1
|
Albani S, Eswaran VSB, Piergentili A, de Souza PCT, Lampert A, Rossetti G. Depletion of membrane cholesterol modifies structure, dynamic and activation of Na v1.7. Int J Biol Macromol 2024; 278:134219. [PMID: 39097041 DOI: 10.1016/j.ijbiomac.2024.134219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Cholesterol is a major component of plasma membranes and plays a significant role in actively regulating the functioning of several membrane proteins in humans. In this study, we focus on the role of cholesterol depletion on the voltage-gated sodium channel Nav1.7, which is primarily expressed in the peripheral sensory neurons and linked to various chronic inherited pain syndromes. Coarse-grained molecular dynamics simulations revealed key dynamic changes of Nav1.7 upon membrane cholesterol depletion: A loss of rigidity in the structural motifs linked to activation and fast-inactivation is observed, suggesting an easier transition of the channel between different gating states. In-vitro whole-cell patch clamp experiments on HEK293t cells expressing Nav1.7 validated these predictions at the functional level: Hyperpolarizing shifts in the voltage-dependence of activation and fast-inactivation were observed along with an acceleration of the time to peak and onset kinetics of fast inactivation. These results underline the critical role of membrane composition, and of cholesterol in particular, in influencing Nav1.7 gating characteristics. Furthermore, our results also point to cholesterol-driven changes of the geometry of drug-binding regions, hinting to a key role of the membrane environment in the regulation of drug effects.
Collapse
Affiliation(s)
- Simone Albani
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Faculty of Biology, RWTH Aachen University, Aachen, Germany
| | | | - Alessia Piergentili
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Faculty of Biology, RWTH Aachen University, Aachen, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Paulo Cesar Telles de Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France; Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale, Supérieure de Lyon, 46 All'ee d'Italie, 69364 Lyon, France
| | - Angelika Lampert
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | - Giulia Rossetti
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Department of Neurology, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
| |
Collapse
|
2
|
Kovacs T, Nagy P, Panyi G, Szente L, Varga Z, Zakany F. Cyclodextrins: Only Pharmaceutical Excipients or Full-Fledged Drug Candidates? Pharmaceutics 2022; 14:pharmaceutics14122559. [PMID: 36559052 PMCID: PMC9788615 DOI: 10.3390/pharmaceutics14122559] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclodextrins, representing a versatile family of cyclic oligosaccharides, have extensive pharmaceutical applications due to their unique truncated cone-shaped structure with a hydrophilic outer surface and a hydrophobic cavity, which enables them to form non-covalent host-guest inclusion complexes in pharmaceutical formulations to enhance the solubility, stability and bioavailability of numerous drug molecules. As a result, cyclodextrins are mostly considered as inert carriers during their medical application, while their ability to interact not only with small molecules but also with lipids and proteins is largely neglected. By forming inclusion complexes with cholesterol, cyclodextrins deplete cholesterol from cellular membranes and thereby influence protein function indirectly through alterations in biophysical properties and lateral heterogeneity of bilayers. In this review, we summarize the general chemical principles of direct cyclodextrin-protein interactions and highlight, through relevant examples, how these interactions can modify protein functions in vivo, which, despite their huge potential, have been completely unexploited in therapy so far. Finally, we give a brief overview of disorders such as Niemann-Pick type C disease, atherosclerosis, Alzheimer's and Parkinson's disease, in which cyclodextrins already have or could have the potential to be active therapeutic agents due to their cholesterol-complexing or direct protein-targeting properties.
Collapse
Affiliation(s)
- Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., H-1097 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence:
| |
Collapse
|
3
|
He C, Li J, Wu Z, Lu C, Huang Z, Luo N, Fan S, Shen J, Liu X, Zhao H. The semenogelin I-derived peptide SgI-52 in seminal plasma participates in sperm selection and clearance by macrophages. Peptides 2022; 153:170799. [PMID: 35427699 DOI: 10.1016/j.peptides.2022.170799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Macrophages can phagocytose sperm, especially damaged spermatozoa, in the female genital tract. The semenogelin I-derived peptide SgI-52 in seminal plasma exhibits seminal plasma motility inhibitor (SPMI) activity and can inhibit sperm motility. This raises the question of the role played by SPMIs in macrophage-mediated phagocytosis of sperm. We speculated that SgI-52 promotes sperm clearance by macrophages. Therefore, we investigated the phagocytosis of sperm in different states using this peptide. METHODS SgI-52 was fluorescently labeled, and its binding site for sperm was observed. The ability of macrophages to phagocytose sperm was observed using fluorescence confocal microscopy. Spermatozoa from different sources were co-cultured with SgI-52 in BWW medium for 4 and 22 h to compare the differences in their phagocytosis by macrophages. Sperm motility, induced acrosome reaction, mitochondrial membrane potential, and ATP content were examined after incubation with SgI-52. RESULTS SgI-52 could bind to spermatozoa in different states, mainly to the tail, and then spread to the acrosome. This effect was more pronounced in demembranated spermatozoa. SgI-52 promoted phagocytosis of spermatozoa by macrophages, decreased the mitochondrial membrane potential, and increased the average ATP content of spermatozoa (P < 0.05). CONCLUSIONS We found for the first time that SgI-52 can bind to spermatozoa in different states and promote their phagocytosis by macrophages. Therefore, we speculate that SgI-52 is involved in the screening of sperm in the female reproductive tract and has potential value in improving assisted reproductive technology.
Collapse
Affiliation(s)
- Chaoyong He
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jiankai Li
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhao Wu
- Department of Reproductive Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Chuncheng Lu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Zhuo Huang
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Ning Luo
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shipeng Fan
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jihong Shen
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xiaodong Liu
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Hui Zhao
- Department of Urology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
4
|
Sebestyén V, Nagy É, Mocsár G, Volkó J, Szilágyi O, Kenesei Á, Panyi G, Tóth K, Hajdu P, Vámosi G. Role of C-Terminal Domain and Membrane Potential in the Mobility of Kv1.3 Channels in Immune Synapse Forming T Cells. Int J Mol Sci 2022; 23:ijms23063313. [PMID: 35328733 PMCID: PMC8952507 DOI: 10.3390/ijms23063313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Voltage-gated Kv1.3 potassium channels are essential for maintaining negative membrane potential during T-cell activation. They interact with membrane-associated guanylate kinases (MAGUK-s) via their C-terminus and with TCR/CD3, leading to enrichment at the immunological synapse (IS). Molecular interactions and mobility may impact each other and the function of these proteins. We aimed to identify molecular determinants of Kv1.3 mobility, applying fluorescence correlation spectroscopy on human Jurkat T-cells expressing WT, C-terminally truncated (ΔC), and non-conducting mutants of mGFP-Kv1.3. ΔC cannot interact with MAGUK-s and is not enriched at the IS, whereas cells expressing the non-conducting mutant are depolarized. Here, we found that in standalone cells, mobility of ΔC increased relative to the WT, likely due to abrogation of interactions, whereas mobility of the non-conducting mutant decreased, similar to our previous observations on other membrane proteins in depolarized cells. At the IS formed with Raji B-cells, mobility of WT and non-conducting channels, unlike ΔC, was lower than outside the IS. The Kv1.3 variants possessing an intact C-terminus had lower mobility in standalone cells than in IS-engaged cells. This may be related to the observed segregation of F-actin into a ring-like structure at the periphery of the IS, leaving much of the cell almost void of F-actin. Upon depolarizing treatment, mobility of WT and ΔC channels decreased both in standalone and IS-engaged cells, contrary to non-conducting channels, which themselves caused depolarization. Our results support that Kv1.3 is enriched at the IS via its C-terminal region regardless of conductivity, and that depolarization decreases channel mobility.
Collapse
Affiliation(s)
- Veronika Sebestyén
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Éva Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Julianna Volkó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Orsolya Szilágyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Ádám Kenesei
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - György Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Katalin Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Péter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (P.H.); (G.V.)
