1
|
Warren AM, Grossmann M, Christ-Crain M, Russell N. Syndrome of Inappropriate Antidiuresis: From Pathophysiology to Management. Endocr Rev 2023; 44:819-861. [PMID: 36974717 PMCID: PMC10502587 DOI: 10.1210/endrev/bnad010] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/19/2023] [Accepted: 03/27/2023] [Indexed: 03/29/2023]
Abstract
Hyponatremia is the most common electrolyte disorder, affecting more than 15% of patients in the hospital. Syndrome of inappropriate antidiuresis (SIAD) is the most frequent cause of hypotonic hyponatremia, mediated by nonosmotic release of arginine vasopressin (AVP, previously known as antidiuretic hormone), which acts on the renal V2 receptors to promote water retention. There are a variety of underlying causes of SIAD, including malignancy, pulmonary pathology, and central nervous system pathology. In clinical practice, the etiology of hyponatremia is frequently multifactorial and the management approach may need to evolve during treatment of a single episode. It is therefore important to regularly reassess clinical status and biochemistry, while remaining alert to potential underlying etiological factors that may become more apparent during the course of treatment. In the absence of severe symptoms requiring urgent intervention, fluid restriction (FR) is widely endorsed as the first-line treatment for SIAD in current guidelines, but there is considerable controversy regarding second-line therapy in instances where FR is unsuccessful, which occurs in around half of cases. We review the epidemiology, pathophysiology, and differential diagnosis of SIAD, and summarize recent evidence for therapeutic options beyond FR, with a focus on tolvaptan, urea, and sodium-glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Annabelle M Warren
- Department of Medicine, University of Melbourne, Victoria 3010, Australia
- Department of Endocrinology, The Austin Hospital, Victoria 3084, Australia
| | - Mathis Grossmann
- Department of Medicine, University of Melbourne, Victoria 3010, Australia
- Department of Endocrinology, The Austin Hospital, Victoria 3084, Australia
| | - Mirjam Christ-Crain
- Department of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Basel 4031, Switzerland
- Department of Clinical Research, University of Basel and University Hospital Basel, Basel 4031, Switzerland
| | - Nicholas Russell
- Department of Medicine, University of Melbourne, Victoria 3010, Australia
- Department of Endocrinology, The Austin Hospital, Victoria 3084, Australia
| |
Collapse
|
2
|
Hyponatremia and the Brain. Kidney Int Rep 2017; 3:24-35. [PMID: 29340311 PMCID: PMC5762960 DOI: 10.1016/j.ekir.2017.08.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 01/12/2023] Open
Abstract
Hyponatremia is defined by low serum sodium concentration and is the most common electrolyte disorder encountered in clinical practice. Serum sodium is the main determinant of plasma osmolality, which, in turn, affects cell volume. In the presence of low extracellular osmolality, cells will swell if the adaptation mechanisms involved in the cell volume maintenance are inadequate. The most dramatic effects of hyponatremia on the brain are seen when serum sodium concentration decreases in a short period, allowing little or no adaptation. The brain is constrained inside a nonextensible envelope; thus, brain swelling carries a significant morbidity because of the compression of brain parenchyma over the rigid skull. Serum sodium concentration is an important determinant of several biological pathways in the nervous system, and recent studies have suggested that hyponatremia carries a significant risk of neurological impairment even in the absence of brain edema. The brain can also be affected by the treatment of hyponatremia, which, if not undertaken cautiously, could lead to osmotic demyelination syndrome, a rare demyelinating brain disorder that occurs after rapid correction of severe hyponatremia. This review summarizes the pathophysiology of brain complications of hyponatremia and its treatment.
