1
|
Paillé V, Park J, Toutain B, Bourreau J, Fontanaud P, De Nardi F, Gabillard-Lefort C, Bréard D, Guilet D, Henrion D, Legros C, Guérineau NC. Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment. Cell Mol Life Sci 2024; 82:31. [PMID: 39725761 DOI: 10.1007/s00018-024-05524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation. Combining electrophysiological techniques with catecholamine secretion assays on acute adrenal slices from spontaneously hypertensive rats, we show that chromaffin cell stimulus-secretion coupling is remodeled, resulting in a less efficient secretory function primarily upon sustained cholinergic challenges. The remodeling is supported by revamped both cellular and tissular mechanisms. This first includes a decrease in chromaffin cell excitability in response to sustained electrical stimulation. This hallmark was observed both experimentally and in a computational chromaffin cell model, and occurs with concomitant changes in voltage-gated ion channel expression. The cholinergic transmission at the splanchnic nerve-chromaffin cell synapses and the gap junctional communication between chromaffin cells are also weakened. As such, by disabling its competence to release catecholamines in response sustained stimulations, the hypertensive medulla has elaborated an adaptive shielding mechanism against damaging effects of redundant elevated catecholamine secretion and associated blood pressure.
Collapse
Affiliation(s)
- Vincent Paillé
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
- Nantes Université, INRAE, UMR 1280, PhAN, Nantes, France
| | - Joohee Park
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | - Bertrand Toutain
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | - Jennifer Bourreau
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | - Pierre Fontanaud
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France
| | - Frédéric De Nardi
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | | | | | - David Guilet
- Univ Angers, SONAS, SFR QUASAV, F-49000 Angers, France
| | - Daniel Henrion
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | - Christian Legros
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France
| | - Nathalie C Guérineau
- Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.
- Institut de Génomique Fonctionnelle, Université Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
2
|
Cho H, Park HJ, Choi JH, Nam MH, Jeong JS, Seo YK. Sound affects the neuronal maturation of neuroblastoma cells and the repair of damaged tissues. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
3
|
|
4
|
Li F, Yang C, Yuan F, Liao D, Li T, Guilak F, Zhong P. Dynamics and mechanisms of intracellular calcium waves elicited by tandem bubble-induced jetting flow. Proc Natl Acad Sci U S A 2018; 115:E353-E362. [PMID: 29282315 PMCID: PMC5776977 DOI: 10.1073/pnas.1713905115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One of the earliest events in cellular mechanotransduction is often an increase in intracellular calcium concentration associated with intracellular calcium waves (ICWs) in various physiologic or pathophysiologic processes. Although cavitation-induced calcium responses are believed to be important for modulating downstream bioeffects such as cell injury and mechanotransduction in ultrasound therapy, the fundamental mechanisms of these responses have not been elucidated. In this study, we investigated mechanistically the ICWs elicited in single HeLa cells by the tandem bubble-induced jetting flow in a microfluidic system. We identified two distinct (fast and slow) types of ICWs at varying degrees of flow shear stress-induced membrane deformation, as determined by different bubble standoff distances. We showed that ICWs were initiated by an extracellular calcium influx across the cell membrane nearest to the jetting flow, either primarily through poration sites for fast ICWs or opening of mechanosensitive ion channels for slow ICWs, which then propagated in the cytosol via a reaction-diffusion process from the endoplasmic reticulum. The speed of ICW (CICW ) was found to correlate strongly with the severity of cell injury, with CICW in the range of 33 μm/s to 93 μm/s for fast ICWs and 1.4 μm/s to 12 μm/s for slow ICWs. Finally, we demonstrated that micrometer-sized beads attached to the cell membrane integrin could trigger ICWs under mild cavitation conditions without collateral injury. The relation between the characteristics of ICW and cell injury, and potential strategies to mitigate cavitation-induced injury while evoking an intracellular calcium response, may be particularly useful for exploiting ultrasound-stimulated mechanotransduction applications in the future.
Collapse
Affiliation(s)
- Fenfang Li
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708
| | - Chen Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708
| | - Fang Yuan
- Huacells Corporation, Natick, MA 01760
| | - Defei Liao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708
| | - Thomas Li
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110
- Shriners Hospitals for Children, St. Louis, MO 63110
| | - Pei Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708;
| |
Collapse
|
5
|
Senatore A, Raiss H, Le P. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora. Front Physiol 2016; 7:481. [PMID: 27867359 PMCID: PMC5095125 DOI: 10.3389/fphys.2016.00481] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.