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
- Correspondence: (P.H.); (G.V.)
| |
Collapse
|
5
|
Tajti G, Szanto TG, Csoti A, Racz G, Evaristo C, Hajdu P, Panyi G. Immunomagnetic separation is a suitable method for electrophysiology and ion channel pharmacology studies on T cells. Channels (Austin) 2021; 15:53-66. [PMID: 33356811 PMCID: PMC7781520 DOI: 10.1080/19336950.2020.1859753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels play pivotal role in the physiological and pathological function of immune cells. As immune cells represent a functionally diverse population, subtype-specific functional studies, such as single-cell electrophysiology require proper subset identification and separation. Magnetic-activated cell sorting (MACS) techniques provide an alternative to fluorescence-activated cell sorting (FACS), however, the potential impact of MACS-related beads on the biophysical and pharmacological properties of the ion channels were not studied yet. We studied the aforementioned properties of the voltage-gated Kv1.3 K+ channel in activated CD4+ T-cells as well as the membrane capacitance using whole-cell patch-clamp following immunomagnetic positive separation, using the REAlease® kit. This kit allows three experimental configurations: bead-bound configuration, bead-free configuration following the removal of magnetic beads, and the label-free configuration following removal of CD4 recognizing antibody fragments. As controls, we used FACS separation as well as immunomagnetic negative selection. The membrane capacitance and of the biophysical parameters of Kv1.3 gating, voltage-dependence of steady-state activation and inactivation kinetics of the current were not affected by the presence of MACS-related compounds on the cell surface. We found subtle differences in the activation kinetics of the Kv1.3 current that could not be explained by the presence of MACS-related compounds. Neither the equilibrium block of Kv1.3 by TEA+ or charybdotoxin (ChTx) nor the kinetics of ChTx block are affected by the presence of the magnetics beads on the cell surface. Based on our results MACS is a suitable method to separate cells for studying ion channels in non-excitable cells, such as T-lymphocytes.
Collapse
Affiliation(s)
- Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Gabor Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agota Csoti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Greta Racz
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - César Evaristo
- R&D Reagents Chemical Biology, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Peter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
6
|
Kovacs T, Sohajda T, Szente L, Nagy P, Panyi G, Varga Z, Zakany F. Cyclodextrins Exert a Ligand-like Current Inhibitory Effect on the K V1.3 Ion Channel Independent of Membrane Cholesterol Extraction. Front Mol Biosci 2021; 8:735357. [PMID: 34805269 PMCID: PMC8599428 DOI: 10.3389/fmolb.2021.735357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides capable of forming water-soluble complexes with a variety of otherwise poorly soluble molecules including cholesterol and different drugs. Consistently, CDs are widely used in research and clinical practice to deplete cholesterol from cellular membranes or to increase solubility and bioavailability of different pharmaceuticals at local concentrations in the millimolar range. Effects of CDs exerted on cellular functions are generally thought to originate from reductions in cholesterol levels. Potential direct, ligand-like CD effects are largely neglected in spite of several recent studies reporting direct interaction between CDs and proteins including AMP-activated protein kinase, β-amyloid peptides, and α-synuclein. In this study, by using patch-clamp technique, time-resolved quantitation of cholesterol levels and biophysical parameters and applying cholesterol-extracting and non-cholesterol-extracting CDs at 1 and 5 mM concentrations, we provide evidence for a previously unexplored ligand-like, cholesterol-independent current inhibitory effect of CDs on KV1.3, a prototypical voltage-gated potassium channel with pathophysiological relevance in various autoimmune and neurodegenerative disorders. Our findings propose that potential direct CD effects on KV channels should be taken into consideration when interpreting functional consequences of CD treatments in both research and clinical practice. Furthermore, current-blocking effects of CDs on KV channels at therapeutically relevant concentrations might contribute to additional beneficial or adverse effects during their therapeutic applications.
Collapse
Affiliation(s)
- Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamas Sohajda
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R and D Laboratory Ltd., Budapest, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Lasunción MA, Martínez-Botas J, Martín-Sánchez C, Busto R, Gómez-Coronado D. Cell cycle dependence on the mevalonate pathway: Role of cholesterol and non-sterol isoprenoids. Biochem Pharmacol 2021; 196:114623. [PMID: 34052188 DOI: 10.1016/j.bcp.2021.114623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022]
Abstract
The mevalonate pathway is responsible for the synthesis of isoprenoids, including sterols and other metabolites that are essential for diverse biological functions. Cholesterol, the main sterol in mammals, and non-sterol isoprenoids are in high demand by rapidly dividing cells. As evidence of its importance, many cell signaling pathways converge on the mevalonate pathway and these include those involved in proliferation, tumor-promotion, and tumor-suppression. As well as being a fundamental building block of cell membranes, cholesterol plays a key role in maintaining their lipid organization and biophysical properties, and it is crucial for the function of proteins located in the plasma membrane. Importantly, cholesterol and other mevalonate derivatives are essential for cell cycle progression, and their deficiency blocks different steps in the cycle. Furthermore, the accumulation of non-isoprenoid mevalonate derivatives can cause DNA replication stress. Identification of the mechanisms underlying the effects of cholesterol and other mevalonate derivatives on cell cycle progression may be useful in the search for new inhibitors, or the repurposing of preexisting cholesterol biosynthesis inhibitors to target cancer cell division. In this review, we discuss the dependence of cell division on an active mevalonate pathway and the role of different mevalonate derivatives in cell cycle progression.
Collapse
Affiliation(s)
- Miguel A Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| | - Javier Martínez-Botas
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Covadonga Martín-Sánchez
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, IRyCIS, Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
8
|
Chong J, De Vecchis D, Hyman AJ, Povstyan OV, Ludlow MJ, Shi J, Beech DJ, Kalli AC. Modeling of full-length Piezo1 suggests importance of the proximal N-terminus for dome structure. Biophys J 2021; 120:1343-1356. [PMID: 33582137 PMCID: PMC8105715 DOI: 10.1016/j.bpj.2021.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 01/22/2023] Open
Abstract
Piezo1 forms a mechanically activated calcium-permeable nonselective cation channel that is functionally important in many cell types. Structural data exist for C-terminal regions, but we lack information about N-terminal regions and how the entire channel interacts with the lipid bilayer. Here, we use computational approaches to predict the three-dimensional structure of the full-length Piezo1 and simulate it in an asymmetric membrane. A number of novel insights are suggested by the model: 1) Piezo1 creates a trilobed dome in the membrane that extends beyond the radius of the protein, 2) Piezo1 changes the lipid environment in its vicinity via preferential interactions with cholesterol and phosphatidylinositol 4,5-bisphosphate (PIP2) molecules, and 3) cholesterol changes the depth of the dome and PIP2 binding preference. In vitro alteration of cholesterol concentration inhibits Piezo1 activity in a manner complementing some of our computational findings. The data suggest the importance of N-terminal regions of Piezo1 for dome structure and membrane cholesterol and PIP2 interactions.
Collapse
Affiliation(s)
- Jiehan Chong
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Dario De Vecchis
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Adam J Hyman
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Oleksandr V Povstyan
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Melanie J Ludlow
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom.
| | - Antreas C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
9
|
Abstract
Potassium channels are present in every living cell and essential to setting up a stable, non-zero transmembrane electrostatic potential which manifests the off-equilibrium livelihood of the cell. They are involved in other cellular activities and regulation, such as the controlled release of hormones, the activation of T-cells for immune response, the firing of action potential in muscle cells and neurons, etc. Pharmacological reagents targeting potassium channels are important for treating various human diseases linked to dysfunction of the channels. High-resolution structures of these channels are very useful tools for delineating the detailed chemical basis underlying channel functions and for structure-based design and optimization of their pharmacological and pharmaceutical agents. Structural studies of potassium channels have revolutionized biophysical understandings of key concepts in the field - ion selectivity, conduction, channel gating, and modulation, making them multi-modality targets of pharmacological regulation. In this chapter, I will select a few high-resolution structures to illustrate key structural insights, proposed allostery behind channel functions, disagreements still open to debate, and channel-lipid interactions and co-evolution. The known structural consensus allows the inference of conserved molecular mechanisms shared among subfamilies of K+ channels and makes it possible to develop channel-specific pharmaceutical agents.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Laboratory of Molecular Physiology and Biophysics and the Cryo-EM Center, Hauptmann-Woodward Medical Research Institute, Buffalo, NY, USA.
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA.
