1
|
Amati AL, Ebert R, Maier L, Panah AK, Schwandner T, Sander M, Reichert M, Grau V, Petzoldt S, Hecker A. Reduced preoperative serum choline esterase levels and fecal peritoneal contamination as potential predictors for the leakage of intestinal sutures after source control in secondary peritonitis. World J Emerg Surg 2024; 19:21. [PMID: 38840189 PMCID: PMC11151556 DOI: 10.1186/s13017-024-00550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The high rate of stoma placement during emergency laparotomy for secondary peritonitis is a paradigm in need of change in the current fast-track surgical setting. Despite growing evidence for the feasibility of primary bowel reconstruction in a peritonitic environment, little data substantiate a surgeons' choice between a stoma and an anastomosis. The aim of this retrospective analysis is to identify pre- and intraoperative parameters that predict the leakage risk for enteric sutures placed during source control surgery (SCS) for secondary peritonitis. METHODS Between January 2014 and December 2020, 497 patients underwent SCS for secondary peritonitis, of whom 187 received a primary reconstruction of the lower gastro-intestinal tract without a diverting stoma. In 47 (25.1%) patients postoperative leakage of the enteric sutures was directly confirmed during revision surgery or by computed tomography. Quantifiable predictors of intestinal suture outcome were detected by multivariate analysis. RESULTS Length of intensive care, in-hospital mortality and failure of release to the initial home environment were significantly higher in patients with enteric suture leakage following SCS compared to patients with intact anastomoses (p < 0.0001, p = 0.0026 and p =0.0009, respectively). Reduced serum choline esterase (sCHE) levels and a high extent of peritonitis were identified as independent risk factors for insufficiency of enteric sutures placed during emergency laparotomy. CONCLUSIONS A preoperative sCHE < 4.5 kU/L and generalized fecal peritonitis associate with a significantly higher incidence of enteric suture insufficiency after primary reconstruction of the lower gastro-intestinal tract in a peritonitic abdomen. These parameters may guide surgeons when choosing the optimal surgical procedure in the emergency setting.
Collapse
Affiliation(s)
- A L Amati
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital of Giessen, Justus-Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany.
| | - R Ebert
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital of Giessen, Justus-Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - L Maier
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital of Giessen, Justus-Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - A K Panah
- Department of General, Visceral and Transplant Surgery, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany
| | - T Schwandner
- Department of General and Visceral Surgery, Asklepios Clinic Lich, Goethestrasse 4, 35423, Lich, Germany
| | - M Sander
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Giessen, Justus-Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - M Reichert
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital of Giessen, Justus-Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - V Grau
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital of Giessen, Justus-Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - S Petzoldt
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Giessen, Justus-Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| | - A Hecker
- Department of General, Visceral, Thoracic and Transplant Surgery, University Hospital of Giessen, Justus-Liebig University Giessen, Rudolf-Buchheim-Strasse 7, 35392, Giessen, Germany
| |
Collapse
|
2
|
Salm DC, Horewicz VV, Tanaka F, Ferreira JK, de Oliveira BH, Maio JMB, Donatello NN, Ludtke DD, Mazzardo-Martins L, Dutra AR, Mack JM, de C H Kunzler D, Cargnin-Ferreira E, Salgado ASI, Bittencourt EB, Bianco G, Piovezan AP, Bobinski F, Moré AOO, Martins DF. Electrical Stimulation of the Auricular Branch Vagus Nerve Using Random and Alternating Frequencies Triggers a Rapid Onset and Pronounced Antihyperalgesia via Peripheral Annexin A1-Formyl Peptide Receptor 2/ALX Pathway in a Mouse Model of Persistent Inflammatory Pain. Mol Neurobiol 2023; 60:2889-2909. [PMID: 36745336 DOI: 10.1007/s12035-023-03237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
This study evaluated the antihyperalgesic and anti-inflammatory effects of percutaneous vagus nerve electrical stimulation (pVNS) by comparing the effects of alternating and random frequencies in an animal model of persistent inflammatory hyperalgesia. The model was induced by Freund's complete adjuvant (CFA) intraplantar (i.pl.) injection. Mice were treated with different protocols of time (10, 20, or 30 min), ear laterality (right, left or both), and frequency (alternating or random). Mechanical hyperalgesia was evaluated, and some groups received i.pl. WRW4 (FPR2/ALX antagonist) to determine the involvement. Edema, paw surface temperature, and spontaneous locomotor activity were evaluated. Interleukin-1β, IL-6, IL-10, and IL4 levels were verified by enzyme-linked immunosorbent assay. AnxA1, FPR2/ALX, neutrophil, M1 and M2 phenotype macrophage, and apoptotic cells markers were identified using western blotting. The antihyperalgesic effect pVNS with alternating and random frequency effect is depending on the type of frequency, time, and ear treated. The pVNS random frequency in the left ear for 10 min had a longer lasting antihyperalgesic effect, superior to classical stimulation using alternating frequency and the FPR2/ALX receptor was involved in this effect. There was a reduction in the levels of pro-inflammatory cytokines and an increase in the immunocontent of AnxA1 and CD86 in mice paw. pVNS with a random frequency in the left ear for 10 min showed to be optimal for inducing an antihyperalgesic effect. Thus, the random frequency was more effective than the alternating frequency. Therefore, pVNS may be an important adjunctive treatment for persistent inflammatory pain.
Collapse
Affiliation(s)
- Daiana C Salm
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica V Horewicz
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Fernanda Tanaka
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Júlia K Ferreira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna H de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Julia Maria Batista Maio
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Nathalia N Donatello
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Leidiane Mazzardo-Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Neuroscience, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aline R Dutra
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Josiel M Mack
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Deborah de C H Kunzler
- Department of Physiotherapy, State University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | | | | | - Gianluca Bianco
- Research Laboratory of Posturology and Neuromodulation RELPON, Department of Human Neuroscience, Sapienza University, Rome, Italy
- Istituto Di Formazione in Agopuntura E Neuromodulazione IFAN, Rome, Italy
| | - Anna Paula Piovezan
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Ari O O Moré
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil
- Integrative Medicine and Acupuncture Division, University Hospital, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel F Martins
- Experimental Neuroscience Laboratory (LaNEx), University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
- Postgraduate Program in Health Sciences, University of South Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Jankauskaite L, Malinauskas M, Mickeviciute GC. HMGB1: A Potential Target of Nervus Vagus Stimulation in Pediatric SARS-CoV-2-Induced ALI/ARDS. Front Pediatr 2022; 10:884539. [PMID: 35633962 PMCID: PMC9132499 DOI: 10.3389/fped.2022.884539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
From the start of pandemics, children were described as the ones who were less affected by SARS-Cov-2 or COVID-19, which was mild in most of the cases. However, with the growing vaccination rate of the adult population, children became more exposed to the virus and more cases of severe SARS-CoV-2-induced ARDS are being diagnosed with the disabling consequences or lethal outcomes associated with the cytokine storm. Thus, we do hypothesize that some of the children could benefit from nervus vagus stimulation during COVID-19 ARDS through the inhibition of HMGB1 release and interaction with the receptor, resulting in decreased neutrophil accumulation, oxidative stress, and coagulopathy as well as lung vascular permeability. Moreover, stimulation through alpha-7 nicotinic acetylcholine receptors could boost macrophage phagocytosis and increase the clearance of DAMPs and PAMPs. Further rise of FGF10 could contribute to lung stem cell proliferation and potential regeneration of the injured lung. However, this stimulation should be very specific, timely, and of proper duration, as it could lead to such adverse effects as increased viral spread and systemic infection, especially in small children or infants due to specific pediatric immunity state and anatomical features of the respiratory system.
