1
|
|
2
|
Harnoss JM, Strowitzki MJ, Radhakrishnan P, Platzer LK, Harnoss JC, Hank T, Cai J, Ulrich A, Schneider M. Therapeutic inhibition of prolyl hydroxylase domain-containing enzymes in surgery: putative applications and challenges. HYPOXIA 2015; 3:1-14. [PMID: 27774478 PMCID: PMC5045068 DOI: 10.2147/hp.s60872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxygen is essential for metazoans to generate energy. Upon oxygen deprivation adaptive and protective pathways are induced, mediated by hypoxia-inducible factors (HIFs) and prolyl hydroxylase domain-containing enzymes (PHDs). Both play a pivotal role in various conditions associated with prolonged ischemia and inflammation, and are promising targets for therapeutic intervention. This review focuses on aspects of therapeutic PHD modulation in surgically relevant disease conditions such as hepatic and intestinal disorders, wound healing, innate immune responses, and tumorigenesis, and discusses the therapeutic potential and challenges of PHD inhibition in surgical patients.
Collapse
Affiliation(s)
- Jonathan Michael Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Moritz Johannes Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Lisa Katharina Platzer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Julian Camill Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Hank
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jun Cai
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Xia B, Di Chen, Zhang J, Hu S, Jin H, Tong P. Osteoarthritis pathogenesis: a review of molecular mechanisms. Calcif Tissue Int 2014; 95:495-505. [PMID: 25311420 PMCID: PMC4747051 DOI: 10.1007/s00223-014-9917-9] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/29/2014] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA), the most prevalent chronic joint disease, increases in prevalence with age, and affects majority of individuals over the age of 65 and is a leading musculoskeletal cause of impaired mobility in the elderly. Because the precise molecular mechanisms which are involved in the degradation of cartilage matrix and development of OA are poorly understood and there are currently no effective interventions to decelerate the progression of OA or retard the irreversible degradation of cartilage except for total joint replacement surgery. In this paper, the important molecular mechanisms related to OA pathogenesis will be summarized and new insights into potential molecular targets for the prevention and treatment of OA will be provided.
Collapse
Affiliation(s)
- Bingjiang Xia
- Shaoxing Hospital of Traditional Chinese Medicine, Shaoxing, 312000, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
4
|
Akhtar MZ, Sutherland AI, Huang H, Ploeg RJ, Pugh CW. The role of hypoxia-inducible factors in organ donation and transplantation: the current perspective and future opportunities. Am J Transplant 2014; 14:1481-7. [PMID: 24909061 DOI: 10.1111/ajt.12737] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/11/2014] [Accepted: 03/07/2014] [Indexed: 01/25/2023]
Abstract
Hypoxia-inducible factors are the universal cellular oxygen-sensitive transcription factors that activate a number of hypoxia responsive genes, some of which are responsible for protective cellular functions. During organ donation, allografts are exposed to significant periods of hypoxia and ischemia. Exploiting this pathway during donor management and organ preservation could prevent and reduce allograft injury and improve the outcomes of organ transplantation. We review the evidence on this pathway in organ preservation, drawing on experimental studies on donor management and ischemia reperfusion injury focusing on kidney, liver, cardiac and lung transplantation. We review the major technical and experimental challenges in exploring this pathway and suggest potential future avenues for research.