- Departments of Materials Design and Invention and Physiology and Biophysics, University of Buffalo (SUNY), Buffalo, NY, USA.
| |
Collapse
|
10
|
Direct and indirect cholesterol effects on membrane proteins with special focus on potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158706. [DOI: 10.1016/j.bbalip.2020.158706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
|
11
|
Barbera NA, Minke B, Levitan I. Comparative docking analysis of cholesterol analogs to ion channels to discriminate between stereospecific binding vs. stereospecific response. Channels (Austin) 2020; 13:136-146. [PMID: 31033379 PMCID: PMC6527060 DOI: 10.1080/19336950.2019.1606670] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cholesterol is a major component of the membrane and a key regulator of many ion channels. Multiple studies showed that cholesterol regulates ion channels in a stereospecific manner, with cholesterol but not its chiral isomers having a functional effect. This stereospecificity has been universally attributed to the specificity of cholesterol binding, with the assumption that only native cholesterol binds to the channels whereas its isomers do not. In this study, we challenge this paradigm by docking analyses of cholesterol and its chiral isomers to five ion channels whose response to cholesterol was shown to be stereospecific, Kir2.2, KirBac1.1, TRPV1, GABAA and BK. The analysis is performed using AutoDock Vina to predict the binding poses and energies of the sterols to the channels and identify amino acids interacting with the sterol molecules. We found that for every ion channel tested herein all three sterols showed similar binding poses and significant overlap in the set of the amino acids that comprise the predicted binding sites, along with similar energetic favorability to these overlapping sites. We also found, however, that specific orientations of the three sterols within the binding sites of the channels are distinct, so that a subset of the interacting amino acids is unique to each sterol. We propose therefore, that contrary to previous thought, stereospecific effects of cholesterol should be attributed not to the lack of binding of the stereoisomers but to specific, unique interactions between the cholesterol molecule and the residues within the binding sites of the channels.
Collapse
Affiliation(s)
- Nicolas A Barbera
- a Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA.,b Department of Chemical Engineering , University of Illinois at Chicago , Chicago , USA
| | - Baruch Minke
- c Department of Medical Neurobiology, and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Faculty of Medicine , the Hebrew University , Jerusalem , Israel
| | - Irena Levitan
- a Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
12
|
Meza U, Delgado-Ramírez M, Romero-Méndez C, Sánchez-Armass S, Rodríguez-Menchaca AA. Functional marriage in plasma membrane: Critical cholesterol level-optimal protein activity. Br J Pharmacol 2020; 177:2456-2465. [PMID: 32060896 DOI: 10.1111/bph.15027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
In physiology, homeostasis refers to the condition where a system exhibits an optimum functional level. In contrast, any variation from this optimum is considered as a dysfunctional or pathological state. In this review, we address the proposal that a critical cholesterol level in the plasma membrane is required for the proper functioning of transmembrane proteins. Thus, membrane cholesterol depletion or enrichment produces a loss or gain of direct cholesterol-protein interaction and/or changes in the physical properties of the plasma membrane, which affect the basal or optimum activity of transmembrane proteins. Whether or not this functional switching is a generalized mechanism exhibited for all transmembrane proteins, or if it works just for an exclusive group of them, is an open question and an attractive subject to explore at a basic, pharmacological and clinical level.
Collapse
Affiliation(s)
- Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Catalina Romero-Méndez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Sergio Sánchez-Armass
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
13
|
Cholesterol Interaction Directly Enhances Intrinsic Activity of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). Cells 2019; 8:cells8080804. [PMID: 31370288 PMCID: PMC6721619 DOI: 10.3390/cells8080804] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/23/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
The recent cryo-electron microscopy structures of zebrafish and the human cystic fibrosis transmembrane conductance regulator (CFTR) provided unprecedented insights into putative mechanisms underlying gating of its anion channel activity. Interestingly, despite predictions based on channel activity measurements in biological membranes, the structure of the detergent purified, phosphorylated, and ATP-bound human CFTR protein did not reveal a stably open conduction pathway. This study tested the hypothesis that the functional properties of the detergent solubilized CFTR protein used for structural determinations are different from those exhibited by CFTR purified under conditions that retain associated lipids native to the membrane. It was found that CFTR purified together with phospholipids and cholesterol using amphipol: A8-35, exhibited higher rates of catalytic activity, phosphorylation dependent channel activation and potentiation by the therapeutic compound, ivacaftor, than did CFTR purified in detergent. The catalytic activity of phosphorylated CFTR detergent micelles was rescued by the addition of phospholipids plus cholesterol, but not by phospholipids alone, arguing for a specific role for cholesterol in modulating this function. In summary, these studies highlight the importance of lipid interactions in the intrinsic activities and pharmacological potentiation of CFTR.
Collapse
|
14
|
Serrano-Albarrás A, Cirera-Rocosa S, Sastre D, Estadella I, Felipe A. Fighting rheumatoid arthritis: Kv1.3 as a therapeutic target. Biochem Pharmacol 2019; 165:214-220. [DOI: 10.1016/j.bcp.2019.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023]
|
15
|
Vivas O, Tiscione SA, Dixon RE, Ory DS, Dickson EJ. Niemann-Pick Type C Disease Reveals a Link between Lysosomal Cholesterol and PtdIns(4,5)P 2 That Regulates Neuronal Excitability. Cell Rep 2019; 27:2636-2648.e4. [PMID: 31141688 PMCID: PMC6553496 DOI: 10.1016/j.celrep.2019.04.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/17/2019] [Accepted: 04/22/2019] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence that the lysosome is involved in the pathogenesis of a variety of neurodegenerative disorders. Thus, mechanisms that link lysosome dysfunction to the disruption of neuronal homeostasis offer opportunities to understand the molecular underpinnings of neurodegeneration and potentially identify specific therapeutic targets. Here, using a monogenic neurodegenerative disorder, NPC1 disease, we demonstrate that reduced cholesterol efflux from lysosomes aberrantly modifies neuronal firing patterns. The molecular mechanism linking alterations in lysosomal cholesterol egress to intrinsic tuning of neuronal excitability is a transcriptionally mediated upregulation of the ABCA1 transporter, whose PtdIns(4,5)P2-floppase activity decreases plasma membrane PtdIns(4,5)P2. The consequence of reduced PtdIns(4,5)P2 is a parallel decrease in a key regulator of neuronal excitability, the voltage-gated KCNQ2/3 potassium channel, which leads to hyperexcitability in NPC1 disease neurons. Thus, cholesterol efflux from lysosomes regulates PtdIns(4,5)P2 to shape the electrical and functional identity of the plasma membrane of neurons in health and disease.
Collapse
Affiliation(s)
- Oscar Vivas
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Scott A. Tiscione
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Daniel S. Ory
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eamonn J. Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA,Lead Contact,Correspondence:
| |
Collapse
|
16
|
Cholesterol-Dependent Gating Effects on Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:167-190. [PMID: 30649760 DOI: 10.1007/978-3-030-04278-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biomembranes separate a live cell from its environment and keep it in an off-equilibrium, steady state. They contain both phospholipids and nonphospholipids, depending on whether there are phosphate groups in the headgroup regions. Cholesterol (CHOL) is one type of nonphospholipids, and one of the most abundant lipid molecules in humans. Its content in plasma membranes and intracellular membranes varies and is tightly regulated. Voltage-gated ion channels are universally present in every cell and are fairly diversified in the eukaryotic domain of life. Our lipid-dependent gating hypothesis postulates that the controlled switch of the voltage-sensor domains (VSDs) in a voltage-gated potassium (Kv) channel between the "down" and the "up" state (gating) is sensitive to the ratio of phospholipids:nonphospholipids in the annular layer around the channel. High CHOL content is found to exert strong inhibitory effects on Kv channels. Such effects have been observed in in vitro membranes, cultured cells, and animal models for cholesterol metabolic defects. Thermodynamic analysis of the CHOL-dependent gating suggests that the inhibitory effects of CHOL result from collective interactions between annular CHOL molecules and the channel, which appear to be a more generic principle behind the CHOL effects on other ion channels and transporters. We will review the recent progress in the CHOL-dependent gating of voltage-gated ion channels, discuss the current technical limitations, and then expand briefly the learned principles to other ion channels that are known to be sensitive to the CHOL-channel interactions.