Collapse
Affiliation(s)
- Lina Jankauskaite
- Lithuanian University of Health Sciences, Medical Academy, Pediatric Department, Kaunas, Lithuania
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Mantas Malinauskas
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Goda-Camille Mickeviciute
- Lithuanian University of Health Sciences, Medical Academy, Pediatric Department, Kaunas, Lithuania
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
- Rehabilitation Center “Palangos Linas”, Palanga, Lithuania
| |
Collapse
|
4
|
Increased mortality and altered local immune response in secondary peritonitis after previous visceral operations in mice. Sci Rep 2021; 11:16175. [PMID: 34376743 PMCID: PMC8355121 DOI: 10.1038/s41598-021-95592-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022] Open
Abstract
Postoperative peritonitis is characterized by a more severe clinical course than other forms of secondary peritonitis. The pathophysiological mechanisms behind this phenomenon are incompletely understood. This study used an innovative model to investigate these mechanisms, combining the models of murine Colon Ascendens Stent Peritonitis (CASP) and Surgically induced Immune Dysfunction (SID). Moreover, the influence of the previously described anti-inflammatory reflex transmitted by the vagal nerve was characterized. SID alone, or 3 days before CASP were performed in female C57BL/6 N mice. Subdiaphragmatic vagotomy was performed six days before SID with following CASP. The immune status was assessed by FACS analysis and measurement of cytokines. Local intestinal inflammatory changes were characterized by immunohistochemistry. Mortality was increased in CASP animals previously subjected to SID. Subclinical bacteremia occurred after SID, and an immunosuppressive milieu occurred secondary to SID just before the induction of CASP. Previous SID modified the pattern of intestinal inflammation induced by CASP. Subdiaphragmatic vagotomy had no influence on sepsis mortality in our model of postoperative peritonitis. Our results indicate a surgery-induced inflammation of the small intestine and the peritoneal cavity with bacterial translocation, which led to immune dysfunction and consequently to a more severe peritonitis.
Collapse
|
5
|
Liu Y, Forsythe P. Vagotomy and insights into the microbiota-gut-brain axis. Neurosci Res 2021; 168:20-27. [DOI: 10.1016/j.neures.2021.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
|
6
|
Xia W, Li G, Pan Z, Zhou Q. Hypercapnia attenuates ventilator-induced lung injury through vagus nerve activation. Acta Cir Bras 2019; 34:e201900902. [PMID: 31778524 PMCID: PMC6887097 DOI: 10.1590/s0102-865020190090000002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 08/10/2019] [Indexed: 11/21/2022] Open
Abstract
Purpose: To investigate the role of vagus nerve activation in the protective effects
of hypercapnia in ventilator-induced lung injury (VILI) rats. Methods: Male Sprague-Dawley rats were randomized to either high-tidal volume or
low-tidal volume ventilation (control) and monitored for 4h. The high-tidal
volume group was further divided into either a vagotomy or sham-operated
group and each surgery group was further divided into two subgroups:
normocapnia and hypercapnia. Injuries were assessed hourly through
hemodynamics, respiratory mechanics and gas exchange. Protein concentration,
cell count and cytokines (TNF-α and IL-8) in bronchoalveolar lavage fluid
(BALF), lung wet-to-dry weight and pathological changes were examined. Vagus
nerve activity was recorded for 1h. Results: Compared to the control group, injurious ventilation resulted in a decrease
in PaO2/FiO2 and greater lung static compliance, MPO
activity, enhanced BALF cytokines, protein concentration, cell count, and
histology injury score. Conversely, hypercapnia significantly improved VILI
by decreasing the above injury parameters. However, vagotomy abolished the
protective effect of hypercapnia on VILI. In addition, hypercapnia enhanced
efferent vagus nerve activity compared to normocapnia. Conclusion: These results indicate that the vagus nerve plays an important role in
mediating the anti-inflammatory effect of hypercapnia on VILI.
Collapse
Affiliation(s)
- Wenfang Xia
- MD, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China. Conception of the study, analysis of data, manuscript writing, critical revision
| | - Guang Li
- MD, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China. Conception of the study, analysis of data, manuscript writing, critical revision
| | - Zhou Pan
- MD, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China. Technical procedures, critical revision
| | - Qingshan Zhou
- MD, Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China. Conception of the study, analysis of data, critical revision
| |
Collapse
|
7
|
Serhan CN, de la Rosa X, Jouvene C. Novel mediators and mechanisms in the resolution of infectious inflammation: evidence for vagus regulation. J Intern Med 2019; 286:240-258. [PMID: 30565762 DOI: 10.1111/joim.12871] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Excessive chronic inflammation is linked to many diseases and considered a stress factor in humans (Robbins Pathologic Basis of Disease. Philadelphia: W.B. Saunders Co., 1999, Proc Natl Acad Sci USA, 2008, 105: 17949, Immunity, 44, 2016, 44: 463, N Engl J Med, 2011, 364: 656). Today, the resolution of inflammation is widely recognized as a cellular biochemically active process involving biosynthesis of a novel superfamily of endogenous chemical signals coined specialized pro-resolving mediators (SPMs; Nature, 2014, 510:92). Herein, we review recent evidence, indicating a role for the vagus nerve and vagotomy in the regulation of lipid mediators. Vagotomy reduces pro-resolving mediators, including the lipoxins, resolvins, protectins and maresins, delaying resolution in mouse peritonitis. Vagotomy also delays resolution of Escherichia coli infection in mice. Specifically, right vagus regulates peritoneal Group 3 innate lymphoid cell (ILC-3) number and peritoneal macrophage responses with lipid mediator profile signatures with elevated pro-inflammatory eicosanoids and reduced resolvins, including the novel protective immunoresolvent agonist protectin conjugate in tissue regeneration1 (PCTR1). Acetylcholine upregulates PCTR biosynthesis, and administration of PCTR1 to vagotomized mice restores tissue resolution and host responses to E. coli infections. Results obtained with human vagus ex vivo indicate that vagus can produce both pro-inflammatory eicosanoids, such as prostaglandins and leukotrienes, as well as the SPM. Electrical stimulation of human vagus in vitro reduces both prostaglandins and leukotrienes and enhances resolvins and the other SPM. These results elucidate a host protective mechanism mediated by vagus stimulation of SPM that includes resolvins and PCTR1 to regulate myeloid antimicrobial functions and resolution of infection. Moreover, they define a new pro-resolution of inflammation reflex operative in mice and human tissue that involves a vagus SPM circuit.
Collapse
Affiliation(s)
- C N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - X de la Rosa
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - C Jouvene
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Combined Effect of NF-κB Inhibitor and β2-Adrenoreceptor Agonist on Mouse Mortality and Blood Concentration of Proinflammatory Cytokines in Sepsis. Bull Exp Biol Med 2018; 165:445-448. [DOI: 10.1007/s10517-018-4190-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 12/30/2022]
|
9
|
Zila I, Mokra D, Kopincova J, Kolomaznik M, Javorka M, Calkovska A. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway. Physiol Res 2018; 66:S139-S145. [PMID: 28937230 DOI: 10.33549/physiolres.933671] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inflammation and other immune responses are involved in the variety of diseases and disorders. The acute response to endotoxemia includes activation of innate immune mechanisms as well as changes in autonomic nervous activity. The autonomic nervous system and the inflammatory response are intimately linked and sympathetic and vagal nerves are thought to have anti-inflammation functions. The basic functional circuit between vagus nerve and inflammatory response was identified and the neuroimmunomodulation loop was called cholinergic anti-inflammatory pathway. Unique function of vagus nerve in the anti-inflammatory reflex arc was found in many experimental and pre-clinical studies. They brought evidence on the cholinergic signaling interacting with systemic and local inflammation, particularly suppressing immune cells function. Pharmacological/electrical modulation of vagal activity suppressed TNF-alpha and other proinflammatory cytokines production and had beneficial therapeutic effects. Many questions related to mapping, linking and targeting of vagal-immune interactions have been elucidated and brought understanding of its basic physiology and provided the initial support for development of Tracey´s inflammatory reflex. This review summarizes and critically assesses the current knowledge defining cholinergic anti-inflammatory pathway with main focus on studies employing an experimental approach and emphasizes the potential of modulation of vagally-mediated anti-inflammatory pathway in the treatment strategies.