Collapse
Affiliation(s)
- Adriano Senatore
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Hamad Raiss
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Phuong Le
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
6
|
Scott AL, Zhang M, Nurse CA. Enhanced BDNF signalling following chronic hypoxia potentiates catecholamine release from cultured rat adrenal chromaffin cells. J Physiol 2016; 593:3281-99. [PMID: 26095976 DOI: 10.1113/jp270725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/06/2015] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS We investigated the role of the neurotrophin BDNF signalling via the TrkB receptor in rat adrenomedullary chromaffin cells (AMCs) exposed to normoxia (Nox; 21% O2) and chronic hypoxia (CHox; 2% O2) in vitro for ∼ 48 h. TrkB receptor expression was upregulated in primary AMCs and in immortalized chromaffin (MAH) cells exposed to CHox; this effect was absent in MAH cells deficient in the transcription factor, hypoxia inducible factor (HIF)-2α. Relative to normoxic controls, activation of the TrkB receptor in chronically hypoxic AMCs led to a marked increase in membrane excitability, intracellular [Ca(2+)], and catecholamine secretion. The BDNF-induced rise of intracellular [Ca(2+)] in CHox cells was sensitive to the selective T-type Ca(2+) channel blocker TTA-P2 and tetrodotoxin (TTX), suggesting key roles of low threshold T-type Ca(2+) and voltage-gated Na(+) channels in the signalling pathway. Environmental stressors, including chronic hypoxia, enhance the ability of adrenomedullary chromaffin cells (AMCs) to secrete catecholamines; however, the underlying molecular mechanisms remain unclear. Here, we investigated the role of brain-derived neurotrophic factor (BDNF) signalling in rat AMCs exposed to chronic hypoxia. In rat adrenal glands, BDNF and its tropomyosin-related kinase B (TrkB) receptor are highly expressed in the cortex and medulla, respectively. Exposure of AMCs to chronic hypoxia (2% O2; 48 h) in vitro caused a significant increase to TrkB mRNA expression. A similar increase was observed in an immortalized chromaffin cell line (MAH cells); however, it was absent in MAH cells deficient in the transcription factor HIF-2α. A specific TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), stimulated quantal catecholamine secretion from chronically hypoxic (CHox; 2% O2) AMCs to a greater extent than normoxic (Nox; 21% O2) controls. Activation of TrkB by BDNF or 7,8-DHF increased intracellular Ca(2+) ([Ca(2+)]i), an effect that was significantly larger in CHox cells. The 7,8-DHF-induced [Ca(2+)]i rise was sensitive to the tyrosine kinase inhibitor K252a and nickel (2 mm), but not the Ca(2+) store-depleting agent cyclopiazonic acid. Blockade of T-type calcium channels with TTA-P2 (1 μm) or voltage-gated Na(+) channels with TTX inhibited BDNF-induced [Ca(2+)]i increases. BDNF also induced a dose-dependent enhancement of action potential firing in CHox cells. These data demonstrate that during chronic hypoxia, enhancement of BDNF-TrkB signalling increases voltage-dependent Ca(2+) influx and catecholamine secretion in chromaffin cells, and that T-type Ca(2+) channels play a key role in the signalling pathway.
Collapse
Affiliation(s)
- Angela L Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Min Zhang
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Colin A Nurse
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
7
|
Abstract
A central theme in the quest to unravel the genetic basis of epilepsy has been the effort to elucidate the roles played by inherited defects in ion channels. The ubiquitous expression of voltage-gated calcium channels (VGCCs) throughout the central nervous system (CNS), along with their involvement in fundamental processes, such as neuronal excitability and synaptic transmission, has made them attractive candidates. Recent insights provided by the identification of mutations in the P/Q-type calcium channel in humans and rodents with epilepsy and the finding of thalamic T-type calcium channel dysfunction in the absence of seizures have raised expectations of a causal role of calcium channels in the polygenic inheritance of idiopathic epilepsy. In this review, we consider how genetic variation in neuronal VGCCs may influence the development of epilepsy.
Collapse
Affiliation(s)
- Sanjeev Rajakulendran
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| | - Michael G Hanna
- UCL-Institute of Neurology, MRC Centre for Neuromuscular Diseases, Queen Square, London WC1N 3BG, United Kingdom
| |
Collapse
|
8
|
Dissecting estimation of conductances in subthreshold regimes. J Comput Neurosci 2015; 39:271-87. [PMID: 26432075 DOI: 10.1007/s10827-015-0576-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 10/24/2022]
Abstract
We study the influence of subthreshold activity in the estimation of synaptic conductances. It is known that differences between actual conductances and the estimated ones using linear regression methods can be huge in spiking regimes, so caution has been taken to remove spiking activity from experimental data before proceeding to linear estimation. However, not much attention has been paid to the influence of ionic currents active in the non-spiking regime where such linear methods are still profusely used. In this paper, we use conductance-based models to test this influence using several representative mechanisms to induce ionic subthreshold activity. In all the cases, we show that the currents activated during subthreshold activity can lead to significant errors when estimating synaptic conductance linearly. Thus, our results add a new warning message when extracting conductance traces from intracellular recordings and the conclusions concerning neuronal activity that can be drawn from them. Additionally, we present, as a proof of concept, an alternative method that takes into account the main nonlinear effects of specific ionic subthreshold currents. This method, based on the quadratization of the subthreshold dynamics, allows us to reduce the relative errors of the estimated conductances by more than one order of magnitude. In experimental conditions, under appropriate fitting to canonical models, it could be useful to obtain better estimations as well even under the presence of noise.