Collapse
|
17
|
Zakany F, Pap P, Papp F, Kovacs T, Nagy P, Peter M, Szente L, Panyi G, Varga Z. Determining the target of membrane sterols on voltage-gated potassium channels. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:312-325. [PMID: 30553843 DOI: 10.1016/j.bbalip.2018.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Cholesterol, an essential lipid component of cellular plasma membranes, regulates fluidity, mechanical integrity, raft structure and may specifically interact with membrane proteins. Numerous effects on ion channels by cholesterol, including changes in current amplitude, voltage dependence and gating kinetics, have been reported. We have previously described such changes in the voltage-gated potassium channel Kv1.3 of lymphocytes by cholesterol and its analog 7-dehydrocholesterol (7DHC). In voltage-gated channels membrane depolarization induces movement of the voltage sensor domains (VSD), which is transmitted by a coupling mechanism to the pore domain (PD) to open the channel. Here, we investigated whether cholesterol effects were mediated by the VSD to the pore or the PD was the direct target. Specificity was tested by comparing Kv1.3 and Kv10.1 channels having different VSD-PD coupling mechanisms. Current recordings were performed with two-electrode voltage-clamp fluorometry, where movement of the VSDs was monitored by attaching fluorophores to external cysteine residues introduced in the channel sequence. Loading the membrane with cholesterol or 7DHC using methyl-β-cyclodextrin induced changes in the steady-state and kinetic parameters of the ionic currents while leaving fluorescence parameters mostly unaffected in both channels. Non-stationary noise analysis revealed that reduction of single channel conductance rather than that of open probability caused the observed current decrease. Furthermore, confocal laser scanning and stimulated emission depletion microscopy demonstrated significant changes in the distribution of these ion channels in response to sterol loading. Our results indicate that sterol-induced effects on ion channel gating directly target the pore and do not act via the VSD.
Collapse
Affiliation(s)
- Florina Zakany
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Pal Pap
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Ferenc Papp
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Tamas Kovacs
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Peter Nagy
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Maria Peter
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesvari Krt. 62, Szeged H-6726, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R & D Laboratory Ltd., Illatos u. 7, Budapest H-1097, Hungary
| | - Gyorgy Panyi
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary
| | - Zoltan Varga
- Division of Biophysics, Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Egyetem ter 1, Debrecen H-4032, Hungary.
| |
Collapse
|
18
|
|
19
|
Valle-Reyes S, Valencia-Cruz G, Liñan-Rico L, Pottosin I, Dobrovinskaya O. Differential Activity of Voltage- and Ca 2+-Dependent Potassium Channels in Leukemic T Cell Lines: Jurkat Cells Represent an Exceptional Case. Front Physiol 2018; 9:499. [PMID: 29867547 PMCID: PMC5954129 DOI: 10.3389/fphys.2018.00499] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Activation of resting T cells relies on sustained Ca2+ influx across the plasma membrane, which in turn depends on the functional expression of potassium channels, whose activity repolarizes the membrane potential. Depending on the T-cells subset, upon activation the expression of Ca2+- or voltage-activated K+ channels, KCa or Kv, is up-regulated. In this study, by means of patch-clamp technique in the whole cell mode, we have studied in detail the characteristics of Kv and KCa currents in resting and activated human T cells, the only well explored human T-leukemic cell line Jurkat, and two additional human leukemic T cell lines, CEM and MOLT-3. Voltage dependence of activation and inactivation of Kv1.3 current were shifted up to by 15 mV to more negative potentials upon a prolonged incubation in the whole cell mode and displayed little difference at a stable state in all cell lines but CEM, where the activation curve was biphasic, with a high and low potential components. In Jurkat, KCa currents were dominated by apamine-sensitive KCa2.2 channels, whereas only KCa3.1 current was detected in healthy T and leukemic CEM and MOLT-3 cells. Despite a high proliferation potential of Jurkat cells, Kv and KCa currents were unexpectedly small, more than 10-fold lesser as compared to activated healthy human T cells, CEM and MOLT-3, which displayed characteristic Kv1.3high:KCa3.1high phenotype. Our results suggest that Jurkat cells represent perhaps a singular case and call for more extensive studies on primary leukemic T cell lines as well as a verification of the therapeutic potential of specific KCa3.1 blockers to combat acute lymphoblastic T leukemias.
Collapse
Affiliation(s)
- Salvador Valle-Reyes
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Liliana Liñan-Rico
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| |
Collapse
|
20
|
Delgado-Ramírez M, Sánchez-Armass S, Meza U, Rodríguez-Menchaca AA. Regulation of Kv7.2/Kv7.3 channels by cholesterol: Relevance of an optimum plasma membrane cholesterol content. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1242-1251. [PMID: 29474891 DOI: 10.1016/j.bbamem.2018.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/14/2018] [Accepted: 02/16/2018] [Indexed: 12/18/2022]
Abstract
Kv7.2/Kv7.3 channels are the molecular correlate of the M-current, which stabilizes the membrane potential and controls neuronal excitability. Previous studies have shown the relevance of plasma membrane lipids on both M-currents and Kv7.2/Kv7.3 channels. Here, we report the sensitive modulation of Kv7.2/Kv7.3 channels by membrane cholesterol level. Kv7.2/Kv7.3 channels transiently expressed in HEK-293 cells were significantly inhibited by decreasing the cholesterol level in the plasma membrane by three different pharmacological strategies: methyl-β-cyclodextrin (MβCD), Filipin III, and cholesterol oxidase treatment. Surprisingly, Kv7.2/Kv7.3 channels were also inhibited by membrane cholesterol loading with the MβCD/cholesterol complex. Depletion or enrichment of plasma membrane cholesterol differentially affected the biophysical parameters of the macroscopic Kv7.2/Kv7.3 currents. These results indicate a complex mechanism of Kv7.2/Kv7.3 channels modulation by membrane cholesterol. We propose that inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol depletion involves a loss of a direct cholesterol-channel interaction. However, the inhibition of Kv7.2/Kv7.3 channels by membrane cholesterol enrichment could include an additional direct cholesterol-channel interaction, or changes in the physical properties of the plasma membrane. In summary, our results indicate that an optimum cholesterol level in the plasma membrane is required for the proper functioning of Kv7.2/Kv7.3 channels.
Collapse
Affiliation(s)
- Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico
| | - Sergio Sánchez-Armass
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico
| | - Ulises Meza
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico.
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78210, Mexico.
| |
Collapse
|
21
|
Rosenhouse-Dantsker A. Insights Into the Molecular Requirements for Cholesterol Binding to Ion Channels. CURRENT TOPICS IN MEMBRANES 2017; 80:187-208. [PMID: 28863816 DOI: 10.1016/bs.ctm.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The concept that cholesterol binds to proteins via specific binding motifs, and thereby modulates their function, has emerged two decades ago. When we recently embarked on studies to uncover the putative binding region(s) of cholesterol in the Kir2.1 channel, we carried out an unbiased approach that combines computational and experimental methods. This approach resulted in the identification of novel cholesterol-binding regions distinct from known cholesterol-binding motifs. In recent years, a plethora of structures of proteins complexed with cholesterol have been determined revealing variegated cholesterol-binding regions that can provide invaluable insights into the prerequisites for cholesterol binding. Thus, using this database of structures, the goal of this chapter is to present a comprehensive analysis of representative cholesterol-binding regions, and thereby determine the molecular requirements for cholesterol binding. The analysis demonstrates that the primary requirement for cholesterol binding is a highly hydrophobic environment, and that the interaction with the cholesterol molecule can be stabilized by stacking interactions between its ring structure and hydrophobic aromatic residues, and by hydrogen bonding between its hydroxyl group and a variety of protein residues. This general requirement suggests that the known cholesterol-binding motifs describe a subset of cholesterol-binding regions, and provides a framework for expanding the search for novel cholesterol-binding regions in ion channels.