Collapse
Affiliation(s)
- M Z Akhtar
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, University of Oxford, Oxford, UK; Centre for Cellular and Molecular Physiology, Old Road Campus, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
5
|
Selvaraju V, Parinandi NL, Adluri RS, Goldman JW, Hussain N, Sanchez JA, Maulik N. Molecular mechanisms of action and therapeutic uses of pharmacological inhibitors of HIF-prolyl 4-hydroxylases for treatment of ischemic diseases. Antioxid Redox Signal 2014; 20:2631-65. [PMID: 23992027 PMCID: PMC4026215 DOI: 10.1089/ars.2013.5186] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 08/06/2013] [Accepted: 09/01/2013] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE In this review, we have discussed the efficacy and effect of small molecules that act as prolyl hydroxylase domain inhibitors (PHDIs). The use of these compounds causes upregulation of the pro-angiogenic factors and hypoxia inducible factor-1α and -2α (HIF-1α and HIF-2α) to enhance angiogenic, glycolytic, erythropoietic, and anti-apoptotic pathways in the treatment of various ischemic diseases responsible for significant morbidity and mortality in humans. RECENT ADVANCES Sprouting of new blood vessels from the existing vasculature and surgical intervention, such as coronary bypass and stent insertion, have been shown to be effective in attenuating ischemia. However, the initial reentry of oxygen leads to the formation of reactive oxygen species that cause oxidative stress and result in ischemia/reperfusion (IR) injury. This apparent "oxygen paradox" must be resolved to combat IR injury. During hypoxia, decreased activity of PHDs initiates the accumulation and activation of HIF-1α, wherein the modulation of both PHD and HIF-1α appears as promising therapeutic targets for the pharmacological treatment of ischemic diseases. CRITICAL ISSUES Research on PHDs and HIFs has shown that these molecules can serve as therapeutic targets for ischemic diseases by modulating glycolysis, erythropoiesis, apoptosis, and angiogenesis. Efforts are underway to identify and synthesize safer small-molecule inhibitors of PHDs that can be administered in vivo as therapy against ischemic diseases. FUTURE DIRECTIONS This review presents a comprehensive and current account of the existing small-molecule PHDIs and their use in the treatment of ischemic diseases with a focus on the molecular mechanisms of therapeutic action in animal models.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Narasimham L. Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ram Sudheer Adluri
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Joshua W. Goldman
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Naveed Hussain
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut
- Division of Neonatal Medicine, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Juan A. Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
6
|
Barnucz E, Veres G, Hegedűs P, Klein S, Zöller R, Radovits T, Korkmaz S, Horkay F, Merkely B, Karck M, Szabó G. Prolyl-hydroxylase inhibition preserves endothelial cell function in a rat model of vascular ischemia reperfusion injury. J Pharmacol Exp Ther 2013; 345:25-31. [PMID: 23388095 DOI: 10.1124/jpet.112.200790] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Storage protocols of vascular grafts need further improvement against ischemia-reperfusion (IR) injury. Hypoxia elicits a variety of complex cellular responses by altering the activity of many signaling pathways, such as the oxygen-dependent prolyl-hyroxylase domain-containing enzyme (PHD). Reduction of PHD activity during hypoxia leads to stabilization and accumulation of hypoxia inducible factor (HIF) 1α. We examined the effects of PHD inhibiton by dimethyloxalylglycine on the vasomotor responses of isolated rat aorta and aortic vascular smooth muscle cells (VSMCs) in a model of cold ischemia/warm reperfusion. Aortic segments underwent 24 hours of cold ischemic preservation in saline or DMOG (dimethyloxalylglycine)-supplemented saline solution. We investigated endothelium-dependent and -independent vasorelaxations. To simulate IR injury, hypochlorite (NaOCl) was added during warm reperfusion. VSMCs were incubated in NaCl or DMOG solution at 4°C for 24 hours after the medium was changed for a supplied standard medium at 37°C for 6 hours. Apoptosis was assessed using the TUNEL method. Gene expression analysis was performed using quantitative real-time polymerase chain reaction. Cold ischemic preservation and NaOCl induced severe endothelial dysfunction, which was significantly improved by DMOG supplementation (maximal relaxation of aortic segments to acetylcholine: control 95% ± 1% versus NaOCl 44% ± 4% versus DMOG 68% ± 5%). Number of TUNEL-positive cell nuclei was significantly higher in the NaOCl group, and DMOG treatment significantly decreased apoptosis. Inducible heme-oxygenase 1 mRNA expressions were significantly higher in the DMOG group. Pharmacological modulation of oxygen sensing system by DMOG in an in vitro model of vascular IR effectively preserved endothelial function. Inhibition of PHDs could therefore be a new therapeutic avenue for protecting endothelium and vascular muscle cells against IR injury.