Collapse
|
9
|
Vandael DHF, Marcantoni A, Carbone E. Cav1.3 Channels as Key Regulators of Neuron-Like Firings and Catecholamine Release in Chromaffin Cells. Curr Mol Pharmacol 2015; 8:149-61. [PMID: 25966692 PMCID: PMC5384372 DOI: 10.2174/1874467208666150507105443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/31/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
Neuronal and neuroendocrine L-type calcium channels (Cav1.2, Cav1.3) open readily at relatively low membrane potentials and allow Ca(2+) to enter the cells near resting potentials. In this way, Cav1.2 and Cav1.3 shape the action potential waveform, contribute to gene expression, synaptic plasticity, neuronal differentiation, hormone secretion and pacemaker activity. In the chromaffin cells (CCs) of the adrenal medulla, Cav1.3 is highly expressed and is shown to support most of the pacemaking current that sustains action potential (AP) firings and part of the catecholamine secretion. Cav1.3 forms Ca(2+)-nanodomains with the fast inactivating BK channels and drives the resting SK currents. These latter set the inter-spike interval duration between consecutive spikes during spontaneous firing and the rate of spike adaptation during sustained depolarizations. Cav1.3 plays also a primary role in the switch from "tonic" to "burst" firing that occurs in mouse CCs when either the availability of voltage-gated Na channels (Nav) is reduced or the β2 subunit featuring the fast inactivating BK channels is deleted. Here, we discuss the functional role of these "neuron-like" firing modes in CCs and how Cav1.3 contributes to them. The open issue is to understand how these novel firing patterns are adapted to regulate the quantity of circulating catecholamines during resting condition or in response to acute and chronic stress.
Collapse
Affiliation(s)
| | | | - Emilio Carbone
- Department of Drug Science, Corso Raffaello 30, I - 10125 Torino, Italy.
| |
Collapse
|
10
|
Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 2014; 82:24-45. [PMID: 24698266 DOI: 10.1016/j.neuron.2014.03.016] [Citation(s) in RCA: 436] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Voltage-gated calcium channels are the primary mediators of depolarization-induced calcium entry into neurons. There is great diversity of calcium channel subtypes due to multiple genes that encode calcium channel α1 subunits, coassembly with a variety of ancillary calcium channel subunits, and alternative splicing. This allows these channels to fulfill highly specialized roles in specific neuronal subtypes and at particular subcellular loci. While calcium channels are of critical importance to brain function, their inappropriate expression or dysfunction gives rise to a variety of neurological disorders, including, pain, epilepsy, migraine, and ataxia. This Review discusses salient aspects of voltage-gated calcium channel function, physiology, and pathophysiology.
Collapse
Affiliation(s)
- Brett A Simms
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
11
|
T-type channel-mediated neurotransmitter release. Pflugers Arch 2014; 466:677-87. [PMID: 24595475 DOI: 10.1007/s00424-014-1489-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Besides controlling a wide variety of cell functions, T-type channels have been shown to regulate neurotransmitter release in peripheral and central synapses and neuroendocrine cells. Growing evidence over the last 10 years suggests a key role of Cav3.2 and Cav3.1 channels in controlling basal neurosecretion near resting conditions and sustained release during mild stimulations. In some cases, the contribution of low-voltage-activated (LVA) channels is not directly evident but requires either the activation of coupled presynaptic receptors, block of ion channels, or chelation of metal ions. Concerning the coupling to the secretory machinery, T-type channels appear loosely coupled to neurotransmitter and hormone release. In neurons, Cav3.2 and Cav3.1 channels mainly control the asynchronous appearance of "minis" [miniature inhibitory postsynaptic currents (mIPSCs) and miniature excitatory postsynaptic currents (mEPSCs)]. The same loose coupling is evident from membrane capacity and amperometric recordings in chromaffin cells and melanotropes where the low-threshold-driven exocytosis possesses the same linear Ca(2+) dependence of the other voltage-gated Ca(2+) channels (Cav1 and Cav2) that is strongly attenuated by slow calcium buffers. The intriguing issue is that, despite not expressing a consensus "synprint" site, Cav3.2 channels do interact with syntaxin 1A and SNAP-25 and, thus, may form nanodomains with secretory vesicles that can be regulated at low voltages. In this review, we discuss all the past and recent issues related to T-type channel-secretion coupling in neurons and neuroendocrine cells.
Collapse
|
12
|
Senatore A, Guan W, Spafford JD. Cav3 T-type channels: regulators for gating, membrane expression, and cation selectivity. Pflugers Arch 2014; 466:645-60. [PMID: 24515291 DOI: 10.1007/s00424-014-1449-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 12/13/2022]
Abstract
Cav3 T-type channels are low-voltage-gated channels with rapid kinetics that are classified among the calcium-selective Cav1 and Cav2 type channels. Here, we outline the fundamental and unique regulators of T-type channels. An ubiquitous and proximally located "gating brake" works in concert with the voltage-sensor domain and S6 alpha-helical segment from domain II to set the canonical low-threshold and transient gating features of T-type channels. Gene splicing of optional exon 25c (and/or exon 26) in the short III-IV linker provides a developmental switch between modes of activity, such as activating in response to membrane depolarization, to channels requiring hyperpolarization input before being available to activate. Downstream of the gating brake in the I-II linker is a key region for regulating channel expression where alternative splicing patterns correlate with functional diversity of spike patterns, pacemaking rate (especially in the heart), stage of development, and animal size. A small but persistent window conductance depolarizes cells and boosts excitability at rest. T-type channels possess an ion selectivity that can resemble not only the calcium ion exclusive Cav1 and Cav2 channels but also the sodium ion selectivity of Nav1 sodium channels too. Alternative splicing in the extracellular turret of domain II generates highly sodium-permeable channels, which contribute to low-threshold sodium spikes. Cav3 channels are more ubiquitous among multicellular animals and more widespread in tissues than the more brain centric Nav1 sodium channels in invertebrates. Highly sodium-permeant Cav3 channels can functionally replace Nav1 channels in species where they are lacking, such as in Caenorhabditis elegans.