Collapse
|
22
|
Barbera N, Ayee MAA, Akpa BS, Levitan I. Differential Effects of Sterols on Ion Channels: Stereospecific Binding vs Stereospecific Response. CURRENT TOPICS IN MEMBRANES 2017; 80:25-50. [PMID: 28863819 DOI: 10.1016/bs.ctm.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Numerous ion channels have been shown to be regulated by the level of membrane cholesterol, but the mechanisms responsible for these effects are still not well understood. The key question in the field is how to discriminate between the contributions of the two central mechanisms that might be responsible for the sensitivity of ion channels to cholesterol: specific sterol-protein interactions or regulation of channels by the bilayer physical properties. Comparative analysis of cholesterol and its isomers on the function of an ion channel is a powerful tool to achieve this goal. An increasing number of studies show that cholesterol regulates several types of ion channels in a stereospecific manner, suggesting an involvement of specific sterol-protein interactions. However in this chapter, we present evidence that the stereospecificity of cholesterol-ion channel interactions may be mediated, not by a lack of binding, as has been generally assumed, but by the specificity of the interaction, which results in a functional effect, in the case of native cholesterol, and a lack of functional effect, in the case of a cholesterol isomer. In other words, accumulating evidence suggests that the structural requirements of ion channel cholesterol-binding sites are lax, allowing chiral isomers of cholesterol to bind to the same site in a nonstereospecific way, but the ability of a sterol to confer a functional effect on the channel activity can still be stereospecific. This is an important distinction both conceptually and methodologically. Indeed, our analysis shows that the orientations of cholesterol and its chiral isomer ent-cholesterol within a hydrophobic binding pocket of Kir2.2 are significantly different, and we propose that this difference may underlie distinct functional outcomes.
Collapse
Affiliation(s)
- Nicolas Barbera
- University of Illinois at Chicago, Chicago, IL, United States
| | | | - Belinda S Akpa
- North Carolina State University, Raleigh, NC, United States
| | - Irena Levitan
- University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
23
|
Dual activation of neuronal G protein-gated inwardly rectifying potassium (GIRK) channels by cholesterol and alcohol. Sci Rep 2017; 7:4592. [PMID: 28676630 PMCID: PMC5496853 DOI: 10.1038/s41598-017-04681-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
Activation of G protein-gated inwardly rectifying potassium (GIRK) channels leads to a hyperpolarization of the neuron’s membrane potential, providing an important component of inhibition in the brain. In addition to the canonical G protein-activation pathway, GIRK channels are activated by small molecules but less is known about the underlying gating mechanisms. One drawback to previous studies has been the inability to control intrinsic and extrinsic factors. Here we used a reconstitution strategy with highly purified mammalian GIRK2 channels incorporated into liposomes and demonstrate that cholesterol or intoxicating concentrations of ethanol, i.e., >20 mM, each activate GIRK2 channels directly, in the absence of G proteins. Notably, both activators require the membrane phospholipid PIP2 but appear to interact independently with different regions of the channel. Elucidating the mechanisms underlying G protein-independent pathways of activating GIRK channels provides a unique strategy for developing new types of neuronal excitability modulators.
Collapse
|
24
|
|
25
|
Chimote AA, Hajdu P, Sfyris AM, Gleich BN, Wise-Draper T, Casper KA, Conforti L. Kv1.3 Channels Mark Functionally Competent CD8+ Tumor-Infiltrating Lymphocytes in Head and Neck Cancer. Cancer Res 2016; 77:53-61. [PMID: 27815390 DOI: 10.1158/0008-5472.can-16-2372] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
Tumor-infiltrating lymphocytes (TIL) are potent mediators of an antitumor response. However, their function is attenuated in solid tumors. CD8+ T-cell effector functions, such as cytokine and granzyme production, depend on cytoplasmic Ca2+, which is controlled by ion channels. In particular, Kv1.3 channels regulate the membrane potential and Ca2+ influx in human effector memory T (TEM) cells. In this study, we assessed the contribution of reduced Kv1.3 and Ca2+ flux on TIL effector function in head and neck cancer (HNC). We obtained tumor samples and matched peripheral blood from 14 patients with HNC. CD3+ TILs were composed of 57% CD4+ (82% TEM and 20% Tregs) and 36% CD8+ cells. Electrophysiology revealed a 70% reduction in functional Kv1.3 channels in TILs as compared with peripheral blood T cells from paired patients, which was accompanied by a decrease in Ca2+ influx. Immunofluorescence analysis showed that CD8+ TILs expressing high Kv1.3 preferentially localized in the stroma. Importantly, high expression of Kv1.3 correlated with high Ki-67 and granzyme B expression. Overall, these data indicate that defective Kv1.3 channels and Ca2+ fluxes in TILs may contribute to reduced immune surveillance in HNC. Cancer Res; 77(1); 53-61. ©2016 AACR.
Collapse
Affiliation(s)
- Ameet A Chimote
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, Ohio
| | - Peter Hajdu
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, Ohio
| | - Alexandros M Sfyris
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, Ohio
| | - Brittany N Gleich
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, Ohio
| | - Trisha Wise-Draper
- Department of Internal Medicine, Division of Hematology/Oncology, University of Cincinnati, Cincinnati, Ohio
| | - Keith A Casper
- Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan
| | - Laura Conforti
- Department of Internal Medicine, Division of Nephrology, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
26
|
Zheng H, Lee S, Llaguno MC, Jiang QX. bSUM: A bead-supported unilamellar membrane system facilitating unidirectional insertion of membrane proteins into giant vesicles. ACTA ACUST UNITED AC 2016; 147:77-93. [PMID: 26712851 PMCID: PMC4692488 DOI: 10.1085/jgp.201511448] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
KvAP conjugated to beads via a C-terminal His-tag seeds formation of a supported bilayer with unidirectional channel orientation for functional studies. Fused or giant vesicles, planar lipid bilayers, a droplet membrane system, and planar-supported membranes have been developed to incorporate membrane proteins for the electrical and biophysical analysis of such proteins or the bilayer properties. However, it remains difficult to incorporate membrane proteins, including ion channels, into reconstituted membrane systems that allow easy control of operational dimensions, incorporation orientation of the membrane proteins, and lipid composition of membranes. Here, using a newly developed chemical engineering procedure, we report on a bead-supported unilamellar membrane (bSUM) system that allows good control over membrane dimension, protein orientation, and lipid composition. Our new system uses specific ligands to facilitate the unidirectional incorporation of membrane proteins into lipid bilayers. Cryo–electron microscopic imaging demonstrates the unilamellar nature of the bSUMs. Electrical recordings from voltage-gated ion channels in bSUMs of varying diameters demonstrate the versatility of the new system. Using KvAP as a model system, we show that compared with other in vitro membrane systems, the bSUMs have the following advantages: (a) a major fraction of channels are orientated in a controlled way; (b) the channels mediate the formation of the lipid bilayer; (c) there is one and only one bilayer membrane on each bead; (d) the lipid composition can be controlled and the bSUM size is also under experimental control over a range of 0.2–20 µm; (e) the channel activity can be recorded by patch clamp using a planar electrode; and (f) the voltage-clamp speed (0.2–0.5 ms) of the bSUM on a planar electrode is fast, making it suitable to study ion channels with fast gating kinetics. Our observations suggest that the chemically engineered bSUMs afford a novel platform for studying lipid–protein interactions in membranes of varying lipid composition and may be useful for other applications, such as targeted delivery and single-molecule imaging.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Sungsoo Lee
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Marc C Llaguno
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Cell Biology, Yale University, New Haven, CT 06510
| | - Qiu-Xing Jiang
- Department of Cell Biology, Department of Physiology, and Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390 Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| |
Collapse
|
27
|
Balajthy A, Somodi S, Pethő Z, Péter M, Varga Z, Szabó GP, Paragh G, Vígh L, Panyi G, Hajdu P. 7DHC-induced changes of Kv1.3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome. Pflugers Arch 2016; 468:1403-18. [DOI: 10.1007/s00424-016-1851-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023]
|
28
|
Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:750203. [PMID: 25866806 PMCID: PMC4383400 DOI: 10.1155/2015/750203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting "leukemogenic" signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.
Collapse
|
29
|
Levitan I, Singh DK, Rosenhouse-Dantsker A. Cholesterol binding to ion channels. Front Physiol 2014; 5:65. [PMID: 24616704 PMCID: PMC3935357 DOI: 10.3389/fphys.2014.00065] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/03/2014] [Indexed: 11/13/2022] Open
Abstract
Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.