Collapse
Affiliation(s)
- I Zila
- Department of Physiology and Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | | | | | | | | | | |
Collapse
|
10
|
Neural pathways involved in infection-induced inflammation: recent insights and clinical implications. Clin Auton Res 2018. [PMID: 29541878 DOI: 10.1007/s10286-018-0518-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although the immune and nervous systems have long been considered independent biological systems, they turn out to mingle and interact extensively. The present review summarizes recent insights into the neural pathways activated by and involved in infection-induced inflammation and discusses potential clinical applications. The simplest activation concerns a reflex action within C-fibers leading to neurogenic inflammation. Low concentrations of pro-inflammatory cytokines or bacterial fragments may also act on these afferent nerve fibers to signal the central nervous system and bring about early fever, hyperalgesia and sickness behavior. In the brain, the preoptic area and the paraventricular hypothalamus are part of a neuronal network mediating sympathetic activation underlying fever while brainstem circuits play a role in the reduction of food intake after systemic exposure to bacterial fragments. A vagally-mediated anti-inflammatory reflex mechanism has been proposed and, in turn, questioned because the major immune organs driving inflammation, such as the spleen, are not innervated by vagal efferent fibers. On the contrary, sympathetic nerves do innervate these organs and modulate immune cell responses, production of inflammatory mediators and bacterial dissemination. Noradrenaline, which is both released by these fibers and often administered during sepsis, along with adrenaline, may exert pro-inflammatory actions through the stimulation of β1 adrenergic receptors, as antagonists of this receptor have been shown to exert anti-inflammatory effects in experimental sepsis.
Collapse
|
11
|
Impaired vagus function in rats suppresses bile acid synthesis in the liver by disrupting tight junctions and activating Fxr-Fgf15 signaling in the intestine. Biochem Biophys Res Commun 2018; 495:1490-1496. [DOI: 10.1016/j.bbrc.2017.11.201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
|
12
|
Selective Activation of Basal Forebrain Cholinergic Neurons Attenuates Polymicrobial Sepsis-Induced Inflammation via the Cholinergic Anti-Inflammatory Pathway. Crit Care Med 2017; 45:e1075-e1082. [PMID: 28806219 PMCID: PMC5598911 DOI: 10.1097/ccm.0000000000002646] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Supplemental Digital Content is available in the text. Objectives: Basal forebrain cholinergic neurons are proposed as a major neuromodulatory system in inflammatory modulation. However, the function of basal forebrain cholinergic neurons in sepsis is unknown, and the neural pathways underlying cholinergic anti-inflammation remain unexplored. Design: Animal research. Setting: University research laboratory. Subjects: Male wild-type C57BL/6 mice and ChAT-ChR2-EYFP (ChAT) transgenic mice. Interventions: The cholinergic neuronal activity of the basal forebrain was manipulated optogenetically. Cecal ligation and puncture was produced to induce sepsis. Left cervical vagotomy and 6-hydroxydopamine injection to the spleen were used. Measurements and Main Results: Photostimulation of basal forebrain cholinergic neurons induced a significant decrease in the levels of tumor necrosis factor-α and interleukin-6 in the serum and spleen. When cecal ligation and puncture was combined with left cervical vagotomy in photostimulated ChAT mice, these reductions in tumor necrosis factor-α and interleukin-6 were partly reversed. Furthermore, photostimulating basal forebrain cholinergic neurons induced a large increase in c-Fos expression in the basal forebrain, the dorsal motor nucleus of the vagus, and the ventral part of the solitary nucleus. Among them, 35.2% were tyrosine hydroxylase positive neurons. Furthermore, chemical denervation showed that dopaminergic neurotransmission to the spleen is indispensable for the anti-inflammation. Conclusions: These results are the first to demonstrate that selectively activating basal forebrain cholinergic neurons is sufficient to attenuate systemic inflammation in sepsis. Specifically, photostimulation of basal forebrain cholinergic neurons activated dopaminergic neurons in dorsal motor nucleus of the vagus/ventral part of the solitary nucleus, and this dopaminergic efferent signal was further transmitted by the vagus nerve to the spleen. This cholinergic-to-dopaminergic neural circuitry, connecting central cholinergic neurons to the peripheral organ, might have mediated the anti-inflammatory effect in sepsis.
Collapse
|
13
|
Partecke LI, Käding A, Trung DN, Diedrich S, Sendler M, Weiss F, Kühn JP, Mayerle J, Beyer K, von Bernstorff W, Heidecke CD, Keßler W. Subdiaphragmatic vagotomy promotes tumor growth and reduces survival via TNFα in a murine pancreatic cancer model. Oncotarget 2017; 8:22501-22512. [PMID: 28160574 PMCID: PMC5410240 DOI: 10.18632/oncotarget.15019] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022] Open
Abstract
This study analyses the effects of vagotomy on tumor growth and survival in a murine, pancreatic cancer model in wild-type and TNFα-knockout (−/−) mice. Throughout many operative procedures in the upper gastrointestinal tract the partial or complete transection of the vagus nerve or its local nerve fibers is unavoidable. Thereby its anti-inflammatory effects in residual tumor tissue may get lost. This effect may be mediated by tumor-associated macrophages (TAM) secreting TNFα. In an orthotopic murine pancreatic cancer model subdiaphragmatic vagotomy versus sham surgery was performed. The impact on tumor growth was monitored in wild type and TNFα −/− mice using MRI. TAMs as well as expression levels of TNFα were analyzed using immunohistochemistry. The role of TNFα on tumor growth and migration was examined in vitro. Vagotomised mice showed increased tumor growth with macroscopic features of invasive growth and had a shorter survival time. The loss of vagal modulation led to significantly increased TNFα levels in tumors and considerably elevated numbers of TAMs. In vitro TNFα significantly stimulated growth (p < 0.05) and migration (p < 0.05) of pancreatic cancer cells. TNFα −/− mice survived significantly longer after tumor implantation (p < 0.05), with vagotomy not affecting the prognosis of these animals (p > 0.05). Vagotomy can increase tumor growth and worsen survival in a murine pancreatic cancer model mediated through TAMs and TNFα. Hence, the suppression of TAMs and the modulation of TNFα dependent pathways could offer new perspectives in immunotherapies of pancreatic cancer patients especially with remaining vital tumor cells and lost vagal modulation.