Collapse
Affiliation(s)
- Enikő Barnucz
- Laboratory of Cardiac Surgery, Department of Cardiac Surgery, University of Heidelberg, INF 326, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mollenhauer M, Kiss J, Dudda J, Kirchberg J, Rahbari N, Radhakrishnan P, Niemietz T, Rausch V, Weitz J, Schneider M. Deficiency of the oxygen sensor PHD1 augments liver regeneration after partial hepatectomy. Langenbecks Arch Surg 2012; 397:1313-22. [PMID: 22961008 DOI: 10.1007/s00423-012-0998-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/27/2012] [Indexed: 01/09/2023]
Abstract
PURPOSE Liver regeneration after partial hepatectomy (PH) occurs in conditions of reduced oxygen supply. HIF prolyl hydroxylase enzymes (PHD1, PHD2, and PHD3) are oxygen sensors involved in adaptive response to hypoxia. Specific functions of these PHD enzymes in liver regeneration have, however, remained enigmatic. Here, we investigated the significance of PHD1 in liver regeneration following hepatectomy. METHODS Liver regeneration was studied in PHD1-deficient (PHD1(-/-)) and wild type (WT) mice subjected to 80% hepatectomy. For in vitro analyses, hepatocytes were isolated from PHD1(-/-) and WT livers. Cell cycle progression was studied via FACS-based analysis of nuclear DNA profile. Transcription factor binding assays, qRT-PCR, and immunoblotting were applied to study the relevance of PHD1 downstream effectors during liver regeneration. RESULTS Liver regeneration was significantly enhanced in PHD1(-/-) mice compared to WT littermates. This effect was due to enhanced proliferation rather than to hypertrophy of liver cells. Cell cycle progression was significantly enhanced, and transcriptional activity of the cell cycle regulator c-Myc was increased in PHD1-deficient hepatocytes. These changes coincided with increased expression of cyclin D2, a cell cycle-promoting c-Myc target, and decreased expression of the cell cycle-delaying c-Myc target p21. CONCLUSIONS Loss of PHD1 enhances liver regeneration by boosting hepatocyte proliferation in a c-Myc-dependent fashion. PHD1 might, therefore, represent a potential target to facilitate liver regeneration after surgical resection.
Collapse
Affiliation(s)
- Martin Mollenhauer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Liang QL, Li ZY, Zhou Y, Liu QL, Ou WT, Huang ZG. Construction of a recombinant eukaryotic expression vector containing PHD3 gene and its expression in HepG2 cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:64. [PMID: 22898032 PMCID: PMC3511251 DOI: 10.1186/1756-9966-31-64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 08/11/2012] [Indexed: 11/21/2022]
Abstract
Prolyl hydroxylase domain 3 (PHD3) is a hypoxia inducible factor-α (HIFα) regulator; it degrades HIFα in the presence of oxygen. Recently, there have been an increasing number of studies about the role of PHD3 in proliferation and apoptosis of cancer cells. However, most of the evidence for the role of PHD3 is observational, and little is known of the molecular mechanism. In our current study, we constructed a recombinant eukaryotic expression vector containing the PHD3 gene and detected its biological activity in human hepatoma cell line (HepG2 cells). We successfully constructed a recombinant pcDNA 3.1(+)-PHD3 plasmid; the results showed that PHD3 overexpression could inhibit the proliferation of HepG2 cells and induce apoptosis by activating caspase-3 activity. Our study has provided preliminary materials and data for further investigation of the effect of PHD3 on HepG2 cells.
Collapse
Affiliation(s)
- Qi-Lian Liang
- Department of Oncology, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China.
| | | | | | | | | | | |
Collapse
|