Collapse
Affiliation(s)
- Irena Levitan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois at ChicagoChicago, IL, USA
| | | | | |
Collapse
|
30
|
Stock C, Ludwig FT, Hanley PJ, Schwab A. Roles of ion transport in control of cell motility. Compr Physiol 2013; 3:59-119. [PMID: 23720281 DOI: 10.1002/cphy.c110056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell motility is an essential feature of life. It is essential for reproduction, propagation, embryonic development, and healing processes such as wound closure and a successful immune defense. If out of control, cell motility can become life-threatening as, for example, in metastasis or autoimmune diseases. Regardless of whether ciliary/flagellar or amoeboid movement, controlled motility always requires a concerted action of ion channels and transporters, cytoskeletal elements, and signaling cascades. Ion transport across the plasma membrane contributes to cell motility by affecting the membrane potential and voltage-sensitive ion channels, by inducing local volume changes with the help of aquaporins and by modulating cytosolic Ca(2+) and H(+) concentrations. Voltage-sensitive ion channels serve as voltage detectors in electric fields thus enabling galvanotaxis; local swelling facilitates the outgrowth of protrusions at the leading edge while local shrinkage accompanies the retraction of the cell rear; the cytosolic Ca(2+) concentration exerts its main effect on cytoskeletal dynamics via motor proteins such as myosin or dynein; and both, the intracellular and the extracellular H(+) concentration modulate cell migration and adhesion by tuning the activity of enzymes and signaling molecules in the cytosol as well as the activation state of adhesion molecules at the cell surface. In addition to the actual process of ion transport, both, channels and transporters contribute to cell migration by being part of focal adhesion complexes and/or physically interacting with components of the cytoskeleton. The present article provides an overview of how the numerous ion-transport mechanisms contribute to the various modes of cell motility.
Collapse
Affiliation(s)
- Christian Stock
- Institute of Physiology II, University of Münster, Münster, Germany.
| | | | | | | |
Collapse
|
31
|
Hajdu P, Chimote AA, Thompson TH, Koo Y, Yun Y, Conforti L. Functionalized liposomes loaded with siRNAs targeting ion channels in effector memory T cells as a potential therapy for autoimmunity. Biomaterials 2013; 34:10249-57. [PMID: 24075407 DOI: 10.1016/j.biomaterials.2013.09.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/05/2013] [Indexed: 12/24/2022]
Abstract
Effector memory T cells (TM) play a key role in the pathology of certain autoimmune disorders. The activity of effector TM cells is under the control of Kv1.3 ion channels, which facilitate the Ca(2+) influx necessary for T cell activation and function, i.e. cytokine release and proliferation. Consequently, the knock-down of Kv1.3 expression in effector TM's may be utilized as a therapy for the treatment of autoimmune diseases. In this study we synthesized lipid unilamellar nanoparticles (NPs) that can selectively deliver Kv1.3 siRNAs into TM cells in vitro. NPs made from a mixture of phosphatidylcholine, pegylated/biotinylated phosphoethanolamine and cholesterol were functionalized with biotinylated-CD45RO (cell surface marker of TM's) antibodies via fluorophore-conjugated streptavidin (CD45RO-NPs). Incubation of T cells with CD45RO-NPs resulted into the selective attachment and endocytosis of the NPs into TM's. Furthermore, the siRNA against Kv1.3, encapsulated into the CD45RO-NPs, was released into the cytosol. Consequently, the expression of Kv1.3 channels decreased significantly in TM's, which led to a remarkable decrease in Ca(2+) influx. Our results can form the basis of an innovative therapeutic approach in autoimmunity.
Collapse
Affiliation(s)
- Péter Hajdu
- University of Cincinnati, Department of Internal Medicine, Division of Nephrology and Hypertension, 231 Albert Sabin Way, Cincinnati, OH 45267-0585, USA
| | | | | | | | | | | |
Collapse
|
32
|
Zhang YH, Khanna R, Nicol GD. Nerve growth factor/p75 neurotrophin receptor-mediated sensitization of rat sensory neurons depends on membrane cholesterol. Neuroscience 2013; 248:562-70. [PMID: 23811397 DOI: 10.1016/j.neuroscience.2013.06.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/14/2013] [Accepted: 06/18/2013] [Indexed: 12/31/2022]
Abstract
Nerve growth factor (NGF) is an important mediator in the initiation of the inflammatory response and NGF via activation of the p75 neurotrophin receptor (p75(NTR)) and downstream sphingomyelin signaling leads to significant enhancement of the excitability of small-diameter sensory neurons. Because of the interaction between sphingomyelin and cholesterol in creating membrane liquid-ordered domains known as membrane or lipid rafts, we examined whether neuronal NGF-induced sensitization via p75(NTR) was dependent on the integrity of membrane rafts. Here, we demonstrate that the capacity of NGF to enhance the excitability of sensory neurons may result from the interaction of p75(NTR) with its downstream signaling partner(s) in membrane rafts. Two agents known to disrupt membrane rafts, edelfosine and methyl-β-cyclodextrin (MβCD), block the increase in excitability produced by NGF. In contrast, treatment with MβCD containing saturated amounts of cholesterol does not alter the capacity of NGF to augment excitability. In addition, adding back MβCD with cholesterol restored the NGF-induced sensitization in previously cholesterol-depleted neurons, suggesting that cholesterol and the structural integrity of rafts are key to promoting NGF-mediated sensitization. Using established protocols to isolate detergent-resistant membranes, both p75(NTR) and the neuronal membrane raft marker, flotillin, localize to raft fractions. These results suggest that downstream signaling partners interacting with p75(NTR) in sensory neurons are associated with membrane raft signaling platforms.
Collapse
Affiliation(s)
- Y H Zhang
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - R Khanna
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| | - G D Nicol
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
33
|
Somodi S, Balajthy A, Szilágyi O, Pethő Z, Harangi M, Paragh G, Panyi G, Hajdu P. Analysis of the K+ current in human CD4+ T lymphocytes in hypercholesterolemic state. Cell Immunol 2013; 281:20-6. [PMID: 23416720 DOI: 10.1016/j.cellimm.2013.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 12/22/2012] [Accepted: 01/12/2013] [Indexed: 11/18/2022]
Abstract
Atherosclerosis involves immune mechanisms: T lymphocytes are found in atherosclerotic plaques, suggesting their activation during atherogenesis. The predominant voltage-gated potassium channel of T cells, Kv1.3 is a key regulator of the Ca(2+)-dependent activation pathway. In the present experiments we studied the proliferation capacity and functional changes of Kv1.3 channels in T cells from healthy and hypercholestaeremic patients. By means of CFSE-assay (carboxyfluorescein succinimidyl ester) we showed that spontaneous activation rate of lymphocytes in hypercholesterolemia was elevated and the antiCD3/antiCD28 co-stimulation was less effective as compared to the healthy group. Using whole-cell patch-clamping we obtained that the activation and deactivation kinetics of Kv1.3 channels were faster in hypercholesterolemic state but no change in other parameters of Kv1.3 were found (inactivation kinetics, steady-state activation, expression level). We suppose that incorporation of oxLDL species via its raft-rupturing effect can modify proliferative rate of T cells as well as the gating of Kv1.3 channels.
Collapse
Affiliation(s)
- Sándor Somodi
- 1st Department of Internal Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Izsepi E, Himer L, Szilagyi O, Hajdu P, Panyi G, Laszlo G, Matko J. Membrane microdomain organization, calcium signal, and NFAT activation as an important axis in polarized Th cell function. Cytometry A 2012. [DOI: 10.1002/cyto.a.22234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Martin GV, Yun Y, Conforti L. Modulation of T cell activation by localized K⁺ accumulation at the immunological synapse--a mathematical model. J Theor Biol 2012; 300:173-82. [PMID: 22285786 DOI: 10.1016/j.jtbi.2012.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 12/21/2011] [Accepted: 01/11/2012] [Indexed: 01/06/2023]
Abstract
The response of T cells to antigens (T cell activation) is marked by an increase in intracellular Ca²⁺ levels. Voltage-gated and Ca²⁺-dependent K⁺ channels control the membrane potential of human T cells and regulate Ca²⁺ influx. This regulation is dependent on proper accumulation of K⁺ channels at the immunological synapse (IS) a signaling zone that forms between a T cell and antigen presenting cell. It is believed that the IS provides a site for regulation of the activation response and that K⁺ channel inhibition occurs at the IS, but the underlying mechanisms are unknown. A mathematical model was developed to test whether K⁺ efflux through K⁺ channels leads to an accumulation of K⁺ in the IS cleft, ultimately reducing K⁺ channel function and intracellular Ca²⁺ concentration ([Ca²⁺](i)). Simulations were conducted in models of resting and activated T cell subsets, which express different levels of K⁺ channels, by varying the K⁺ diffusion constant and the spatial localization of K⁺ channels at the IS. K⁺ accumulation in the IS cleft was calculated to increase K⁺ concentration ([K⁺]) from its normal value of 5.0 mM to 5.2-10.0 mM. Including K⁺ accumulation in the model of the IS reduced calculated K⁺ current by 1-12% and consequently, reduced calculated [Ca²⁺](i) by 1-28%. Significant reductions in K⁺ current and [Ca²⁺](i) only occurred in activated T cell simulations when most K⁺ channels were centrally clustered at the IS. The results presented show that the localization of K⁺ channels at the IS can produce a rise in [K⁺] in the IS cleft and lead to a substantial decrease in K⁺ currents and [Ca²⁺](i) in activated T cells thus providing a feedback inhibitory mechanism during T cell activation.