Collapse
|
3
|
Zhou X, Naguro I, Ichijo H, Watanabe K. Mitogen-activated protein kinases as key players in osmotic stress signaling. Biochim Biophys Acta Gen Subj 2016; 1860:2037-52. [PMID: 27261090 DOI: 10.1016/j.bbagen.2016.05.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/21/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Osmotic stress arises from the difference between intracellular and extracellular osmolality. It induces cell swelling or shrinkage as a consequence of water influx or efflux, which threatens cellular activities. Mitogen-activated protein kinases (MAPKs) play central roles in signaling pathways in osmotic stress responses, including the regulation of intracellular levels of inorganic ions and organic osmolytes. SCOPE OF REVIEW The present review summarizes the cellular osmotic stress response and the function and regulation of the vertebrate MAPK signaling pathways involved. We also describe recent findings regarding apoptosis signal-regulating kinase 3 (ASK3), a MAP3K member, to demonstrate its regulatory effects on signaling molecules beyond MAPKs. MAJOR CONCLUSIONS MAPKs are rapidly activated by osmotic stress and have diverse roles, such as cell volume regulation, gene expression, and cell survival/death. There is significant cell type specificity in the function and regulation of MAPKs. Based on its activity change during osmotic stress and its regulation of the WNK1-SPAK/OSR1 pathway, ASK3 is expected to play important roles in osmosensing mechanisms and cellular functions related to osmoregulation. GENERAL SIGNIFICANCE MAPKs are essential for various cellular responses to osmotic stress; thus, the identification of the upstream regulators of MAPK pathways will provide valuable clues regarding the cellular osmosensing mechanism, which remains elusive in mammals. The elucidation of in vivo MAPK functions is also important because osmotic stress in physiological and pathophysiological conditions often results from changes in the intracellular osmolality. These studies potentially contribute to the establishment of therapeutic strategies against diseases that accompany osmotic perturbation.
Collapse
Affiliation(s)
- Xiangyu Zhou
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kengo Watanabe
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Koltsova SV, Platonova A, Maksimov GV, Mongin AA, Grygorczyk R, Orlov SN. Activation of P2Y receptors causes strong and persistent shrinkage of C11-MDCK renal epithelial cells. Am J Physiol Cell Physiol 2011; 301:C403-12. [PMID: 21562307 DOI: 10.1152/ajpcell.00018.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purinergic receptors activate diverse signaling cascades and regulate the activity of cell volume-sensitive ion transporters. However, the effects of ATP and other agonists of P2 receptors on cell volume dynamics are only scarcely studied. In the present work, we used the recently developed dual-image surface reconstruction technique to explore the influence of purinergic agonists on cell volume in the C11-Madin-Darby canine kidney cell line resembling intercalated cells from kidney collecting ducts. Unexpectedly, we found that ATP and UTP triggered very robust (55-60%) cell shrinkage that lasted up to 2 h after agonist washout. Purinergic regulation of cell volume required increases in intracellular Ca(2+) and could be partially mimicked by the Ca(2+)-ionophore ionomycin or activation of protein kinase C by 4β-phorbol 12-myristate 13-acetate. Cell shrinkage was accompanied by strong reductions in intracellular K(+) and Cl(-) content measured using steady-state (86)Rb(+) and (36)Cl(-) distribution. Both shrinkage and ion efflux in ATP-treated cells were prevented by the anion channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and by the BK(Ca) channel inhibitors charybdotoxin, iberiotoxin, and paxilline. To evaluate the significance of cell-volume changes in purinergic signaling, we measured the impact of ATP on the expression of the immediate-early gene c-Fos. Thirty-minute treatment with ATP increased c-Fos immunoreactivity by approximately fivefold, an effect that was strongly inhibited by charybdotoxin and completely prevented by NPPB. Overall, our findings suggest that ATP-induced cell-volume changes are partially responsible for the physiological actions of purinergic agonists.