Collapse
Affiliation(s)
- A Senatore
- Department of Biology, University of Waterloo, B1-173, Waterloo, ON, N2L 3G1, Canada
| | | | | |
Collapse
|
13
|
Cilz NI, Kurada L, Hu B, Lei S. Dopaminergic modulation of GABAergic transmission in the entorhinal cortex: concerted roles of α1 adrenoreceptors, inward rectifier K⁺, and T-type Ca²⁺ channels. Cereb Cortex 2013; 24:3195-208. [PMID: 23843440 DOI: 10.1093/cercor/bht177] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Whereas the entorhinal cortex (EC) receives profuse dopaminergic innervations from the midbrain, the effects of dopamine (DA) on γ-Aminobutyric acid (GABA)ergic interneurons in this brain region have not been determined. We probed the actions of DA on GABAA receptor-mediated synaptic transmission in the EC. Application of DA increased the frequency, not the amplitude, of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSCs) recorded from entorhinal principal neurons, but slightly reduced the amplitude of the evoked IPSCs. The effects of DA were unexpectedly found to be mediated by α1 adrenoreceptors, but not by DA receptors. DA endogenously released by the application of amphetamine also increased the frequency of sIPSCs. Ca(2+) influx via T-type Ca(2+) channels was required for DA-induced facilitation of sIPSCs and mIPSCs. DA depolarized and enhanced the firing frequency of action potentials of interneurons. DA-induced depolarization was independent of extracellular Na(+) and Ca(2+) and did not require the functions of hyperpolarization-activated (Ih) channels and T-type Ca(2+) channels. DA-generated currents showed a reversal potential close to the K(+) reversal potential and inward rectification, suggesting that DA inhibits the inward rectifier K(+) channels (Kirs). Our results demonstrate that DA facilitates GABA release by activating α1 adrenoreceptors to inhibit Kirs, which further depolarize interneurons resulting in secondary Ca(2+) influx via T-type Ca(+) channels.
Collapse
Affiliation(s)
- Nicholas I Cilz
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Lalitha Kurada
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Binqi Hu
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Saobo Lei
- Department of Pharmacology, Physiology and Therapeutics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
14
|
Vandael DHF, Mahapatra S, Calorio C, Marcantoni A, Carbone E. Cav1.3 and Cav1.2 channels of adrenal chromaffin cells: emerging views on cAMP/cGMP-mediated phosphorylation and role in pacemaking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1608-18. [PMID: 23159773 DOI: 10.1016/j.bbamem.2012.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 11/05/2012] [Accepted: 11/08/2012] [Indexed: 12/21/2022]
Abstract
Voltage-gated Ca²⁺ channels (VGCCs) are voltage sensors that convert membrane depolarizations into Ca²⁺ signals. In the chromaffin cells of the adrenal medulla, the Ca²⁺ signals driven by VGCCs regulate catecholamine secretion, vesicle retrievals, action potential shape and firing frequency. Among the VGCC-types expressed in these cells (N-, L-, P/Q-, R- and T-types), the two L-type isoforms, Ca(v)1.2 and Ca(v)1.3, control key activities due to their particular activation-inactivation gating and high-density of expression in rodents and humans. The two isoforms are also effectively modulated by G protein-coupled receptor pathways delimited in membrane micro-domains and by the cAMP/PKA and NO/cGMP/PKG phosphorylation pathways which induce prominent Ca²⁺ current changes if opposingly regulated. The two L-type isoforms shape the action potential and directly participate to vesicle exocytosis and endocytosis. The low-threshold of activation and slow rate of inactivation of Ca(v)1.3 confer to this channel the unique property of carrying sufficient inward current at subthreshold potentials able to activate BK and SK channels which set the resting potential, the action potential shape, the cell firing mode and the degree of spike frequency adaptation during spontaneous firing or sustained depolarizations. These properties help chromaffin cells to optimally adapt when switching from normal to stress-mimicking conditions. Here, we will review past and recent findings on cAMP- and cGMP-mediated modulations of Ca(v)1.2 and Ca(v)1.3 and the role that these channels play in the control of chromaffin cell firing. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- D H F Vandael
- Department of Drug Science, Laboratory of Cellular & Molecular Neuroscience, NIS Center, CNISM, University of Torino, Italy
| | | | | | | | | |
Collapse
|
15
|
Levic S, Dulon D. The temporal characteristics of Ca2+ entry through L-type and T-type Ca2+ channels shape exocytosis efficiency in chick auditory hair cells during development. J Neurophysiol 2012; 108:3116-23. [PMID: 22972963 DOI: 10.1152/jn.00555.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During development, synaptic exocytosis by cochlear hair cells is first initiated by patterned spontaneous Ca(2+) spikes and, at the onset of hearing, by sound-driven graded depolarizing potentials. The molecular reorganization occurring in the hair cell synaptic machinery during this developmental transition still remains elusive. We characterized the changes in biophysical properties of voltage-gated Ca(2+) currents and exocytosis in developing auditory hair cells of a precocial animal, the domestic chick. We found that immature chick hair cells (embryonic days 10-12) use two types of Ca(2+) currents to control exocytosis: low-voltage-activating, rapidly inactivating (mibefradil sensitive) T-type Ca(2+) currents and high-voltage-activating, noninactivating (nifedipine sensitive) L-type currents. Exocytosis evoked by T-type Ca(2+) current displayed a fast release component (RRP) but lacked the slow sustained release component (SRP), suggesting an inefficient recruitment of distant synaptic vesicles by this transient Ca(2+) current. With maturation, the participation of L-type Ca(2+) currents to exocytosis largely increased, inducing a highly Ca(2+) efficient recruitment of an RRP and an SRP component. Notably, L-type-driven exocytosis in immature hair cells displayed higher Ca(2+) efficiency when triggered by prerecorded native action potentials than by voltage steps, whereas similar efficiency for both protocols was found in mature hair cells. This difference likely reflects a tighter coupling between release sites and Ca(2+) channels in mature hair cells. Overall, our results suggest that the temporal characteristics of Ca(2+) entry through T-type and L-type Ca(2+) channels greatly influence synaptic release by hair cells during cochlear development.