Collapse
Affiliation(s)
- Geoffrey V Martin
- Department of Internal Medicine, 231 A. Sabin Way, Division of Nephrology, University of Cincinnati, Cincinnati, OH 45267-0585, USA
| | | | | |
Collapse
|
36
|
Rosenhouse‐Dantsker A, Mehta D, Levitan I. Regulation of Ion Channels by Membrane Lipids. Compr Physiol 2012; 2:31-68. [DOI: 10.1002/cphy.c110001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Lipid-dependent gating of a voltage-gated potassium channel. Nat Commun 2011; 2:250. [PMID: 21427721 PMCID: PMC3072105 DOI: 10.1038/ncomms1254] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/23/2011] [Indexed: 12/31/2022] Open
Abstract
Recent studies hypothesized that phospholipids stabilize two voltage-sensing arginine residues of certain voltage-gated potassium channels in activated conformations. It remains unclear how lipids directly affect these channels. Here, by examining the conformations of the KvAP in different lipids, we showed that without voltage change, the voltage-sensor domains switched from the activated to the resting state when their surrounding lipids were changed from phospholipids to nonphospholipids. Such lipid-determined conformational change was coupled to the ion-conducting pore, suggesting that parallel to voltage gating, the channel is gated by its annular lipids. Our measurements recognized that the energetic cost of lipid-dependent gating approaches that of voltage gating, but kinetically it appears much slower. Our data support that a channel and its surrounding lipids together constitute a functional unit, and natural nonphospholipids such as cholesterol should exert strong effects on voltage-gated channels. Our first observation of lipid-dependent gating may have general implications to other membrane proteins. Lipid phosphodiesters affect the conformation of certain potassium channels, but the details of the lipid-channel interactions are unclear. Here, the KvAP channel is found to switch from an active to a resting state when the channels are transferred from a phospholipid membrane to a bilayer lacking phosphodiesters.
Collapse
|
38
|
Modification of activation kinetics of delayed rectifier K+ currents and neuronal excitability by methyl-β-cyclodextrin. Neuroscience 2011; 176:431-41. [DOI: 10.1016/j.neuroscience.2010.10.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 11/23/2022]
|
39
|
Wu SN, Yeh CC, Huang HC, Yang WH. Cholesterol Depletion with (2-Hydroxypropyl)- β-Cyclodextrin Modifies the Gating of Membrane Electroporation-Induced Inward Current in Pituitary Tumor GH 3 Cells: Experimental and Analytical Studies. Cell Physiol Biochem 2011; 28:959-68. [PMID: 22178947 DOI: 10.1159/000335809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2011] [Indexed: 02/04/2023] Open
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan City, Taiwan.
| | | | | | | |
Collapse
|
40
|
Finol-Urdaneta RK, McArthur JR, Juranka PF, French RJ, Morris CE. Modulation of KvAP unitary conductance and gating by 1-alkanols and other surface active agents. Biophys J 2010; 98:762-72. [PMID: 20197029 DOI: 10.1016/j.bpj.2009.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 11/18/2022] Open
Abstract
The actions of alcohols and anesthetics on ion channels are poorly understood. Controversy continues about whether bilayer restructuring is relevant to the modulatory effects of these surface active agents (SAAs). Some voltage-gated K channels (Kv), but not KvAP, have putative low affinity alcohol-binding sites, and because KvAP structures have been determined in bilayers, KvAP could offer insights into the contribution of bilayer mechanics to SAA actions. We monitored KvAP unitary conductance and macroscopic activation and inactivation kinetics in PE:PG/decane bilayers with and without exposure to classic SAAs (short-chain 1-alkanols, cholesterol, and selected anesthetics: halothane, isoflurane, chloroform). At levels that did not measurably alter membrane specific capacitance, alkanols caused functional changes in KvAP behavior including lowered unitary conductance, modified kinetics, and shifted voltage dependence for activation. A simple explanation is that the site of SAA action on KvAP is its entire lateral interface with the PE:PG/decane bilayer, with SAA-induced changes in surface tension and bilayer packing order combining to modulate the shape and stability of various conformations. The KvAP structural adjustment to diverse bilayer pressure profiles has implications for understanding desirable and undesirable actions of SAA-like drugs and, broadly, predicts that channel gating, conductance and pharmacology may differ when membrane packing order differs, as in raft versus nonraft domains.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
41
|
Varga Z, Hajdu P, Panyi G. Ion channels in T lymphocytes: An update on facts, mechanisms and therapeutic targeting in autoimmune diseases. Immunol Lett 2010; 130:19-25. [DOI: 10.1016/j.imlet.2009.12.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 12/08/2009] [Accepted: 12/10/2009] [Indexed: 12/31/2022]
|
42
|
Abstract
A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K(+) channels, voltage-gated K(+) channels, Ca(+2) sensitive K(+) channels, voltage-gated Na(+) channels, N-type voltage-gated Ca(+2) channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na(+) channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K(+) channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed.
Collapse
Affiliation(s)
- Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | | | | | | |
Collapse
|
43
|
Chun YS, Shin S, Kim Y, Cho H, Park MK, Kim TW, Voronov SV, Di Paolo G, Suh BC, Chung S. Cholesterol modulates ion channels via down-regulation of phosphatidylinositol 4,5-bisphosphate. J Neurochem 2009; 112:1286-94. [PMID: 20015154 DOI: 10.1111/j.1471-4159.2009.06545.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquitously expressed Mg(2+)-inhibitory cation (MIC) channels are permeable to Ca2+ and Mg2+ and are essential for cell viability. When membrane cholesterol level was increased by pre-incubating cells with a water-soluble form of cholesterol, the endogenous MIC current in HEK293 cells was negatively regulated. The application of phosphatidylinositol 4,5-bisphosphate (PIP2) recovered MIC current from cholesterol effect. As PIP2 is the direct modulator for MIC channels, high cholesterol content may cause down-regulation of PIP2. To test this possibility, we examined the effect of cholesterol on two exogenously expressed PIP2-sensitive K+ channels: human Ether-a-go-go related gene (HERG) and KCNQ. Enrichment with cholesterol inhibited HERG currents, while inclusion of PIP2 in the pipette solution blocked the cholesterol effect. KCNQ channel was also inhibited by cholesterol. The effects of cholesterol on these channels were blocked by pre-incubating cells with inhibitors for phospholipase C, which may indicate that cholesterol enrichment induces the depletion of PIP2 via phospholipase C activation. Lipid analysis showed that cholesterol enrichment reduced gamma-(32)P incorporation into PIP2 by approximately 35%. Our results suggest that cholesterol may modulate ion channels by changing the levels of PIP2. Thus, an important cross-talk exists among two plasma membrane-enriched lipids, cholesterol and PIP2.