Collapse
Affiliation(s)
- Svetlana V Koltsova
- Research Centre, Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Rudkouskaya A, Chernoguz A, Haskew-Layton RE, Mongin AA. Two conventional protein kinase C isoforms, alpha and beta I, are involved in the ATP-induced activation of volume-regulated anion channel and glutamate release in cultured astrocytes. J Neurochem 2010; 105:2260-70. [PMID: 18315563 DOI: 10.1111/j.1471-4159.2008.05312.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Volume-regulated anion channels (VRACs) are activated by cell swelling and are permeable to inorganic and small organic anions, including the excitatory amino acids glutamate and aspartate. In astrocytes, ATP potently enhances VRAC activity and glutamate release via a P2Y receptor-dependent mechanism. Our previous pharmacological study identified protein kinase C (PKC) as a major signaling enzyme in VRAC regulation by ATP. However, conflicting results obtained with potent PKC blockers prompted us to re-evaluate the involvement of PKC in regulation of astrocytic VRACs by using small interfering RNA (siRNA) and pharmacological inhibitors that selectively target individual PKC isoforms. In primary rat astrocyte cultures, application of hypoosmotic medium (30% reduction in osmolarity) and 20 microM ATP synergistically increased the release of excitatory amino acids, measured with a non-metabolized analog of L-glutamate, D-[(3)H]aspartate. Both Go6976, the selective inhibitor of Ca(2+)-sensitive PKCalpha, betaI/II, and gamma, and MP-20-28, a cell permeable pseudosubstrate inhibitory peptide of PKCalpha and betaI/II, reduced the effects of ATP on D-[(3)H]aspartate release by approximately 45-55%. Similar results were obtained with a mixture of siRNAs targeting rat PKCalpha and betaI. Surprisingly, down-regulation of individual alpha and betaI PKC isozymes by siRNA was completely ineffective. These data suggest that ATP regulates VRAC activity and volume-sensitive excitatory amino acid release via cooperative activation of PKCalpha and betaI.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Center of Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208
| | - Artur Chernoguz
- Center of Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208
| | - Renée E Haskew-Layton
- Burke/Cornell Medical Research Institute of Cornell University, White Plains, NY 10605
| | - Alexander A Mongin
- Center of Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208
| |
Collapse
|
6
|
Hoffmann EK, Lambert IH, Pedersen SF. Physiology of cell volume regulation in vertebrates. Physiol Rev 2009; 89:193-277. [PMID: 19126758 DOI: 10.1152/physrev.00037.2007] [Citation(s) in RCA: 1030] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most cases, activation of volume regulatory osmolyte transport. After acute swelling, cell volume is regulated by the process of regulatory volume decrease (RVD), which involves the activation of KCl cotransport and of channels mediating K(+), Cl(-), and taurine efflux. Conversely, after acute shrinkage, cell volume is regulated by the process of regulatory volume increase (RVI), which is mediated primarily by Na(+)/H(+) exchange, Na(+)-K(+)-2Cl(-) cotransport, and Na(+) channels. Here, we review in detail the current knowledge regarding the molecular identity of these transport pathways and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.
Collapse
Affiliation(s)
- Else K Hoffmann
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
7
|
Franco R, Panayiotidis MI, de la Paz LDO. Autocrine signaling involved in cell volume regulation: the role of released transmitters and plasma membrane receptors. J Cell Physiol 2008; 216:14-28. [PMID: 18300263 DOI: 10.1002/jcp.21406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cell volume regulation is a basic homeostatic mechanism transcendental for the normal physiology and function of cells. It is mediated principally by the activation of osmolyte transport pathways that result in net changes in solute concentration that counteract cell volume challenges in its constancy. This process has been described to be regulated by a complex assortment of intracellular signal transduction cascades. Recently, several studies have demonstrated that alterations in cell volume induce the release of a wide variety of transmitters including hormones, ATP and neurotransmitters, which have been proposed to act as extracellular signals that regulate the activation of cell volume regulatory mechanisms. In addition, changes in cell volume have also been reported to activate plasma membrane receptors (including tyrosine kinase receptors, G-protein coupled receptors and integrins) that have been demonstrated to participate in the regulatory process of cell volume. In this review, we summarize recent studies about the role of changes in cell volume in the regulation of transmitter release as well as in the activation of plasma membrane receptors and their further implications in the regulation of the signaling machinery that regulates the activation of osmolyte flux pathways. We propose that the autocrine regulation of Ca2+-dependent and tyrosine phosphorylation-dependent signaling pathways by the activation of plasma membrane receptors and swelling-induced transmitter release is necessary for the activation/regulation of osmolyte efflux pathways and cell volume recovery. Furthermore, we emphasize the importance of studying these extrinsic signals because of their significance in the understanding of the physiology of cell volume regulation and its role in cell biology in vivo, where the constraint of the extracellular space might enhance the autocrine or even paracrine signaling induced by these released transmitters.
