1
|
Yu Q, Wang Q, Zhang L, Deng W, Cao X, Wang Z, Sun X, Yu J, Xu X. The applications of 3D printing in wound healing: the external delivery of stem cells and antibiosis. Adv Drug Deliv Rev 2023; 197:114823. [PMID: 37068658 DOI: 10.1016/j.addr.2023.114823] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
As the global number of chronic wound patients rises, the financial burden and social pressure on patients increase daily. Stem cells have emerged as promising tissue engineering seed cells due to their enriched sources, multidirectional differentiation ability, and high proliferation rate. However, delivering them in vitro for the treatment of skin injury is still challenging. In addition, bacteria from the wound site and the environment can significantly impact wound healing. In the last decade, 3D bioprinting has dramatically enriched cell delivery systems. The produced scaffolds by this technique can be precisely localized within cells and perform antibacterial actions. In this review, we summarized the 3D bioprinting-based external delivery of stem cells and their antibiosis to improve wound healing.
Collapse
Affiliation(s)
- Qingtong Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Qilong Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Linzhi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Wenwen Deng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xia Cao
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhe Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Xuan Sun
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
2
|
Harvey J, Mellody KT, Cullum N, Watson REB, Dumville J. Wound fluid sampling methods for proteomic studies: A scoping review. Wound Repair Regen 2022; 30:317-333. [PMID: 35381119 PMCID: PMC9322564 DOI: 10.1111/wrr.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/01/2022] [Accepted: 03/08/2022] [Indexed: 01/02/2023]
Abstract
Understanding why some wounds are hard to heal is important for improving care and developing more effective treatments. The method of sample collection used is an integral step in the research process and thus may affect the results obtained. The primary objective of this study was to summarise and map the methods currently used to sample wound fluid for protein profiling and analysis. Eligible studies were those that used a sampling method to collect wound fluid from any human wound for analysis of proteins. A search for eligible studies was performed using MEDLINE, Embase and CINAHL Plus in May 2020. All references were screened for eligibility by one reviewer, followed by discussion and consensus with a second reviewer. Quantitative data were mapped and visualised using appropriate software and summarised via a narrative summary. After screening, 280 studies were included in this review. The most commonly used group of wound fluid collection methods were vacuum, drainage or use of other external devices, with surgical wounds being the most common sample source. Other frequently used collection methods were extraction from absorbent materials, collection beneath an occlusive dressing and direct collection of wound fluid. This scoping review highlights the variety of methods used for wound fluid collection. Many studies had small sample sizes and short sample collection periods; these weaknesses have hampered the discovery and validation of novel biomarkers. Future research should aim to assess the reproducibility and feasibility of sampling and analytical methods for use in larger longitudinal studies.
Collapse
Affiliation(s)
- Joe Harvey
- Centre for Dermatology Research, School of Biological Sciences, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Kieran T Mellody
- Centre for Dermatology Research, School of Biological Sciences, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, UK
| | - Nicky Cullum
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Nursing, Midwifery & Social Work, School of Health Sciences, The University of Manchester, Manchester, UK
| | - Rachel E B Watson
- Centre for Dermatology Research, School of Biological Sciences, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Manchester Institute for Collaborative Research on Ageing, The University of Manchester, Manchester, UK
| | - Jo Dumville
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.,Division of Nursing, Midwifery & Social Work, School of Health Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
|
4
|
Periasamy P, Tran V, O’Neill HC. Identification of genes which regulate stroma-dependent in vitro hematopoiesis. PLoS One 2018; 13:e0205583. [PMID: 30308055 PMCID: PMC6181386 DOI: 10.1371/journal.pone.0205583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022] Open
Abstract
Cultured splenic stroma has been shown to support in vitro hematopoiesis in overlaid bone marrow and spleen progenitors. These co-cultures support longterm production of a novel dendritic-like cell type along with transient production of myeloid cells. They also maintain a progenitor cell population. The splenic stromal lines 5G3 and 3B5 have been identified as a supporter and a non-supporter of hematopoiesis. Based on their gene expression profile, both 5G3 and 3B5 express genes related to hematopoiesis, while 5G3 cells express several unique genes, and show upregulation of some genes over 3B5. Based on gene expression studies, specific inhibitors were tested for capacity to inhibit hematopoiesis in co-cultures. Addition of specific antibodies and small molecule inhibitors identified VCAM1, CXCL12, CSF1 and SPP1 as potential regulators of hematopoiesis, although both are expressed by 5G3 and 3B5. Through inhibition of function, SVEP1 and ALDH1 are also shown here to be deterministic of 5G3 hematopoietic support capacity, since these are uniquely expressed by 5G3 and not 3B5. The achievement of inhibition is notable given the dynamic, longterm nature of co-cultures which involve only small numbers of cells. The alternate plan, to add recombinant soluble factors produced by 5G3 back into 3B5 co-cultures in order to recover in vitro hematopoiesis, proved ineffective. Out of 6 different factors added to 3B5, only IGF2 showed any effect on cell production. The identification of differentially expressed or upregulated genes in 5G3 has provided an insight into potential pathways involved in in vitro hematopoiesis leading to production of dendritic-like cells.