Collapse
Affiliation(s)
- Yoon Sun Chun
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tóth A, Szilágyi O, Krasznai Z, Panyi G, Hajdú P. Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse. Immunol Lett 2009; 125:15-21. [PMID: 19477198 DOI: 10.1016/j.imlet.2009.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/12/2009] [Accepted: 05/16/2009] [Indexed: 01/29/2023]
Abstract
Formation of immunological synapse (IS), the interface between T cells and antigen presenting cells, is a crucial step in T cell activation. This conjugation formation results in the rearrangement and segregation of a set of membrane bound and cytosolic proteins, including that of the T cell receptor, into membrane domains. It was showed earlier that Kv1.3, the dominant voltage-gated potassium channel of T cells redistributes into the IS on interaction with its specific APC. In the present experiments we investigated the functional consequences of the translocation of Kv1.3 channels into the IS formed between mouse helper T (T(h)2) and B cells. Biophysical characteristics of whole-cell Kv1.3 current in standalone cells (c) or ones in IS (IS) were determined using voltage-clamp configuration of standard whole-cell patch-clamp technique. Patch-clamp recordings showed that the activation of Kv1.3 current slowed (tau(a,IS)=2.36+/-0.13 ms (n=7); tau(a,c)=1.36+/-0.06 ms (n=18)) whereas the inactivation rate increased (tau(i,IS)=263+/-29 ms (n=7); tau(i,c)=365+/-27 ms (n=17)) in cells being in IS compared to the standalone cells. The equilibrium distribution between the open and the closed states of Kv1.3 (voltage-dependence of steady-state activation) was shifted toward the depolarizing potentials in T cells engaged into IS (V(1/2,IS)=-20.9+/-2 mV (n=7), V(1/2,c)=-26.4+/-1.5 mV (n=12)). Thus, segregation of Kv1.3 channels into the IS modifies the gating properties of the channels. Application of protein kinase (PK) inhibitors (PKC: GF109203X, PKA: H89, p56Lck: damnacanthal) demonstrated that increase in the inactivation rate can be explained by the dephosphorylation of the channel protein. However, the slower activation kinetics of Kv1.3 in IS is likely to be the consequence of the redistribution of the channels into distinct membrane domains.
Collapse
Affiliation(s)
- Agnes Tóth
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
45
|
Yoshida K, Krasznai ZT, Krasznai Z, Yoshiike M, Kawano N, Yoshida M, Morisawa M, Tóth Z, Bazsáné ZK, Márián T, Iwamoto T. Functional implications of membrane modification with semenogelins for inhibition of sperm motility in humans. ACTA ACUST UNITED AC 2009; 66:99-108. [PMID: 19089943 DOI: 10.1002/cm.20329] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Semenogelin I and II (Sgs) are the major component of human semen coagulum. The protein is rapidly cleaved after ejaculation by a prostate-specific antigen, resulting in liquefaction of the semen coagulum and the progressive release of motile spermatozoa. Sgs inhibit human sperm motility; however, there is currently no information on its effect on the sperm membrane. This study investigated the role of Sgs on human sperm motility through regulation of membrane potential and membrane permeability. Fresh semen samples were obtained from normozoospermic volunteers, and studies were conducted using motile cells selected using the swim-up method. Sgs changed the characteristics of sperm motion from circular to straightforward as evaluated by a computer-assisted motility analyzer, and all parameters were decreased more than 2.5 mg/mL. The results demonstrate that Sgs treatment immediately hyperpolarized the membrane potential of swim-up-selected sperm, changed the membrane structure, and time-dependently increased membrane permeability, as determined through flow cytometric analysis. The biphasic effects of Sgs were time- and dose-dependent and partially reversible. In addition, a monoclonal antibody against Sgs showed positive binding to cell membrane proteins in fixed cells, observed with confocal fluorescence microscopy. These results demonstrate that Sgs modifies the membrane structure, indirectly inhibiting motility, and provides suggestions for a therapy for male infertility through selection of a functional sperm population using Sgs.
Collapse
Affiliation(s)
- Kaoru Yoshida
- Biomedical Engineering Center, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1053] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
47
|
Martínez-Mármol R, Villalonga N, Solé L, Vicente R, Tamkun MM, Soler C, Felipe A. Multiple Kv1.5 targeting to membrane surface microdomains. J Cell Physiol 2008; 217:667-73. [PMID: 18668522 DOI: 10.1002/jcp.21538] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Surface expression of voltage-dependent K(+) channels (Kv) has a pivotal role in leukocyte physiology. Although little is known about the physiological role of lipid rafts, these microdomains concentrate signaling molecules and their ion channel substrates. Kv1.3 associates with Kv1.5 to form functional channels in macrophages. Different isoform stoichiometries lead to distinct heteromeric channels which may be further modulated by targeting the complex to different membrane surface microdomains. Kv1.3 targets to lipid rafts, whereas Kv1.5 localization is under debate. With this in mind, we wanted to study whether heterotetrameric Kv1.5-containing channels target to lipid rafts. While in transfected HEK-293 cells, homo- and heterotetrameric channels targeted to rafts, Kv1.5 did not target to rafts in macrophages. Therefore, Kv1.3/Kv1.5 hybrid channels are mostly concentrated in non-raft microdomains. However, LPS-induced activation, which increases the Kv1.3/Kv1.5 ratio and caveolin, targeted Kv1.5 back to lipid rafts. Moreover, Kv1.5 did not localize to low-buoyancy fractions in L6E9 skeletal myoblasts, which also coexpress both channels, heart membranes or cardiomyocyes. Coexpression of a Cav3(DGV)-mutant confined Kv1.5 to Cav3(DGV)-vesicles of HEK cells. Contrarily, coexpression of Kvbeta2.1 impaired the Kv1.5 targeting to raft microdomains in HEK cells. Our results indicate that Kv1.5 partnership interactions are underlying mechanisms governing channel targeting to lipid rafts.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Vicente R, Villalonga N, Calvo M, Escalada A, Solsona C, Soler C, Tamkun MM, Felipe A. Kv1.5 association modifies Kv1.3 traffic and membrane localization. J Biol Chem 2008; 283:8756-64. [PMID: 18218624 DOI: 10.1074/jbc.m708223200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Kv1.3 activity is determined by raft association. In addition to Kv1.3, leukocytes also express Kv1.5, and both channels control physiological responses. Because the oligomeric composition may modify the channel targeting to the membrane, we investigated heterotetrameric Kv1.3/Kv1.5 channel traffic and targeting in HEK cells. Kv1.3 and Kv1.5 generate multiple heterotetramers with differential surface expression according to the subunit composition. FRET analysis and pharmacology confirm the presence of functional hybrid channels. Raft association was evaluated by cholesterol depletion, caveolae colocalization, and lateral diffusion at the cell surface. Immunoprecipitation showed that both Kv1.3 and heteromeric channels associate with caveolar raft domains. However, homomeric Kv1.3 channels showed higher association with caveolin traffic. Moreover, FRAP analysis revealed higher mobility for hybrid Kv1.3/Kv1.5 than Kv1.3 homotetramers, suggesting that heteromers target to distinct surface microdomains. Studies with lipopolysaccharide-activated macrophages further supported that different physiological mechanisms govern Kv1.3 and Kv1.5 targeting to rafts. Our results implicate the traffic and localization of Kv1.3/Kv1.5 heteromers in the complex regulation of immune system cells.
Collapse
Affiliation(s)
- Rubén Vicente
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Wei SP, Li XQ, Chou CF, Liang YY, Peng JB, Warnock DG, Ma HP. Membrane Tension Modulates the Effects of Apical Cholesterol on the Renal Epithelial Sodium Channel. J Membr Biol 2007; 220:21-31. [DOI: 10.1007/s00232-007-9071-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 08/27/2007] [Indexed: 11/30/2022]
|
50
|
Rajagopalan L, Greeson JN, Xia A, Liu H, Sturm A, Raphael RM, Davidson AL, Oghalai JS, Pereira FA, Brownell WE. Tuning of the outer hair cell motor by membrane cholesterol. J Biol Chem 2007; 282:36659-70. [PMID: 17933870 DOI: 10.1074/jbc.m705078200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cholesterol affects diverse biological processes, in many cases by modulating the function of integral membrane proteins. We observed that alterations of cochlear cholesterol modulate hearing in mice. Mammalian hearing is powered by outer hair cell (OHC) electromotility, a membrane-based motor mechanism that resides in the OHC lateral wall. We show that membrane cholesterol decreases during maturation of OHCs. To study the effects of cholesterol on hearing at the molecular level, we altered cholesterol levels in the OHC wall, which contains the membrane protein prestin. We show a dynamic and reversible relationship between membrane cholesterol levels and voltage dependence of prestin-associated charge movement in both OHCs and prestin-transfected HEK 293 cells. Cholesterol levels also modulate the distribution of prestin within plasma membrane microdomains and affect prestin self-association in HEK 293 cells. These findings indicate that alterations in membrane cholesterol affect prestin function and functionally tune the outer hair cell.
Collapse
Affiliation(s)
- Lavanya Rajagopalan
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Huffington Center on Aging and Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|