Collapse
Affiliation(s)
- Rodrigo Franco
- Laboratory of Cell Biology and Signal Transduction, Biomedical Research Unit, FES-Iztacala, UNAM, Mexico.
| | | | | |
Collapse
|
8
|
Vázquez-Juárez E, Ramos-Mandujano G, Hernández-Benítez R, Pasantes-Morales H. On the role of G-protein coupled receptors in cell volume regulation. Cell Physiol Biochem 2008; 21:1-14. [PMID: 18209467 DOI: 10.1159/000113742] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2008] [Indexed: 01/14/2023] Open
Abstract
Cell volume is determined genetically for each cell lineage, but it is not a static feature of the cell. Intracellular volume is continuously challenged by metabolic reactions, uptake of nutrients, intracellular displacement of molecules and organelles and generation of ionic gradients. Moreover, recent evidence raises the intriguing possibility that changes in cell volume act as signals for basic cell functions such as proliferation, migration, secretion and apoptosis. Cells adapt to volume increase by a complex, dynamic process resulting from the concerted action of volume sensing mechanisms and intricate signaling chains, directed to initiate the multiple adaptations demanded by a change in cell volume, among others adhesion reactions, membrane and cytoskeleton remodeling, and activation of the osmolyte pathways leading to reestablish the water balance between extracellular/intracellular or intracellular/intracellular compartments. In multicellular organisms, a continuous interaction with the external milieu is fundamental for the dynamics of the cell. It is in this sense that the recent surge of interest about the influence on cell volume control by the most extended family of signaling elements, the G proteins, acquires particular importance. As here reviewed, a large variety of G-protein coupled receptors (GPCRs) are involved in this interplay with cell volume regulatory mechanisms, which amplifies and diversifies the volume-elicited signaling chains, providing a variety of routes towards the multiple effectors related to cell volume changes.
Collapse
Affiliation(s)
- Erika Vázquez-Juárez
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico
| | | | | | | |
Collapse
|
9
|
Vázquez-Juárez E, Ramos-Mandujano G, Lezama RA, Cruz-Rangel S, Islas LD, Pasantes-Morales H. Thrombin increases hyposmotic taurine efflux and accelerates % MathType!Translator!2!1!AMS LaTeX.tdl!TeX -- AMS-LaTeX! % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbbjxAHX % garmWu51MyVXgatuuDJXwAK1uy0HwmaeHbfv3ySLgzG0uy0Hgip5wz % aebbnrfifHhDYfgasaacH8qrps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq % Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq % Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeWaeaaakeaaca % qGjbGaae4qaiaabMeadaqhaaWcbaGaae4CaiaabEhacaqGLbGaaeiB % aiaabYgaaeaacqGHsislaaaaaa!3FBE! $$ {\text{ICI}}^{ - }_{{{\text{swell}}}} $$ and RVD in 3T3 fibroblasts by a src-dependent EGFR transactivation. Pflugers Arch 2007; 455:859-72. [PMID: 17899168 DOI: 10.1007/s00424-007-0343-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 09/03/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
The present study in Swiss3T3 fibroblasts examines the effect of thrombin on hyposmolarity-induced osmolyte fluxes and RVD, and the contribution of the src/EGFR pathway. Thrombin (5 U/ml) added to a 30% hyposmotic medium markedly increased hyposmotic 3H-taurine efflux (285%), accelerated the volume-sensitive Cl- current (ICI-swell) and increased RVD rate. These effects were reduced (50-65%) by preventing the thrombin-induced intracellular Ca2+ [Ca2+]i rise with EGTA-AM, or with the phospholipase C (PLC) blocker U73122. Ca2+calmodulin (CaM) and calmodulin kinase II (CaMKII) also participate in this Ca2+-dependent pathway. Thrombin plus hyposmolarity increased src and EGFR phosphorylation, whose blockade by PP2 and AG1478, decreased by 30-50%, respectively, the thrombin effects on hyposmotic taurine efflux, ICI-swell and RVD. Ca2+- and src/EGFR-mediated pathways operate independently as shown by (1) the persistence of src and EGFR activation when [Ca2+]i rise is prevented and (2) the additive effect on taurine efflux, ICI-swell or RVD by simultaneous inhibition of the two pathways, which essentially suppressed these events. PLC-Ca2+- and src/EGFR-signaling pathways operate in the hyposmotic condition and because thrombin per se failed to increase taurine efflux and ICI-swell under isosmotic condition it seems that it is merely amplifying these previously activated mechanisms. The study shows that thrombin potentiates hyposmolarity-induced osmolyte fluxes and RVD by increasing src/EGFR-dependent signaling, in addition to the Ca2+-dependent pathway.