Collapse
Affiliation(s)
- Lars Ivo Partecke
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine, Greifswald, Germany
| | - André Käding
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine, Greifswald, Germany
| | - Dung Nguyen Trung
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine, Greifswald, Germany
| | - Stephan Diedrich
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine, Greifswald, Germany
| | - Matthias Sendler
- Department of Internal Medicine A, University Medicine, Greifswald, Germany
| | - Frank Weiss
- Department of Internal Medicine A, University Medicine, Greifswald, Germany
| | - Jens-Peter Kühn
- Department of Experimental Radiology, University Medicine, Greifswald, Germany
| | - Julia Mayerle
- Department of Internal Medicine A, University Medicine, Greifswald, Germany
| | - Katharina Beyer
- Department of General, Visceral and Vascular Surgery, Charité-University Medicine, Campus Benjamin Franklin, Berlin, Germany (current address)
| | - Wolfram von Bernstorff
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine, Greifswald, Germany
| | - Claus-Dieter Heidecke
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine, Greifswald, Germany
| | - Wolfram Keßler
- Department of General, Visceral, Thoracic and Vascular Surgery, University Medicine, Greifswald, Germany
| |
Collapse
|
14
|
Li-Sha G, Xing-Xing C, Lian-Pin W, De-Pu Z, Xiao-Wei L, Jia-Feng L, Yue-Chun L. Right Cervical Vagotomy Aggravates Viral Myocarditis in Mice Via the Cholinergic Anti-inflammatory Pathway. Front Pharmacol 2017; 8:25. [PMID: 28197102 PMCID: PMC5281590 DOI: 10.3389/fphar.2017.00025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/16/2017] [Indexed: 12/21/2022] Open
Abstract
The autonomic nervous system dysfunction with increased sympathetic activity and withdrawal of vagal activity may play an important role in the pathogenesis of viral myocarditis. The vagus nerve can modulate the immune response and control inflammation through a ‘cholinergic anti-inflammatory pathway’ dependent on the α7-nicotinic acetylcholine receptor (α7nAChR). Although the role of β-adrenergic stimulation on viral myocarditis has been investigated in our pervious studies, the direct effect of vagal tone in this setting has not been yet studied. Therefore, in the present study, we investigated the effects of cervical vagotomy in a murine model of viral myocarditis. In a coxsackievirus B3 murine myocarditis model (Balb/c), effects of right cervical vagotomy and nAChR agonist nicotine on echocardiography, myocardial histopathology, viral RNA, and proinflammatory cytokine levels were studied. We found that right cervical vagotomy inhibited the cholinergic anti-inflammatory pathway, aggravated myocardial lesions, up-regulated the expression of TNF-α, IL-1β, and IL-6, and worsened the impaired left ventricular function in murine viral myocarditis, and these changes were reversed by co-treatment with nicotine by activating the cholinergic anti-inflammatory pathway. These results indicate that vagal nerve plays an important role in mediating the anti-inflammatory effect in viral myocarditis, and that cholinergic stimulation with nicotine also plays its peripheral anti-inflammatory role relying on α7nAChR, without requirement for the integrity of vagal nerve in the model. The findings suggest that vagus nerve stimulation mediated inhibition of the inflammatory processes likely provide important benefits in myocarditis treatment.
Collapse
Affiliation(s)
- Ge Li-Sha
- Department of Pediatrics, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Chen Xing-Xing
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China; Department of Cardiology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou, China
| | - Wu Lian-Pin
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Zhou De-Pu
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Li Xiao-Wei
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Lin Jia-Feng
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| | - Li Yue-Chun
- Department of Cardiology, Second Affiliated Hospital of Wenzhou Medical University Wenzhou, China
| |
Collapse
|
15
|
Abstract
Sepsis is a complex syndrome triggered by infection and characterized by systemic deregulation of immune and inflammatory pathways. It is a major cause of death worldwide and results in the widespread use of antibiotics and substantial health care costs. In a vicious circle, sepsis treatment promotes the emergence of highly virulent and resistant pathogens and devastating nosocomial infections. Sepsis is a heterogeneous disease affecting many people worldwide. Because individual patients have different inflammatory responses and unique profiles of immune activation against pathogens, the most effective way to advance the treatment of sepsis is probably through a tailored approach. The advent of high-throughput technologies and the remarkable progress in the field of bioinformatics has allowed the subclassification of many pathological conditions. This has potential to provide better understanding of life-threatening infections in people. The study of host factors, however, needs to be integrated with studies on bacterial signaling in both symbiotic and pathogenic bacteria. Sepsis is certainly the sum of multiple host-microbial interactions and the metagenome should be extensively investigated. Personalized medicine is probably the only strategy able to deconstruct and reassemble our knowledge about sepsis, and its use should allow us to understand and manipulate sepsis as a wide, interconnected phenomenon with myriad variables and peculiarities. In this study, the recent advances in this area, the major challenges that remain, and the reasons why the septic patient should be approached as a superorganism are discussed.
Collapse
|
16
|
Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation 2015; 37:1763-70. [PMID: 24803295 DOI: 10.1007/s10753-014-9906-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Previous studies have shown that dexmedetomidine exerted anti-inflammatory effect on several animal models with inflammation, but the mechanism is not clear. This study intends to elucidate the anti-inflammatory mechanism of dexmedetomidine through the cholinergic anti-inflammatory pathway. To investigate this therapeutic potential of dexmedetomidine, a murine model of endotoxemia was established induced by lipopolysaccharide (LPS). Animals were assigned to one of four protocols. Protocol one: animals were randomly assigned to control group, dexmedetomidine group, and sterile saline group (n=20 each), and these animals were used for survival analysis. The survival rate was assessed up to 120 h after endotoxin injection. Protocol two: animals were randomly assigned to one of four groups (n=16 each): group 1 (group Saline), treated with sterile saline 15 min prior to endotoxin treatment (10 mg kg(-1) over 2 min); group 2 (group Dex), treated with dexmedetomidine 15 min prior to endotoxin treatment; group 3 (group αBGT+Dex), treated with alpha-7 nicotinic acetylcholine receptors (α7nAChR) antagonist alpha-bungarotoxin (αBGT, 1 μg/kg) 15 min prior to dexmedetomidine treatment; group 4 (group saline+Dex), treated with equivalent sterile saline 15 min prior to dexmedetomidine treatment. Protocol three: animals were randomly assigned to one of two groups (n=16 each): vagotomy group (group VNX+Dex), right cervical vagus nerve was exposed and transected; sham-operated group (group SHAM+Dex), the cervical vagus nerve was visualized, but was neither isolated from the surrounding tissues nor transected. Protocol four: animals were treated with dexmedetomidine (40 μg/kg) and sterile saline to observe the discharge activity of cervical vagus nerves by using BL-420F data acquisition and analysis system (n=16 each). In the survival analysis groups, the survival rate of dexmedetomidine group was significantly higher than that of the endotoxemia group (65 versus 25 %, P<0.01). Preemptive administration of dexmedetomidine significantly attenuated the cytokine response after lipopolysaccharide (LPS) induced endotoxemia (TNF-alpha, IL-1beta, IL-6, P<0.01, respectively). However, preemptive administration of dexmedetomidine failed to suppress cytokine response in α-bungarotoxin group and vagotomy group (TNF-alpha, IL-1beta, IL-6, P>0.05, respectively). Furthermore, preemptive administration of dexmedetomidine significantly increased the discharge frequency of cervical vagus nerves in comparison with sterile saline treatment (P<0.01).Our results demonstrate that the preemptive administration of dexmedetomidine increases the activity of cervical vagus nerve and have the ability to successfully improve survival in experimental endotoxemia by inhibiting the inflammatory cytokines release. However, administration of dexmedetomidine to vagotomy or α7 nAChR antagonist pretreatment mice failed to suppress TNF levels, indicating that the vagus nerve and α7nAChR-mediated cholinergic anti-inflammatory pathway is required for the anti-inflammatory effect of dexmedetomidine. These findings show that central alpha-2 agonist dexmedetomidine suppresses systemic inflammation through vagal- and α7nAChR-dependent mechanism.
Collapse
|
17
|
Fernandez R, Nardocci G, Navarro C, Reyes EP, Acuña-Castillo C, Cortes PP. Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy. Front Physiol 2014; 5:489. [PMID: 25566088 PMCID: PMC4266021 DOI: 10.3389/fphys.2014.00489] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/27/2014] [Indexed: 01/02/2023] Open
Abstract
Sepsis progresses to multiple organ dysfunction due to the uncontrolled release of inflammatory mediators, and a growing body of evidence shows that neural signals play a significant role in modulating the immune response. Thus, similar toall other physiological systems, the immune system is both connected to and regulated by the central nervous system. The efferent arc consists of the activation of the hypothalamic–pituitary–adrenal axis, sympathetic activation, the cholinergic anti-inflammatory reflex, and the local release of physiological neuromodulators. Immunosensory activity is centered on the production of pro-inflammatory cytokines, signals that are conveyed to the brain through different pathways. The activation of peripheral sensory nerves, i.e., vagal paraganglia by the vagus nerve, and carotid body (CB) chemoreceptors by the carotid/sinus nerve are broadly discussed here. Despite cytokine receptor expression in vagal afferent fibers, pro-inflammatory cytokines have no significant effect on vagus nerve activity. Thus, the CB may be the source of immunosensory inputs and incoming neural signals and, in fact, sense inflammatory mediators, playing a protective role during sepsis. Considering that CB stimulation increases sympathetic activity and adrenal glucocorticoids release, the electrical stimulation of arterial chemoreceptors may be suitable therapeutic approach for regulating systemic inflammation.