Collapse
Affiliation(s)
- Snezana Levic
- Equipe Neurophysiologie de la Synapse Auditive, Unité Mixte de Recherche, Institut National de la Santé et de la Recherche Médicale U587 et Université Bordeaux Segalen, Institut des Neurosciences de Bordeaux, Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | | |
Collapse
|
16
|
Calcium channel types contributing to chromaffin cell excitability, exocytosis and endocytosis. Cell Calcium 2012; 51:321-30. [DOI: 10.1016/j.ceca.2012.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 11/18/2022]
|
17
|
Functional chromaffin cell plasticity in response to stress: focus on nicotinic, gap junction, and voltage-gated Ca2+ channels. J Mol Neurosci 2012; 48:368-86. [PMID: 22252244 DOI: 10.1007/s12031-012-9707-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
An increase in circulating catecholamines constitutes one of the mechanisms whereby human body responds to stress. In response to chronic stressful situations, the adrenal medullary tissue exhibits crucial morphological and functional changes that are consistent with an improvement of chromaffin cell stimulus-secretion coupling efficiency. Stimulus-secretion coupling encompasses multiple intracellular (chromaffin cell excitability, Ca(2+) signaling, exocytosis, endocytosis) and intercellular pathways (splanchnic nerve-mediated synaptic transmission, paracrine and endocrine communication, gap junctional coupling), each of them being potentially subjected to functional remodeling upon stress. This review focuses on three chromaffin cell incontrovertible actors, the cholinergic nicotinic receptors and the voltage-dependent T-type Ca(2+) channels that are directly involved in Ca(2+)-dependent events controlling catecholamine secretion and electrical activity, and the gap junctional communication involved in the modulation of catecholamine secretion. We show here that these three actors react differently to various stressors, sometimes independently, sometimes in concert or in opposition.
Collapse
|
18
|
Hempel CM, Sivula M, Levenson JM, Rose DM, Li B, Sirianni AC, Xia E, Ryan TA, Gerber DJ, Cottrell JR. A system for performing high throughput assays of synaptic function. PLoS One 2011; 6:e25999. [PMID: 21998743 PMCID: PMC3187845 DOI: 10.1371/journal.pone.0025999] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/15/2011] [Indexed: 11/20/2022] Open
Abstract
Unbiased, high-throughput screening has proven invaluable for dissecting complex biological processes. Application of this general approach to synaptic function would have a major impact on neuroscience research and drug discovery. However, existing techniques for studying synaptic physiology are labor intensive and low-throughput. Here, we describe a new high-throughput technology for performing assays of synaptic function in primary neurons cultured in microtiter plates. We show that this system can perform 96 synaptic vesicle cycling assays in parallel with high sensitivity, precision, uniformity, and reproducibility and can detect modulators of presynaptic function. By screening libraries of pharmacologically defined compounds on rat forebrain cultures, we have used this system to identify novel effects of compounds on specific aspects of presynaptic function. As a system for unbiased compound as well as genomic screening, this technology has significant applications for basic neuroscience research and for the discovery of novel, mechanism-based treatments for central nervous system disorders.