Collapse
Affiliation(s)
- E Vázquez-Juárez
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, DF, Mexico
| | | | | | | | | | | |
Collapse
|
10
|
Ramos-Mandujano G, Vázquez-Juárez E, Hernández-Benítez R, Pasantes-Morales H. Thrombin potently enhances swelling-sensitive glutamate efflux from cultured astrocytes. Glia 2007; 55:917-25. [PMID: 17437307 DOI: 10.1002/glia.20513] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High concentrations of thrombin (Thr) have been linked to neuronal damage in cerebral ischemia and traumatic brain injury. In the present study we found that Thr markedly enhanced swelling-activated efflux of (3)H-glutamate from cultured astrocytes exposed to hyposmotic medium. Thr (0.5-5 U/mL) elicited small (3)H-glutamate efflux under isosmotic conditions and increased the hyposmotic glutamate efflux by 5- to 10-fold, the maximum effect being observed at 15% osmolarity reduction. These Thr effects involve its protease activity and are fully mimicked by SFFLRN, the synthetic peptide activating protease-activated receptor-1. Thr potentiation of (3)H-glutamate efflux was largely dependent on a Thr-elicited increases in cytosolic Ca(2+) (Ca(2+) (i)) concentration ([Ca(2+)](i)). Preventing Ca(2+) (i) rise by treatment with EGTA-AM or with the phospholipase C blocker U73122 reduced the Thr-increased glutamate efflux by 68%. The protein kinase C blockers Go6976 or chelerythrine reduced the Thr effect by 19%-22%, while Ca/calmodulin blocker W7 caused a 63% inhibition. In addition to this Ca(2+)-sensitive pathway, Thr effect on glutamate efflux also involved activation of phosphoinositide-3 kinase (PI3K), since it was reduced by the PI3K inhibitor wortmannin (51% inhibition). Treating cells with EGTA-AM plus wortmannin essentially abolished Thr-dependent glutamate efflux. Thr-activated glutamate release was potently inhibited by the blockers of the volume-sensitive anion permeability pathway, NPPB (IC(50) 15.8 microM), DCPIB (IC(50) 4.2 microM), and tamoxifen (IC(50) 6.6 microM. These results suggest that Thr may contribute to the excitotoxic neuronal injury by elevating extracellular glutamate release from glial cells. Therefore, this work may aid in search of neuroprotective strategies for treating cerebral ischemia and brain trauma.
Collapse
Affiliation(s)
- Gerardo Ramos-Mandujano
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México DF, Mexico
| | | | | | | |
Collapse
|
11
|
Shennan DB, Thomson J, Davidson J, Gow IF. Properties of volume-activated taurine efflux from human breast cancer cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 583:109-16. [PMID: 17153594 DOI: 10.1007/978-0-387-33504-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
|
12
|
Shennan DB, Thomson J, Gow IF. Osmoregulation of taurine efflux from cultured human breast cancer cells: comparison with volume activated Cl- efflux and regulation by extracellular ATP. Cell Physiol Biochem 2006; 18:113-22. [PMID: 16914896 DOI: 10.1159/000095178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The properties and regulation of volume-activated taurine efflux from MDA-MB-231 and MCF-7 cells have been investigated. Volume-activated taurine release from both cell lines was almost completely inhibited by diidosalicylate. DIDS , was more effective at inhibiting swelling-induced taurine release from MCF-7 than from MDA-MB-231 cells. On the basis of comparing taurine, Cl(-) and I(-) efflux time courses, it appears that volume-activated taurine efflux does not utilize volume-sensitive anion channels in MDA-MB- 231 and MCF-7 cells. Extracellular ATP stimulated volume-activated taurine release from MDA-MB-231 cells but not from MCF-7 cells. The effect of ATP was mimicked by UTP and was dependent upon external calcium and inhibited by suramin. However, suramin inhibited volume-activated taurine efflux from both MDA-MB-231 and MCF-7 cells even in the absence of exogenously added ATP suggesting that it acts directly on the taurine efflux pathway and/or is inhibiting the effect of ATP released from the cells. Volume-activated taurine efflux from MDA-MB-231 cells was stimulated by ionomycin. In contrast, ionomycin had no effect on taurine release from MCF-7 cells. Adenosine also stimulated volume-activated taurine efflux from MDA-MB-231 cells. The results suggest that purines regulate taurine transport in MDA-MB- 231 cells via more than one type of receptor.