Collapse
Affiliation(s)
- Pravin Periasamy
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vinson Tran
- Division of Biomedical Science, Research School of Biology, The Australian National University, Canberra, Australia
| | - Helen C. O’Neill
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
- * E-mail:
| |
Collapse
|
5
|
Verboket R, Leiblein M, Seebach C, Nau C, Janko M, Bellen M, Bönig H, Henrich D, Marzi I. Autologous cell-based therapy for treatment of large bone defects: from bench to bedside. Eur J Trauma Emerg Surg 2018; 44:649-665. [PMID: 29352347 PMCID: PMC6182650 DOI: 10.1007/s00068-018-0906-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/08/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Reconstruction of long segmental bone defects is demanding for patients and surgeons, and associated with long-term treatment periods and substantial complication rates in addition to high costs. While defects up to 4-5 cm length might be filled up with autologous bone graft, heterologous bone from cadavers, or artificial bone graft substitutes, current options to reconstruct bone defects greater than 5 cm consist of either vascularized free bone transfers, the Masquelet technique or the Ilizarov distraction osteogenesis. Alternatively, autologous cell transplantation is an encouraging treatment option for large bone defects as it eliminates problems such as limited autologous bone availability, allogenic bone immunogenicity, and donor-site morbidity, and might be used for stabilizing loose alloplastic implants. METHODS The authors show different cell therapies without expansion in culture, with ex vivo expansion and cell therapy in local bone defects, bone healing and osteonecrosis. Different kinds of cells and scaffolds investigated in our group as well as in vivo transfer studies and BMC used in clinical phase I and IIa clinical trials of our group are shown. RESULTS Our research history demonstrated the great potential of various stem cell species to support bone defect healing. It was clearly shown that the combination of different cell types is superior to approaches using single cell types. We further demonstrate that it is feasible to translate preclinically developed protocols from in vitro to in vivo experiments and follow positive convincing results into a clinical setting to use autologous stem cells to support bone healing.