Collapse
Affiliation(s)
- Chris M. Hempel
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | - Michael Sivula
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | | | - David M. Rose
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | - Bing Li
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | - Ana C. Sirianni
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | - Eva Xia
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | - Timothy A. Ryan
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, United States of America
| | - David J. Gerber
- Galenea Corporation, Cambridge, Massachusetts, United States of America
| | | |
Collapse
|
19
|
Calcium-dependent inhibition of T-type calcium channels by TRPV1 activation in rat sensory neurons. Pflugers Arch 2011; 462:709-22. [PMID: 21904821 DOI: 10.1007/s00424-011-1023-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
We studied the inhibitory effects of transient receptor potential vanilloid-1 (TRPV1) activation by capsaicin on low-voltage-activated (LVA, T-type) Ca(2+) channel and high-voltage-activated (HVA; L, N, P/Q, R) currents in rat DRG sensory neurons, as a potential mechanism underlying capsaicin-induced analgesia. T-type and HVA currents were elicited in whole-cell clamped DRG neurons using ramp commands applied before and after 30-s exposures to 1 μM capsaicin. T-type currents were estimated at the first peak of the I-V characteristics and HVA at the second peak, occurring at more positive potentials. Small and medium-sized DRG neurons responded to capsaicin producing transient inward currents of variable amplitudes, mainly carried by Ca(2+). In those cells responding to capsaicin with a large Ca(2+) influx (59% of the total), a marked inhibition of both T-type and HVA Ca(2+) currents was observed. The percentage of T-type and HVA channel inhibition was prevented by replacing Ca(2+) with Ba(2+) during capsaicin application or applying high doses of intracellular BAPTA (20 mM), suggesting that TRPV1-mediated inhibition of T-type and HVA channels is Ca(2+)-dependent and likely confined to membrane nano-microdomains. Our data are consistent with the idea that TRPV1-induced analgesia may derive from indirect inhibition of both T-type and HVA channels which, in turn, would reduce the threshold of nociceptive signals generation (T-type channel inhibition) and nociceptive synaptic transmission (HVA-channels inhibition).
Collapse
|
20
|
Linnertz R, Wurm A, Pannicke T, Krügel K, Hollborn M, Härtig W, Iandiev I, Wiedemann P, Reichenbach A, Bringmann A. Activation of voltage-gated Na+ and Ca2+ channels is required for glutamate release from retinal glial cells implicated in cell volume regulation. Neuroscience 2011; 188:23-34. [DOI: 10.1016/j.neuroscience.2011.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/20/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
|
21
|
Vandael DH, Marcantoni A, Mahapatra S, Caro A, Ruth P, Zuccotti A, Knipper M, Carbone E. Ca(v)1.3 and BK channels for timing and regulating cell firing. Mol Neurobiol 2010; 42:185-98. [PMID: 21088933 DOI: 10.1007/s12035-010-8151-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/09/2010] [Indexed: 12/20/2022]
Abstract
L-type Ca(2+) channels (LTCCs, Ca(v)1) open readily during membrane depolarization and allow Ca(2+) to enter the cell. In this way, LTCCs regulate cell excitability and trigger a variety of Ca(2+)-dependent physiological processes such as: excitation-contraction coupling in muscle cells, gene expression, synaptic plasticity, neuronal differentiation, hormone secretion, and pacemaker activity in heart, neurons, and endocrine cells. Among the two major isoforms of LTCCs expressed in excitable tissues (Ca(v)1.2 and Ca(v)1.3), Ca(v)1.3 appears suitable for supporting a pacemaker current in spontaneously firing cells. It has steep voltage dependence and low threshold of activation and inactivates slowly. Using Ca(v)1.3(-/-) KO mice and membrane current recording techniques such as the dynamic and the action potential clamp, it has been possible to resolve the time course of Ca(v)1.3 pacemaker currents that regulate the spontaneous firing of dopaminergic neurons and adrenal chromaffin cells. In several cell types, Ca(v)1.3 is selectively coupled to BK channels within membrane nanodomains and controls both the firing frequency and the action potential repolarization phase. Here we review the most critical aspects of Ca(v)1.3 channel gating and its coupling to large conductance BK channels recently discovered in spontaneously firing neurons and neuroendocrine cells with the aim of furnishing a converging view of the role that these two channel types play in the regulation of cell excitability.
Collapse
Affiliation(s)
- David Henry Vandael
- Department of Neuroscience, NIS Centre, CNISM, Corso Raffaello 30, 10125 Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pinato G, Pegoraro S, Iacono G, Ruaro ME, Torre V. Calcium control of gene regulation in rat hippocampal neuronal cultures. J Cell Physiol 2009; 220:727-47. [PMID: 19441076 DOI: 10.1002/jcp.21820] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Blockage of GABA-A receptors in hippocampal neuronal cultures triggers synchronous bursts of spikes initiating neuronal plasticity, partly mediated by changes of gene expression. By using specific pharmacological blockers, we have investigated which sources of Ca2+ entry primarily control changes of gene expression induced by 20 microM gabazine applied for 30 min (GabT). Intracellular Ca2+ transients were monitored with Ca2+ imaging while recording electrical activity with patch clamp microelectrodes. Concomitant transcription profiles were obtained using Affymetrix oligonucleotide microarrays and confirmed with quantitative RT-PCR. Blockage of NMDA receptors with 2-amino-5-phosphonovaleric acid (APV) did not reduce significantly somatic Ca2+ transients, which, on the contrary, were reduced by selective blockage of L, N, and P/Q types voltage gated calcium channels (VGCCs). Therefore, we investigated changes of gene expression in the presence of blockers of NMDA receptors and L, N, and P/Q VGCCs. Our results show that: (i) among genes upregulated by GabT, there are genes selectively dependent on NMDA activation, genes selectively dependent on L-type VGCCs and genes dependent on the activation of both channels; (ii) the majority of genes requires the concomitant activation of NMDA receptors and Ca2+ entry through VGCCs; (iii) blockage of N and P/Q VGCCs has an effect similar but not identical to blockage of L-type VGCCs.
