from patients injected with 18FDG, over an arbitrarily chosen time interval. The study was conducted by measuring the radiation exposure rate from hospital in-patients receiving 18FDG-PET scans at various times from one to seven hours post injection; the empirical equation was determined from the plot of exposure rate vs. time for all patients. The resulting effective dose equivalent for the surgeon for typical values of injected activity, delay time and procedure duration was approximately 60 microSv.
Collapse
Affiliation(s)
- Elena Heckathorne
- Department of Molecular & Medical Pharmacology, UCLA School of Medicine, B2-049B CHS, Box 956948, 650 Charles Young Drive S., Los Angeles, CA 90095-6948, USA.
| | | | | |
Collapse
|
18
|
Schulze T, Mucke J, Markwardt J, Schlag PM, Bembenek A. Long-term morbidity of patients with early breast cancer after sentinel lymph node biopsy compared to axillary lymph node dissection. J Surg Oncol 2006; 93:109-19. [PMID: 16425290 DOI: 10.1002/jso.20406] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Sentinel lymph node biopsy (SLNB) is widely accepted as an excellent method in the management of early breast cancer in patients with clinically negative axillary lymph nodes. Since SLNB requires less traumatic surgery to the axilla than axillary lymph node dissection (ALND), it was assumed to result in reduced shoulder/arm morbidity. However, data on long-term morbidity after SNLB are sparse. The present study was set up to compare long-term arm/shoulder morbidity as well as oncological outcome after SLNB versus ALND in patients with early breast cancer. METHODS Oncological outcome, objective shoulder/arm morbidity, and subjective complaints after SLNB or ALND for T1 breast cancer were assessed after a minimum follow-up of 20 months. RESULTS One hundred thirty four patients were included in the study. Thirty-one patients underwent SNLB only, 103 patients had SLNB followed by ALND or ALND only. Loss of strength and hypaesthesia were less frequent after SLNB. No lymph oedema occurred after SNLB without adjuvant radiotherapy. Subjective complaints concerning pain, hypaesthesia, and paresthesia were more common in the ALND group. No axillary recurrence developed in either group. CONCLUSIONS Isolated SLNB in node-negative pT1 breast cancer patients is a highly efficient tool to reduce postoperative long-term morbidity without compromising the local control of the disease. The reported ameliorations should favour SLNB as staging and treatment modality in patients suffering from early breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Axilla
- Breast Neoplasms/epidemiology
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Breast Neoplasms, Male/epidemiology
- Breast Neoplasms, Male/pathology
- Breast Neoplasms, Male/surgery
- Carcinoma, Ductal, Breast/epidemiology
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Ductal, Breast/surgery
- Carcinoma, Intraductal, Noninfiltrating/epidemiology
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Female
- Humans
- Lymph Node Excision
- Lymphatic Metastasis
- Male
- Mastectomy
- Mastectomy, Segmental
- Middle Aged
- Morbidity
- Neoadjuvant Therapy
- Neoplasm Staging
- Neoplasms, Ductal, Lobular, and Medullary/epidemiology
- Neoplasms, Ductal, Lobular, and Medullary/pathology
- Neoplasms, Ductal, Lobular, and Medullary/surgery
- Retrospective Studies
- Sentinel Lymph Node Biopsy
- Treatment Outcome
Collapse
Affiliation(s)
- Tobias Schulze
- Department of Surgery and Surgical Oncology, Robert-Rössle-Klinik Berlin, Charité, Campus Buch, Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | |
Collapse
|
19
|
Bembenek A, Schneider U, Gretschel S, Fischer J, Schlag PM. Detection of lymph node micrometastases and isolated tumor cells in sentinel and nonsentinel lymph nodes of colon cancer patients. World J Surg 2006; 29:1172-5. [PMID: 16091983 DOI: 10.1007/s00268-005-0094-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
About 20% to 30% of colon cancer patients classified as node negative by routine hematoxylin-eosin (H&E) staining are found to have micrometastases (MM) or isolated tumor cells (ITC) in sentinel lymph nodes (SLNs) if analyzed by step sections and immunohistochemistry (IHC). Whether SLNs are in this respect representative for all lymph nodes was addressed in this study. SLNs were identified using the intraoperative blue dye detection technique. If all lymph nodes (SLNs and non-SLNs) of a patient were negative by routine H&E staining, they were step-sectioned and analyzed by IHC using pancytokeratin antibodies. We identified at least one SLN in 47 of the 55 patients (85%) and examined a median of 26 lymph nodes per patient (range 10-59). By routine H&E staining, 14 of the 47 patients showed lymph node metastases (30%); the remaining 33 were classified as node-negative. In this group (33 patients), 1011 lymph nodes were analyzed by step sections and IHC: 14 of 70 SLNs. (20%) but only 37 of 941 non-SLNs (4%) had MM/ITC (p < 0.001). Furthermore, 13 of the 33 H&E-negative patients were found to have MM/ITC (39%). In 11 of the 13 patients, MM/ITC were identified in both SLNs and non-SLNs in 1 patient in the SLN only, and in 1 patient in a non-SLN only (sensitivity for the identification of MM/ITC: 92%; negative predictive value: 95%). The SLN biopsy is a valid tool to detect, as well as exclude, the presence of MM/ITC in colon cancer patients. Our results may be of prognostic relevance and influence patient stratification for adjuvant therapy trials.