Collapse
Affiliation(s)
- David B Shennan
- Department of Bioscience, Royal College, University of Strathclyde, Glasgow, Scotland, UK
| | | | | |
Collapse
|
13
|
Abdullaev IF, Rudkouskaya A, Schools GP, Kimelberg HK, Mongin AA. Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cultured rat astrocytes. J Physiol 2006; 572:677-89. [PMID: 16527858 PMCID: PMC1780004 DOI: 10.1113/jphysiol.2005.103820] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ubiquitously expressed volume-regulated anion channels (VRACs) are chloride channels which are permeable to a variety of small organic anions, including the excitatory amino acids (EAAs) glutamate and aspartate. Broad spectrum anion channel blockers strongly reduce EAA release in cerebral ischaemia and other pathological states associated with prominent astrocytic swelling. However, it is uncertain whether VRAC serves as a major pathway for EAA release from swollen cells. In the present study, we measured swelling-activated release of EAAs as D-[3H]aspartate efflux, and VRAC-mediated Cl- currents by whole-cell patch clamp in cultured rat astrocytes. We compared the pharmacological profiles of the swelling-activated EAA release pathway and Cl- currents. The expression of candidate Cl- channels was confirmed by RT-PCR. The maxi Cl- channel (p-VDAC) blocker Gd3+, the ClC-2 inhibitor Cd2+, and the MDR-1 blocker verapamil did not affect EAA release or VRAC currents. An antagonist of calcium-sensitive Cl- channels (CaCC), niflumic acid, had little effect on EAA release and only partially inhibited swelling-activated Cl- currents. The phorbol ester PDBu, which blocks ClC-3-mediated Cl- currents, had no effect on VRAC currents and up-regulated EAA release. In contrast, DCPIB, which selectively inhibits VRACs, potently suppressed both EAA release and VRAC currents. Two other relatively selective VRAC inhibitors, tamoxifen and phloretin, also blocked the VRAC currents and strongly reduced EAA release. Taken together, our data suggest that (i) astrocytic volume-dependent EAA release is largely mediated by the VRAC, and (ii) the ClC-2, ClC-3, ClC-4, ClC-5, VDAC, CaCC, MDR-1 and CFTR gene products do not contribute to EAA permeability.
Collapse
|
14
|
Pasantes-Morales H, Lezama RA, Ramos-Mandujano G. Tyrosine kinases and osmolyte fluxes during hyposmotic swelling. Acta Physiol (Oxf) 2006; 187:93-102. [PMID: 16734746 DOI: 10.1111/j.1748-1716.2006.01553.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence documents the involvement of protein tyrosine kinases (TK) in the signalling network activated by hyposmotic swelling and regulatory volume decrease. Both receptor type and cytosolic TK participate as signalling elements in the variety of cell adaptive responses to volume changes, which include adhesion reactions, reorganization of the cytoskeleton, temporal deformation/remodelling of the membrane and stress-detecting mechanisms. The present review refers to the influence of TK on the activation/operation of the osmolyte efflux pathways, ultimately leading to cell volume recovery, i.e. the osmosensitive Cl- channel (Cl-swell), the K+ channels activated by swelling in the different cell types and the taurine efflux pathway as representative of the organic osmolyte pathway.
Collapse
Affiliation(s)
- H Pasantes-Morales
- Department of Biophysics, Institute of Cell Physiology, National University of Mexico (UNAM), Mexico City, Mexico.
| | | | | |
Collapse
|