Collapse
|
23
|
Carbone E, Carabelli V. O2 sensing in chromaffin cells: new duties for T-type channels. J Physiol 2009; 587:1859-60. [PMID: 19406883 DOI: 10.1113/jphysiol.2009.172197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
24
|
Kuri BA, Chan SA, Smith CB. PACAP regulates immediate catecholamine release from adrenal chromaffin cells in an activity-dependent manner through a protein kinase C-dependent pathway. J Neurochem 2009; 110:1214-25. [PMID: 19508428 DOI: 10.1111/j.1471-4159.2009.06206.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adrenal medullary chromaffin cells are a major peripheral output of the sympathetic nervous system. Catecholamine release from these cells is driven by synaptic excitation from the innervating splanchnic nerve. Acetylcholine has long been shown to be the primary transmitter at the splanchnic-chromaffin synapse, acting through ionotropic nicotinic acetylcholine receptors to elicit action potential-dependent secretion from the chromaffin cells. This cholinergic stimulation has been shown to desensitize under sustained stimulation, yet catecholamine release persists under this same condition. Recent evidence supports synaptic chromaffin cell stimulation through alternate transmitters. One candidate is pituitary adenylate cyclase activating peptide (PACAP), a peptide transmitter present in the adrenal medulla shown to have an excitatory effect on chromaffin cell secretion. In this study we utilize native neuronal stimulation of adrenal chromaffin cells in situ and amperometric catecholamine detection to demonstrate that PACAP specifically elicits catecholamine release under elevated splanchnic firing. Further data reveal that the immediate PACAP-evoked stimulation involves a phospholipase C and protein kinase C-dependent pathway to facilitate calcium influx through a Ni2+ and mibefradil-sensitive calcium conductance that results in catecholamine release. These data demonstrate that PACAP acts as a primary secretagogue at the sympatho-adrenal synapse under the stress response.
Collapse
Affiliation(s)
- Barbara A Kuri
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
25
|
Marcantoni A, Carabelli V, Comunanza V, Hoddah H, Carbone E. Calcium channels in chromaffin cells: focus on L and T types. Acta Physiol (Oxf) 2008; 192:233-46. [PMID: 18021322 DOI: 10.1111/j.1748-1716.2007.01815.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Voltage-gated Ca2+ channels (Cav) are highly expressed in the adrenal chromaffin cells of mammalian species. Besides shaping action potential waveforms, they are directly involved in the excitation-secretion coupling underlying catecholamine release and, possibly, control other Ca2+-dependent events that originate near the membrane. These functions are shared by a number of Cav channel types (L, N, P/Q, R and T) which have different structure-function characteristics and whose degree of expression changes remarkably among mammalian species. Understanding precisely the functioning of each voltage-gated Ca2+ channels is a crucial task that helps clarifying the Ca2+-dependent mechanisms controlling exocytosis during physiological and pathological conditions. In this paper, we focus on classical and new roles that L- and T-type channels play in the control of chromaffin cell excitability and neurotransmitter release. Interestingly, L-type channels are shown to be implicated in the spontaneous autorhythmicity of chromaffin cells, while T-type channels, which are absent in adult chromaffin cells, are coupled with secretion and can be recruited following long-term beta-adrenergic stimulation or chronic hypoxia. This suggests that like other cells, adrenal chromaffin cells undergo effective remodelling of membrane ion channels and cell functioning during prolonged stress conditions.
Collapse
Affiliation(s)
- A Marcantoni
- Department of Neuroscience, NIS Centre of Excellence, CNISM Research Unit, Torino, Italy
| | | | | | | | | |
Collapse
|
26
|
Fox AP, Cahill AL, Currie KPM, Grabner C, Harkins AB, Herring B, Hurley JH, Xie Z. N- and P/Q-type Ca2+ channels in adrenal chromaffin cells. Acta Physiol (Oxf) 2008; 192:247-61. [PMID: 18021320 DOI: 10.1111/j.1748-1716.2007.01817.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ca2+ is the most ubiquitous second messenger found in all cells. Alterations in [Ca2+]i contribute to a wide variety of cellular responses including neurotransmitter release, muscle contraction, synaptogenesis and gene expression. Voltage-dependent Ca2+ channels, found in all excitable cells (Hille 1992), mediate the entry of Ca2+ into cells following depolarization. Ca2+ channels are composed of a large pore-forming subunit, called the alpha1 subunit, and several accessory subunits. Ten different alpha1 subunit genes have been identified and classified into three families, Ca(v1-3) (Dunlap et al. 1995, Catterall 2000). Each alpha1 gene produces a unique Ca2+ channel. Although chromaffin cells express several different types of Ca2+ channels, this review will focus on the Cav(2.1) and Cav(2.2) channels, also known as P/Q- and N-type respectively (Nowycky et al. 1985, Llinas et al. 1989b, Wheeler et al. 1994). These channels exhibit physiological and pharmacological properties similar to their neuronal counterparts. N-, P/Q and to a lesser extent R-type Ca2+ channels are known to regulate neurotransmitter release (Hirning et al. 1988, Horne & Kemp 1991, Uchitel et al. 1992, Luebke et al. 1993, Takahashi & Momiyama 1993, Turner et al. 1993, Regehr & Mintz 1994, Wheeler et al. 1994, Wu & Saggau 1994, Waterman 1996, Wright & Angus 1996, Reid et al. 1997). N- and P/Q-type Ca2+ channels are abundant in nerve terminals where they colocalize with synaptic vesicles. Similarly, these channels play a role in neurotransmitter release in chromaffin cells (Garcia et al. 2006). N- and P/Q-type channels are subject to many forms of regulation (Ikeda & Dunlap 1999). This review pays particular attention to the regulation of N- and P/Q-type channels by heterotrimeric G-proteins, interaction with SNARE proteins, and channel inactivation in the context of stimulus-secretion coupling in adrenal chromaffin cells.