Collapse
Affiliation(s)
- Ricardo Fernandez
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | - Gino Nardocci
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | - Cristina Navarro
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile
| | - Edison P Reyes
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina, Clínica Alemana - Universidad del Desarrollo Santiago, Chile ; Dirección de Investigación, Universidad Autónoma de Chile Santiago, Chile
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile Santiago, Chile
| | - Paula P Cortes
- Laboratorio de Fisiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello Santiago, Chile ; BioAdvising Santiago, Chile
| |
Collapse
|
18
|
Lv Y, Hu S, Lu J, Dong N, Liu Q, Du M, Zhang H. Upregulating nonneuronal cholinergic activity decreases TNF release from lipopolysaccharide-stimulated RAW264.7 cells. Mediators Inflamm 2014; 2014:873728. [PMID: 24733966 PMCID: PMC3964895 DOI: 10.1155/2014/873728] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 01/03/2014] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh) could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS) stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR). We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT) expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.
Collapse
Affiliation(s)
- Yi Lv
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Sen Hu
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Jiangyang Lu
- Department of Pathology, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Ning Dong
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Qian Liu
- Department of Pathology, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Minghua Du
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| | - Huiping Zhang
- Laboratory of Shock and Multiple Organ Dysfunction, Burns Institute, First Hospital Affiliated to the People's Liberation Army General Hospital, 51 Fu Cheng Road, Beijing 100048, China
| |
Collapse
|
19
|
The alpha 7 nicotinic receptor agonist PHA-543613 hydrochloride inhibits Porphyromonas gingivalis-induced expression of interleukin-8 by oral keratinocytes. Inflamm Res 2014; 63:557-68. [PMID: 24609617 PMCID: PMC4050294 DOI: 10.1007/s00011-014-0725-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 02/11/2014] [Accepted: 02/19/2014] [Indexed: 11/17/2022] Open
Abstract
Objective The alpha 7 nicotinic receptor (α7nAChR) is expressed by oral keratinocytes. α7nAChR activation mediates anti-inflammatory responses. The objective of this study was to determine if α7nAChR activation inhibited pathogen-induced interleukin-8 (IL-8) expression by oral keratinocytes. Materials and methods Periodontal tissue expression of α7nAChR was determined by real-time PCR. OKF6/TERT-2 oral keratinocytes were exposed to Porphyromonas gingivalis in the presence and absence of a α7nAChR agonist (PHA-543613 hydrochloride) alone or after pre-exposure to a specific α7nAChR antagonist (α-bungarotoxin). Interleukin-8 (IL-8) expression was measured by ELISA and real-time PCR. Phosphorylation of the NF-κB p65 subunit was determined using an NF-κB p65 profiler assay and STAT-3 activation by STAT-3 in-cell ELISA. The release of ACh from oral keratinocytes in response to P. gingivalis lipopolysaccharide was determined using a GeneBLAzer M3 CHO-K1-bla cell reporter assay. Results Expression of α7nAChR mRNA was elevated in diseased periodontal tissue. PHA-543613 hydrochloride inhibited P. gingivalis-induced expression of IL-8 at the transcriptional level. This effect was abolished when cells were pre-exposed to a specific α7nAChR antagonist, α-bungarotoxin. PHA-543613 hydrochloride downregulated NF-κB signalling through reduced phosphorylation of the NF-κB p65-subunit. In addition, PHA-543613 hydrochloride promoted STAT-3 signalling by maintenance of phosphorylation. Furthermore, oral keratinocytes upregulated ACh release in response to P. gingivalis lipopolysaccharide. Conclusion These data suggest that α7nAChR plays a role in regulating the innate immune responses of oral keratinocytes.
Collapse
|
20
|
Mitsui T, Fukatsu K, Yanagawa M, Amenomori S, Ogawa E, Fukuda T, Murakoshi S, Moriya T, Yasuhara H, Seto Y. Truncal vagotomy temporarily decreases the pro- and anti-inflammatory cytokine levels in the small intestine. Surg Today 2013; 44:1123-7. [PMID: 24026197 DOI: 10.1007/s00595-013-0717-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE The vagus nerve exerts immunomodulatory functions by inhibiting pro-inflammatory cytokine overproduction. Because vagotomy is a standard procedure during the radical operation for esophageal or gastric cancer, the postoperative clinical course might be related to vagotomy-associated changes in the cytokine milieu. We herein examined the gut cytokine kinetics after vagotomy in mice. METHODS Thirty-eight male Institute of Cancer Research mice underwent sham or sub-diaphragmatic truncal vagotomy. The whole small intestine was harvested on postoperative day (POD) 14 (sham: vagotomy, n = 9:10) or 20 (n = 9:10). The pro- and anti-inflammatory cytokine levels in the plasma, jejunum, ileum and whole small intestine were evaluated. RESULTS The plasma cytokine levels were similar in the vagotomy and sham groups on POD 14 and 20. However, both the pro- and anti-inflammatory cytokine levels tended to be lower on POD 14 and higher on POD 20 in the vagotomy group than in the sham group. With regard to the cytokine kinetics, the jejunal IL-12p70, TNF-α, MCP-1 and IL-10, ileal IL-12p70, TNF-α, IL-6, MCP-1 and IL-10, and whole small intestinal IL-12p70, TNF-α, IFN-γ, MCP-1 and IL-10 of the vagotomy group all significantly increased on POD 20 as compared to POD 14. CONCLUSION Vagotomy has a major impact on the gut cytokine milieu. Vagotomy may initially inhibit both pro- and anti-inflammatory cytokine production, while both later increase.
Collapse
Affiliation(s)
- Takashi Mitsui
- Department of Gastrointestinal Surgery, The University of Tokyo, Tokyo, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Acetylcholine, the first chemical to be identified as a neurotransmitter, is packed in synaptic vesicles by the activity of VAChT (vesicular acetylcholine transporter). A decrease in VAChT expression has been reported in a number of diseases, and this has consequences for the amount of acetylcholine loaded in synaptic vesicles as well as for neurotransmitter release. Several genetically modified mice targeting the VAChT gene have been generated, providing novel models to understand how changes in VAChT affect transmitter release. A surprising finding is that most cholinergic neurons in the brain also can express a second type of vesicular neurotransmitter transporter that allows these neurons to secrete two distinct neurotransmitters. Thus a given neuron can use two neurotransmitters to regulate different physiological functions. In addition, recent data indicate that non-neuronal cells can also express the machinery used to synthesize and release acetylcholine. Some of these cells rely on VAChT to secrete acetylcholine with potential physiological consequences in the periphery. Hence novel functions for the oldest neurotransmitter known are emerging with the potential to provide new targets for the treatment of several pathological conditions.