Collapse
Affiliation(s)
- R. Verboket
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Leiblein
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - C. Seebach
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - C. Nau
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Janko
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - M. Bellen
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - H. Bönig
- Department of Transfusion Medicine and Immune Hematology, University Hospital Frankfurt and DRK Blood Donor Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - D. Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| | - I. Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
6
|
Leiblein M, Ponelies N, Johnson T, Marzi J, Kontradowitz K, Geiger E, Marzi I, Henrich D. Increased extracellular ubiquitin in surgical wound fluid provides a chemotactic signal for myeloid dendritic cells. Eur J Trauma Emerg Surg 2018; 46:153-163. [PMID: 30159662 DOI: 10.1007/s00068-018-1001-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/20/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Myeloid dendritic cells (MDC) decline significantly after multiple traumas which might be due to an increased migration into injured regions. Ubiquitin is released from dying cells and is increased in serum after trauma. Ubiquitin can bind to the chemokine receptor CXCR4. Thus, we hypothesized that elevated ubiquitin provides a chemotactic signal for MDC to injured regions. METHODS Surgical wound fluid (SWF) and serum from patients with mono-trauma (n = 20) were used to simulate the humoral situation in injured tissue. MDC were identified by flow cytometry. Chemotaxis was measured using transwell migration assays. Ubiquitin and CXCL12 (natural CXCR4 ligand) were determined by ELISA. RESULTS MDC express CXCR4 and fluorescence-labeled ubiquitin binds to MDC. Ubiquitin exerts a dose-dependent chemotactic effect (fourfold at 100 ng/mL, p < 0.05). Ubiquitin concentration was sixfold higher in SWF (p < 0.05), whereas CXCL12 was increased in serum. MDC migration towards SWF was significantly reduced (- 40%, p < 0.05), if ubiquitin was neutralized by specific antibodies. CONCLUSIONS Ubiquitin is increased in SWF and exerts a significant chemotactic effect on MDC. This mechanism might play a role in attraction of immune cells to injured regions and might contribute to the decline of circulating MDC in multiple traumas.
Collapse
Affiliation(s)
- Maximilian Leiblein
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany.
| | - Norbert Ponelies
- Department of Orthopaedics and Trauma Surgery, University Medical Center Mannheim of University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Theresa Johnson
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Julian Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Kerstin Kontradowitz
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Emanuel Geiger
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Tang JM, Luo B, Xiao JH, Lv YX, Li XL, Zhao JH, Zheng F, Zhang L, Chen L, Yang JY, Guo LY, Wang L, Yan YW, Pan YM, Wang JN, Li DS, Wan Y, Chen SY. VEGF-A promotes cardiac stem cell engraftment and myocardial repair in the infarcted heart. Int J Cardiol 2015; 183:221-31. [PMID: 25679991 DOI: 10.1016/j.ijcard.2015.01.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 11/24/2014] [Accepted: 01/25/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND The objective of this study was to determine whether vascular endothelial growth factor (VEGF)-A subtypes improve cardiac stem cell (CSC) engraftment and promote CSC-mediated myocardial repair in the infarcted heart. METHODS CSCs were treated with VEGF receptor (VEGFR) inhibitors, VCAM-1 antibody (VCAM-1-Ab), or PKC-α inhibitor followed by the treatment with VEGF-A. CSC adhesion assays were performed in vitro. In vivo, the PKH26-labeled and VCAM-1-Ab or PKC-α inhibitor pre-treated CSCs were treated with VEGF-A followed by implantation into infarcted rat hearts. The hearts were then collected for measuring CSC engraftment and evaluating cardiac fibrosis and function 3 or 28days after the CSC transplantation. RESULTS All three VEGF-A subtypes promoted CSC adhesion to extracellular matrix and endothelial cells. VEGF-A-mediated CSC adhesion required VEGFR and PKCα signaling. Importantly, VEGF-A induced VCAM-1, but not ICAM-1 expression in CSCs through PKCα signaling. In vivo, VEGF-A promoted the engraftment of CSCs in infarcted hearts, which was attenuated by PKCα inhibitor or VCAM-1-Ab. Moreover, VEGF-A-mediated CSC engraftment resulted in a reduction in infarct size and fibrosis. Functional studies showed that the transplantation of the VEGF-A-treated CSCs stimulated extensive angiomyogenesis in infarcted hearts as indicated by the expression of cardiac troponin T and von Willebrand factor, leading to an improved performance of left ventricle. Blockade of PKCα signaling or VCAM-1 significantly diminished the beneficial effects of CSCs treated with VEGF-A. CONCLUSION VEGF-A promotes myocardial repair through, at least in part, enhancing the engraftment of CSCs mediated by PKCα/VCAM-1 pathway.