Collapse
Affiliation(s)
- Andreas Bembenek
- Department of Surgery and Surgical Oncology, Charité-University Medicine Berlin, Robert-Rössle Cancer Center, Lindenbergerweg 80, Berlin 10437, Germany
| | | | | | | | | |
Collapse
|
20
|
Schlag PM. Invited Commentary. World J Surg 2005. [DOI: 10.1007/s00268-005-1134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Koskivuo I, Suominen E, Niinikoski J, Talve L. Sentinel node metastasectomy in thin ≤1-mm melanoma. Langenbecks Arch Surg 2005; 390:403-7. [PMID: 16052368 DOI: 10.1007/s00423-005-0572-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 06/28/2005] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Sentinel lymph node biopsy (SLNB) has been widely accepted as a precise tool to stage melanoma. In thin T1 melanomas (<or=1 mm), the indication of SLNB is controversial since the risk of nodal metastasis is low. The aim of this study was to assess if SLNB detects occult nodal metastases among patients with thin melanomas. PATIENTS AND METHODS SLNB was performed prospectively in 135 patients with invasive melanoma in any depth category, including 56 T1 melanomas. RESULTS Nodal metastases were detected in 18% by SLNB, and there were three sentinel-positive thin melanomas, constituting 5% of the T1 cases. Histopathologically, there were no factors of the primary tumors that would have predicted these metastases. CONCLUSION SLNB is a precise method to detect clinically silent nodal metastases in thin invasive melanoma. Certain histopathologic features of a thin primary lesion may correlate with the predictive probability of the sentinel node status. We were unable to identify these predictors, but the conclusions from this study are limited by the small sample size. Advanced melanoma is a lethal disease, and accurate staging is essential also in the T1 group. For stage III patients with occult nodal metastases, metastasectomy is a better option for cure than observation.
Collapse
Affiliation(s)
- Ilkka Koskivuo
- Department of Surgery, Turku University Hospital, P.O. Box 52, 20521, Turku, Finland.
| | | | | | | |
Collapse
|
22
|
Ohnishi S, Lomnes SJ, Laurence RG, Gogbashian A, Mariani G, Frangioni JV. Organic Alternatives to Quantum Dots for Intraoperative Near-Infrared Fluorescent Sentinel Lymph Node Mapping. Mol Imaging 2005; 4:172-81. [PMID: 16194449 DOI: 10.1162/15353500200505127] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/18/2005] [Accepted: 04/22/2005] [Indexed: 11/04/2022] Open
Abstract
Intraoperative near-infrared (NIR) fluorescence imaging provides the surgeon with real-time image guidance during cancer and other surgeries. We have previously reported the use of NIR fluorescent quantum dots (QDs) for sentinel lymph node (SLN) mapping. However, because of concerns over potential toxicity, organic alternatives to QDs will be required for initial clinical studies. We describe a family of 800 nm organic heptamethine indocyanine-based contrast agents for SLN mapping spanning a spectrum from 775 Da small molecules to 7 MDa nanocolloids. We provide a detailed characterization of the optical and physical properties of these contrast agents and discuss the advantages and disadvantages of each. We present robust methods for the covalent conjugation, purification, and characterization of proteins with tetra-sulfonated heptamethine indocyanines, including mass spectroscopic site mapping of highly substituted molecules. One contrast agent, NIR fluorescent human serum albumin (HSA800), emerged as the molecule with the best overall performance with respect to entry to lymphatics, flow to the SLN, retention in the SLN, fluorescence yield and reproducibility. This preclinical study, performed on large animals approaching the size of humans, should serve as a foundation for future clinical studies.
Collapse
|