Collapse
|
22
|
Role of Nicotinic and Muscarinic Cholinoreceptors in the Realization of the Cholinergic Anti-Infl ammatory Pathway during the Early Phase of Sepsis. Bull Exp Biol Med 2012; 153:700-3. [DOI: 10.1007/s10517-012-1803-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Abstract
The mammalian immune system and the nervous system coevolved under the influence of infection and sterile injury. Knowledge of homeostatic mechanisms by which the nervous system controls organ function was originally applied to the cardiovascular, gastrointestinal, musculoskeletal, and other body systems. Development of advanced neurophysiological and immunological techniques recently enabled the study of reflex neural circuits that maintain immunological homeostasis, and are essential for health in mammals. Such reflexes are evolutionarily ancient, dating back to invertebrate nematode worms that possess primitive immune and nervous systems. Failure of these reflex mechanisms in mammals contributes to nonresolving inflammation and disease. It is also possible to target these neural pathways using electrical nerve stimulators and pharmacological agents to hasten the resolution of inflammation and provide therapeutic benefit.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska University Hospital, Karolinska Institutet, S-171 76 Stockholm, Sweden
| | - Kevin J. Tracey
- Feinstein Institute for Medical Research, Manhasset, New York 11030
| |
Collapse
|
24
|
Effects of Reversible Inhibition of Cholinesterase and Nicotine on Mouse Mortality and Blood Levels of Proinflammatory Cytokines during the Early Phase of Sepsis. Bull Exp Biol Med 2012; 152:600-2. [DOI: 10.1007/s10517-012-1585-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
The role of the vagus nerve: modulation of the inflammatory reaction in murine polymicrobial sepsis. Mediators Inflamm 2012; 2012:467620. [PMID: 22547905 PMCID: PMC3321608 DOI: 10.1155/2012/467620] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/27/2011] [Indexed: 01/08/2023] Open
Abstract
The particular importance of the vagus nerve for the pathophysiology of peritonitis becomes more and more apparent. In this work we provide evidence for the vagal modulation of inflammation in the murine model of colon ascendens stent peritonitis (CASP). Vagotomy significantly increases mortality in polymicrobial sepsis. This effect is not accounted for by the dilatation of gastric volume following vagotomy. As the stimulation of cholinergic receptors by nicotine has no therapeutic effect, the lack of nicotine is also not the reason for the reduced survival rate. In fact, increased septic mortality is a consequence of the absent modulating influence of the vagus nerve on the immune system: we detected significantly elevated serum corticosterone levels in vagotomised mice 24 h following CASP and a decreased ex vivo TNF-alpha secretion of Kupffer cells upon stimulation with LPS. In conclusion, the vagus nerve has a modulating influence in polymicrobial sepsis by attenuating the immune dysregulation.
Collapse
|
26
|
Abstract
The reasoning that neural reflexes maintain homeostasis in other body organs, and that the immune system is innervated, prompted a search for neural circuits that regulate innate and adaptive immunity. This elucidated the inflammatory reflex, a prototypical reflex circuit that maintains immunological homeostasis. Molecular products of infection or injury activate sensory neurons traveling to the brainstem in the vagus nerve. The arrival of these incoming signals generates action potentials that travel from the brainstem to the spleen and other organs. This culminates in T cell release of acetylcholine, which interacts with α7 nicotinic acetylcholine receptors (α7 nAChR) on immunocompetent cells to inhibit cytokine release in macrophages. Herein is reviewed the neurophysiological basis of reflexes that provide stability to the immune system, the neural- and receptor-dependent mechanisms, and the potential opportunities for developing novel therapeutic devices and drugs that target neural pathways to treat inflammatory diseases.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, S-171 76 Stockholm, Sweden.
| | | |
Collapse
|
27
|
Dysfunctional nucleus tractus solitarius: its crucial role in promoting neuropathogenetic cascade of Alzheimer's dementia--a novel hypothesis. Neurochem Res 2012; 37:846-68. [PMID: 22219130 DOI: 10.1007/s11064-011-0680-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/16/2011] [Accepted: 12/15/2011] [Indexed: 12/22/2022]
Abstract
The pathophysiological mechanism(s) underlying Alzheimer's disease (AD) still remain unclear, and no disease-modifying or prophylactic therapies are currently available. Unraveling the fundamental neuropathogenesis of AD is an important challenge. Several studies on AD have suggested lesions in a number of CNS areas including the basal forebrain, hippocampus, entorhinal cortex, amygdale/insula, and the locus coeruleus. However, plausible unifying studies on the upstream factors that involve these heterogeneous regions and herald the onset of AD pathogenesis are not available. The current article presents a novel nucleus tractus solitarius (NTS) vector hypothesis that underpins several disparate biological mechanisms and neural circuits, and identifies relevant hallmarks of major presumptive causative factor(s) linked to the NTS, in older/aging individuals. Aging, obesity, infection, sleep apnea, smoking, neuropsychological states, and hypothermia-all activate inflammatory cytokines and oxidative stress. The synergistic impact of systemic proinflammatory mediators activates microglia and promotes neuroinflammation. Acutely, the innate immune response is protective defending against pathogens/toxins; however, when chronic, it causes neuroinflammation and neuronal dysfunction, particularly in brainstem and neocortex. The NTS in the brainstem is an essential multiple signaling hub, and an extremely important central integration site of baroreceptor, chemoreceptor, and a multitude of sensory afferents from gustatory, gastrointestinal, cardiac, pulmonary, and upper airway systems. Owing to persistent neuroinflammation, the dysfunctional NTS exerts deleterious impact on nucleus ambiguus, dorsal motor nucleus of vagus, hypoglossal, parabrachial, locus coeruleus and many key nuclei in the brainstem, and the hippocampus, entorhinal cortex, prefrontal cortex, amygdala, insula, and basal forebrain in the neocortex. The neuronal and synaptic dysfunction emanating from the inflamed NTS may affect its interconnected pathways impacting almost the entire CNS--which is already primed by neuroinflammation, thus promoting cognitive and neuropsychiatric symptoms. The upstream factors discussed here may underpin the neuropathopgenesis of AD. AD pathology is multifactorial; the current perspective underscores the value of attenuating disparate upstream factors--in conjunction with anticholinesterase, anti-inflammatory, immunosuppressive, and anti-oxidant pharmacotherapy. Amelioration of the NTS pathology may be of central importance in countering the neuropathological cascade of AD. The NTS, therefore, may be a potential target of novel therapeutic strategies.
Collapse
|
28
|
Zabrodskii PF. Effect of acetylcholine on mortality of mice from sepsis and proinflammatory cytokine production. Bull Exp Biol Med 2011; 150:340-2. [PMID: 21240349 DOI: 10.1007/s10517-011-1137-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experiments on outbred mice showed that acetylcholine chloride in a dose of 20 mg/kg 6 h after subcutaneous injection significantly reduces mortality of mice from sepsis induced by intraperitoneal injection of 2×10(9) E. coli bacterial bodies and the blood levels of proinflammatory cytokines TNF-α, IL-1β, and IL-6.
Collapse
Affiliation(s)
- P F Zabrodskii
- Saratov Military Institute of Biological and Chemical Safety, Russia.
| |
Collapse
|
29
|
Eisner F, Jacob P, Frick JS, Feilitzsch M, Geisel J, Mueller MH, Küper MA, Raybould HE, Königsrainer I, Glatzle J. Immunonutrition with long-chain fatty acids prevents activation of macrophages in the gut wall. J Gastrointest Surg 2011; 15:853-9. [PMID: 21384238 DOI: 10.1007/s11605-011-1431-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 01/19/2011] [Indexed: 01/31/2023]
Abstract
BACKGROUND Immune cells and inflammatory mediators are released from the gastrointestinal tract into the mesenteric lymph during sepsis causing distant organ dysfunction. Recently, it was demonstrated that macrophages in the gut wall are controlled by the vagus nerve, the so-called cholinergic anti-inflammatory pathway. AIM This study aims to investigate whether an enteral diet with lipid prevents the activation of leukocytes in the gut wall. METHODS Mesenteric lymph was obtained from rats, receiving an enteral infusion of glucose or glucose + lipid before and after lipopolysaccharide (LPS) injection. Immune cells in mesenteric lymph were analyzed with fluorescence-activated cell sorting before and after LPS injection. Mesenteric lymph leukocytes from rats receiving enteral glucose with or without lipid were stimulated in vitro with LPS and tumor necrosis factor (TNF)α was measured in the supernatant. RESULTS The release of macrophages from the gut during sepsis was not significantly different in animals enterally treated with glucose or lipid. However, the release of TNFα from mesenteric lymph leukocytes after in vitro LPS stimulation was more than 3-fold higher in the glucose group compared to the lipid-treated group. CONCLUSIONS During sepsis, activated macrophages are released from the gut into mesenteric lymph. However, an enteral diet with lipid is able to suppress the inflammatory cytokine release from mesenteric lymph leukocytes.