Collapse
Affiliation(s)
- Jun-Ming Tang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Department of Physiology and Key Lab of human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Hubei 442000, China; Center for Medical Research and Department of Physiology, School of Basic Medical Sciences, Wuhan University, Hubei 430071, China.
| | - Bin Luo
- Department of Physiology and Key Lab of human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Hubei 442000, China
| | - Jun-hui Xiao
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yan-xia Lv
- Department of Physiology and Key Lab of human Embryonic Stem Cell of Hubei Province, Hubei University of Medicine, Hubei 442000, China
| | - Xiao-lin Li
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jin-he Zhao
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Fei Zheng
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lei Zhang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Long Chen
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jian-Ye Yang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lin-Yun Guo
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Lu Wang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yu-Wen Yan
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Ya-Mo Pan
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jia-Ning Wang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Dong-sheng Li
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yu Wan
- Center for Medical Research and Department of Physiology, School of Basic Medical Sciences, Wuhan University, Hubei 430071, China.
| | - Shi-You Chen
- Department of Physiology & Pharmacology, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Powles T, Chowdhury S, Shamash J, Bazeos A, Gillessen S, Saunders N, Lim L, Sarwar N, Sadev A, Wilson P, Nathan P, Boleti K, Peters J, Agrawal S. Increased haematopoietic progenitor cells are associated with poor outcome in patients with metastatic renal cancer treated with sunitinib. Ann Oncol 2010; 22:815-820. [PMID: 20943595 DOI: 10.1093/annonc/mdq469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Haematopoietic progenitor cells (HPCs) are present in blood in metastatic renal cell cancer (mRCC). We investigate their expression in mRCC patients treated with sunitinib and correlate their expression with plasma growth factor levels [insulin-like growth factor (IGF)-1]. METHODS Circulating HPCs (CD34(+)/CD45(+)) and plasma IGF-1 levels were measured at specific sequential time points (0, 6, 18 and 28 weeks) in 43 untreated mRCC patients receiving sunitinib (50 mg for 28 days followed by 14-day off treatment). Univariate and multivariate analysis assessed the prognostic significance of HPCs and IGF-1. RESULTS HPCs levels were raised in 40 of 43 (93%) of patients. IGF-1 levels were raised in 9 of 43 patients (21%). Univariate and multivariate analysis revealed that high HPCs before treatment were associated with a significantly shorter overall survival (hazard ratio 3.3, 95% confidence interval 1.23-8.8, P=0.01), which was not the case for IGF-1 levels. Both HPC and IGF-1 levels fell with sunitinib (61% and 14% fall, respectively, P <0.05 for both). A positive correlation between the falls in HPC and IGF-1 occurred (P<0.001). CONCLUSIONS HPCs are over expressed in the peripheral blood in the majority of patients with mRCC. Higher levels are associated with poor prognosis. A concurrent fall in HPCs and growth factor expression (IGF-1) with sunitinib occurs.
Collapse
Affiliation(s)
- T Powles
- Centre for Experimental Cancer Medicine, St Bartholomew's Hospital.
| | - S Chowdhury
- Department of Medical Oncology, Guys' and St Thomas Hospital
| | - J Shamash
- Centre for Experimental Cancer Medicine, St Bartholomew's Hospital
| | - A Bazeos
- Department of Medical Oncology, Chelsea and Westminster Hospital
| | - S Gillessen
- Centre for Experimental Cancer Medicine, St Bartholomew's Hospital
| | - N Saunders
- Centre for Experimental Cancer Medicine, St Bartholomew's Hospital
| | - L Lim
- Centre for Experimental Cancer Medicine, St Bartholomew's Hospital
| | - N Sarwar
- Centre for Experimental Cancer Medicine, St Bartholomew's Hospital
| | - A Sadev
- Centre for Experimental Cancer Medicine, St Bartholomew's Hospital
| | - P Wilson
- Centre for Experimental Cancer Medicine, St Bartholomew's Hospital
| | - P Nathan
- Department of Medical Oncology, Mount Vernon Hospital
| | - K Boleti
- Department of Medical Oncology, Royal Free Hospital
| | - J Peters
- Department of Urology, Whipps Cross University Hospital, London, UK
| | - S Agrawal
- Centre for Experimental Cancer Medicine, St Bartholomew's Hospital
| |
Collapse
|