Collapse
Affiliation(s)
- Friederike Eisner
- Department of General and Transplant Surgery, University Hospital of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sherman MP. New concepts of microbial translocation in the neonatal intestine: mechanisms and prevention. Clin Perinatol 2010; 37:565-79. [PMID: 20813271 PMCID: PMC2933426 DOI: 10.1016/j.clp.2010.05.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacterial translocation from the gastrointestinal tract is an important pathway initiating late-onset sepsis and necrotizing enterocolitis in very low-birth-weight infants. The emerging intestinal microbiota, nascent intestinal epithelia, naive immunity, and suboptimal nutrition (lack of breast milk) have roles in facilitating bacterial translocation. Feeding lactoferrin, probiotics, or prebiotics has presented exciting possibilities to prevent bacterial translocation in preterm infants, and clinical trials will identify the most safe and efficacious prevention and treatment strategies.
Collapse
|
31
|
Fernandez-Cabezudo MJ, Lorke DE, Azimullah S, Mechkarska M, Hasan MY, Petroianu GA, al-Ramadi BK. Cholinergic stimulation of the immune system protects against lethal infection by Salmonella enterica serovar Typhimurium. Immunology 2010; 130:388-98. [PMID: 20408892 DOI: 10.1111/j.1365-2567.2009.03238.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SUMMARY The cholinergic nervous system has been demonstrated to attenuate the inflammatory response during sepsis via the inhibitory action of acetylcholine (ACh) on macrophages. These findings were largely based on experimental sepsis models using endotoxin as the inducing agent. Herein, however, we report that the specific inhibition of acetylcholinesterase (AChE) renders animals more resistant to infection by a virulent strain of Salmonella enterica serovar Typhimurium, a Gram-negative enteric pathogen. Inhibition of AChE was induced by a subchronic exposure to paraoxon, a potent anti-cholinesterase metabolite of the organophosphorous compound parathion. Our findings indicate that inhibition of AChE enhanced survival of infected mice in a dose-dependent fashion and this correlated with efficient control of bacterial proliferation in target organs. Immunologically, inhibition of AChE enabled the animals to mount a more effective inflammatory anti-microbial response, and to secrete higher levels of interleukin-12, a key T helper type 1-promoting cytokine. The ACh-induced enhancement in resistance to infection was abrogated by co-administration of an oxime which can reactivate AChE. Hence, in a model of Gram-negative bacterial infection, cholinergic stimulation is shown to enhance the anti-microbial immune response leading to effective control of bacterial proliferation and enhanced animal survival.
Collapse
Affiliation(s)
- Maria J Fernandez-Cabezudo
- Department of Biochemistry, Faculty of Medicine & Health Sciences, UAE University, Al Ain, United Arab Emirates.
| | | | | | | | | | | | | |
Collapse
|
32
|
Implantation of alloplastic material increases survival of mice subsequently exposed to polymicrobial sepsis. Langenbecks Arch Surg 2010; 395:157-62. [DOI: 10.1007/s00423-009-0463-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Accepted: 01/12/2009] [Indexed: 10/21/2022]
|
33
|
van der Zanden EP, Snoek SA, Heinsbroek SE, Stanisor OI, Verseijden C, Boeckxstaens GE, Peppelenbosch MP, Greaves DR, Gordon S, De Jonge WJ. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology 2009; 137:1029-39, 1039.e1-4. [PMID: 19427310 DOI: 10.1053/j.gastro.2009.04.057] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/21/2009] [Accepted: 04/27/2009] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS The vagus nerve negatively regulates macrophage cytokine production via the release of acetylcholine (ACh) and activation of nicotinic acetylcholine receptors (nAChR). In various models of intestinal inflammation, vagus nerve efferent stimulation ameliorates disease. Given the actively constrained cytokine responses of intestinal macrophages, we explored the effect of nAChR activation on endocytosis and phagocytosis by macrophages residing in the peritoneal and mucosal compartment. METHODS The phagocytic uptake by intestinal and peritoneal macrophages was measured by fluorescence-activated cell sorter analysis, and the nAChR involved was determined by pharmacologic blockade, short hairpin RNA-assisted gene knockdown, and the use of specific nAChR knockout mice. The effect of electrical vagus nerve stimulation on epithelial translocation and macrophage uptake of luminal particles was studied in mice. RESULTS In isolated intestinal and peritoneal macrophages, nAChR activation enhanced endocytosis and phagocytosis. This effect was mediated via stimulated recruitment of GTPase Dynamin-2 to the forming phagocytic cup. These effects involve nAChR alpha4/beta2, rather than nAChR alpha7. Despite enhanced bacterial uptake, acetylcholine reduced NF-kappaB activation and pro-inflammatory cytokine production, while stimulating anti-inflammatory interleukin-10 production. Vagus nerve stimulation in mice altered mucosal immune responses by augmenting epithelial transport and uptake of luminal bacteria by lamina propria macrophages. CONCLUSIONS ACh enhances phagocytic potential while inhibiting immune reactivity via nAChR alpha4/beta2 in mouse macrophages. Hence, vagus nerve efferent activity may stimulate surveillance in the intestinal mucosa and peritoneal compartment.
Collapse
Affiliation(s)
- Esmerij P van der Zanden
- Department of Gastroenterology and Hepatology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Cytokine production is necessary to protect against pathogens and promote tissue repair, but excessive cytokine release can lead to systemic inflammation, organ failure and death. Inflammatory responses are finely regulated to effectively guard from noxious stimuli. The central nervous system interacts dynamically with the immune system to modulate inflammation through humoral and neural pathways. The effect of glucocorticoids and other humoral mediators on inflammatory responses has been studied extensively in the past decades. In contrast, neural control of inflammation has only been recently described. We summarize autonomic regulation of local and systemic inflammation through the 'cholinergic anti-inflammatory pathway', a mechanism consisting of the vagus nerve and its major neurotransmitter, acetylcholine, a process dependent on the nicotinic acetylcholine receptor alpha7 subunit. We recapitulate additional sources of acetylcholine and their contribution to the inflammatory response, as well as acetylcholine regulation by acetylcholinesterase as a means to attenuate inflammation. We discuss potential therapeutic applications to treat diseases characterized by acute or chronic inflammation, including autoimmune diseases, and propose future research directions.
Collapse
Affiliation(s)
- M Rosas-Ballina
- The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030, USA
| | | |
Collapse
|
35
|
LANDIOLOL, AN ULTRASHORT-ACTING β1-ADRENOCEPTOR ANTAGONIST, HAS PROTECTIVE EFFECTS IN AN LPS-INDUCED SYSTEMIC INFLAMMATION MODEL. Shock 2009; 31:515-20. [DOI: 10.1097/shk.0b013e3181863689] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Van Der Zanden EP, Boeckxstaens GE, de Jonge WJ. The vagus nerve as a modulator of intestinal inflammation. Neurogastroenterol Motil 2009; 21:6-17. [PMID: 19140954 DOI: 10.1111/j.1365-2982.2008.01252.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cholinergic nervous system attenuates the production of pro-inflammatory cytokines and inhibits inflammatory processes. Hence, in animal models of intestinal inflammation, such as postoperative ileus and dextran sulfate sodium-induced colitis, vagus nerve stimulation ameliorates disease activity. On the other hand, in infectious models of microbial peritonitis, vagus nerve activation seemingly acts counteractive; it impairs bacterial clearance and increases mortality. It is originally indicated that the key mediator of the cholinergic anti-inflammatory pathway, acetylcholine (ACh), inhibits cytokine release directly via the alpha7 nicotinic ACh receptor (nAChR) expressed on macrophages. However, more recent data also point towards the vagus nerve as an indirect modulator of innate inflammatory processes, exerting its anti-inflammatory effects via postganglionic modulation of immune cells in primary immune organs. This review discusses advances in the possible mechanisms by which the vagus nerve can mediate the immune response, and the role of nAChR activation and signalling on macrophages and other immune cells.
Collapse
Affiliation(s)
- E P Van Der Zanden
- Department of Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
37
|
Abstract
CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are critically involved in different immune processes. In models of lipopolysaccharide-induced shock, CCR4-deficient (CCR4(-/-)) mice showed improved survival rates associated with attenuated proinflammatory cytokine release. Using CCR4(-/-) mice with a C57BL/6 background, this study describes for the first time the role of CCR4 in a murine model of polymicrobial abdominal sepsis, the colon ascendens stent peritonitis (CASP). CASP-induced sepsis led to a massive downregulation of CCR4 in lymphoid and nonlymphoid tissues, whereas the expression of CCL17 and CCL22 was independent of the presence of CCR4. After CASP, CCR4(-/-) animals showed a strongly enhanced bacterial clearance in several organs but not in the peritoneal lavage fluid and the blood. In addition, significantly reduced levels of proinflammatory cytokines/chemokines were measured in organ supernatants as well as in the sera of CCR4(-/-) mice. CCR4 deficiency consequently resulted in an attenuated severity of systemic sepsis and a strongly improved survival rate after CASP or CASP with intervention. Thus, our data provide clear evidence that CCR4 plays a strictly detrimental role in the course of polymicrobial sepsis.
Collapse
|
38
|
Otmishi P, Gordon J, El-Oshar S, Li H, Guardiola J, Saad M, Proctor M, Yu J. Neuroimmune interaction in inflammatory diseases. CLINICAL MEDICINE. CIRCULATORY, RESPIRATORY AND PULMONARY MEDICINE 2008; 2:35-44. [PMID: 21157520 PMCID: PMC2990232 DOI: 10.4137/ccrpm.s547] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inflammatory response is modulated through interactions among the nervous, endocrine, and immune systems. Intercommunication between immune cells and the autonomic nervous system is a growing area of interest. Spatial and temporal information about inflammatory processes is relayed to the central nervous system (CNS) where neuroimmune modulation serves to control the extent and intensity of the inflammation. Over the past few decades, research has revealed various routes by which the nervous system and the immune system communicate. The CNS regulates the immune system via hormonal and neuronal pathways, including the sympathetic and parasympathetic nerves. The immune system signals the CNS through cytokines that act both centrally and peripherally. This review aims to introduce the concept of neuroimmune interaction and discuss its potential clinical application, in an attempt to broaden the awareness of this rapidly evolving area and open up new avenues that may aid in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Peyman Otmishi
- Pulmonary and Critical Care, Department of Medicine, Ambulatory Care Building, 3rd floor University of Louisville, Louisville, KY 40292, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Vagotomy enhances experimental metastases of 4THMpc breast cancer cells and alters substance P level. ACTA ACUST UNITED AC 2008; 151:35-42. [PMID: 18499282 DOI: 10.1016/j.regpep.2008.03.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/13/2008] [Accepted: 03/14/2008] [Indexed: 12/18/2022]
Abstract
We have previously demonstrated that inactivation of capsaicin-sensitive sensory neurons enhances lung and heart metastases of breast carcinoma. Because a significant part of sensory innervation of lung tissue is supplied by the vagus nerve, we here examined the effects of unilateral mid-cervical vagotomy in the metastases of 4THMpc breast carcinoma and tissue Substance P (SP) levels. Balb-c mice were injected orthotopically with 4THMpc cells 1 week after vagotomy. Animals were sacrificed 27-30 days after injection of 4THMpc cells and the extent of metastases was determined. Unilateral vagotomy, right or left significantly increased the lung, liver and kidney metastases without altering the growth rate of the primary tumor. Heart metastases were increased only following left vagotomy. The changes in SP levels were somewhat surprising such that vagotomy actually increased while sham-operation decreased SP levels in lung. The effect of sham-operation was reversed by unilateral vagotomy demonstrating that vagal activity decreases total SP levels in the lung. Increased SP levels might be due to decreased degradation of the peptide. Presence of the tumor markedly increased SP level in the lung, which was more prominent in vagotomized animals. These results provide evidence that vagal activity may protect against metastatic disease.
Collapse
|
40
|
|
41
|
Glatzle J, Kasparek MS, Mueller MH, Binder F, Meile T, Kreis ME, Konigsrainer A, Steurer W. Enteral immunonutrition during sepsis prevents pulmonary dysfunction in a rat model. J Gastrointest Surg 2007; 11:719-24. [PMID: 17394047 DOI: 10.1007/s11605-007-0144-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Sepsis often results in severe pulmonary dysfunction. Via the thoracic duct, the lung is the first organ exposed to gut-derived inflammatory mediators released into mesenteric lymph during sepsis. AIM To investigate whether an enteral immunonutrition during sepsis improves pulmonary function. METHODS Mesenteric lymph was obtained from lymph fistula donor rats after intra peritoneal (i.p.) saline (control lymph) or lipopolysaccharide (sepsis lymph) injection. Sepsis lymph was also collected during enteral immunonutrition with omega-3 enriched, long-chain fatty acids (SMOF lipid). Control, sepsis, or sepsis-SMOF lymph was reinfused into the jugular vein of separate recipient rats. The lungs were then harvested, stained with hematoxylin-eosin, and analyzed for: (1) perpendicular parenchyma thickness of the alveolar wall; (2) myeloperoxidase-positive cells; and (3) terminal deoxynucleotidyl transferase Biotin-dUTP nick end labeling (TUNEL)-positive cells. RESULTS Enteral immunonutrition during sepsis reduced the release of TNFalpha into mesenteric lymph by about 4.5-fold within the first 2 h. Infusion of sepsis lymph into recipient rats induced thickening of alveolar walls, inflammatory reaction, and apoptosis. Infusion of sepsis lymph obtained during enteral immunonutrition did not cause anatomical changes, induced only a mild inflammatory reaction, and prevented apoptosis in the lungs of recipient rats. CONCLUSIONS Mediators in sepsis lymph induce pulmonary dysfunction such as an increased distance for oxygen transport, inflammatory reaction, and apoptosis. The lung may be protected by an enteral immunonutrition containing long-chain fatty acids.
Collapse
Affiliation(s)
- Joerg Glatzle
- Department of General and Transplantation Surgery, University Hospital of Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fujita T, Yanaga K. Clinical influence of vagotomy on postoperative acute phase response. Langenbecks Arch Surg 2006; 392:127-30. [PMID: 17094006 DOI: 10.1007/s00423-006-0099-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 08/11/2006] [Indexed: 11/27/2022]
Abstract
BACKGROUND Although there is increasing evidence suggesting that the vagus nerve functions as a connector between the nervous and immune systems in animals, little is known about the role of the vagus nerve in postoperative acute phase response in humans. MATERIALS AND METHODS The extent of fever and acute phase protein response and the production of inflammatory cytokine during the early postoperative period were compared among the patients who had undergone total gastrectomy including truncal vagotomy (n = 13), those having distal gastrectomy with division of vagal branches (n = 14), and the patients with vagal nerve preserving gastrectomy (n = 12). RESULTS There was no significant difference in serum levels of C-reactive protein, alpha-1-antirypsin, and interleukin-6 among the three groups. Also, postoperative maximum body temperature was similar. CONCLUSIONS Vagotomy did not influence acute phase response after gastric cancer surgery. A multipathway mechanism for acute phase response including the induction of fever is suggested.
Collapse
Affiliation(s)
- Tetsuji Fujita
- Department of Surgery, Jikei University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|