Collapse
Affiliation(s)
- A P Fox
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gackière F, Bidaux G, Delcourt P, Van Coppenolle F, Katsogiannou M, Dewailly E, Bavencoffe A, Van Chuoï-Mariot MT, Mauroy B, Prevarskaya N, Mariot P. CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J Biol Chem 2008; 283:10162-73. [PMID: 18230611 DOI: 10.1074/jbc.m707159200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Because prostate cancer is, in its early stages, an androgen-dependent pathology, treatments aiming at decreasing testosterone plasma concentration have been developed for many years now. However, a significant proportion of patients suffer a relapse after a few years of hormone therapy. The androgen-independent stage of prostate cancer has been shown to be associated with the development of neuroendocrine differentiation. We previously demonstrated that neuroendocrine prostate cancer cells derived from LNCaP cells overexpress CaV3.2 T-type voltage-dependent calcium channels. We demonstrate here using prostatic acid phosphatase as a marker of prostate secretion and FM1-43 fluorescence imaging of membrane trafficking that neuroendocrine differentiation is associated with an increase in calcium-dependent secretion which critically relies on CaV3.2 T-type calcium channel activity. In addition, we show that these channels are expressed by neuroendocrine cells in prostate cancer tissues obtained from patients after surgery. We propose that CaV3.2 T-type calcium channel up-regulation may account for the alteration of secretion during prostate cancer development and that these channels, by promoting the secretion of potential mitogenic factors, could participate in the progression of the disease toward an androgen-independent stage.
Collapse
Affiliation(s)
- Florian Gackière
- INSERM U800, Laboratoire de Physiologie Cellulaire, Equipe Labellisée par la Ligue contre le Cancer and Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Carabelli V, Marcantoni A, Comunanza V, de Luca A, Díaz J, Borges R, Carbone E. Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 2007; 584:149-65. [PMID: 17690152 PMCID: PMC2277059 DOI: 10.1113/jphysiol.2007.132274] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 08/03/2007] [Indexed: 12/24/2022] Open
Abstract
alpha(1H) T-type channels recruited by beta(1)-adrenergic stimulation in rat chromaffin cells (RCCs) are coupled to fast exocytosis with the same Ca(2+) dependence of high-threshold Ca(2+) channels. Here we show that RCCs exposed to chronic hypoxia (CH) for 12-18 h in 3% O(2) express comparable densities of functional T-type channels that depolarize the resting cells and contribute to low-voltage exocytosis. Following chronic hypoxia, most RCCs exhibited T-type Ca(2+) channels already available at -50 mV with the same gating, pharmacological and molecular features as the alpha(1H) isoform. Chronic hypoxia had no effects on cell size and high-threshold Ca(2+) current density and was mimicked by overnight incubation with the iron-chelating agent desferrioxamine (DFX), suggesting the involvement of hypoxia-inducible factors (HIFs). T-type channel recruitment occurred independently of PKA activation and the presence of extracellular Ca(2+). Hypoxia-recruited T-type channels were partially open at rest (T-type 'window-current') and contributed to raising the resting potential to more positive values. Their block by 50 microm Ni(2+) caused a 5-8 mV hyperpolarization. The secretory response associated with T-type channels could be detected following mild cell depolarizations, either by capacitance increases induced by step depolarizations or by amperometric current spikes induced by increased [KCl]. In the latter case, exocytotic bursts could be evoked even with 2-4 mm KCl and spike frequency was drastically reduced by 50 microm Ni(2+). Chronic hypoxia did not alter the shape of spikes, suggesting that hypoxia-recruited T-type channels increase the number of secreted vesicles at low voltages, without altering the mechanism of catecholamine release and the quantal content of released molecules.
Collapse
Affiliation(s)
- V Carabelli
- Department of Neuroscience, NIS Center of Excellence, CNISM Research Unit, 10125 Torino, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Carabelli V, Marcantoni A, Comunanza V, Carbone E. Fast exocytosis mediated by T- and L-type channels in chromaffin cells: distinct voltage-dependence but similar Ca2+ -dependence. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:753-62. [PMID: 17340096 DOI: 10.1007/s00249-007-0138-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/11/2007] [Accepted: 01/27/2007] [Indexed: 12/01/2022]
Abstract
Expression, spatial distribution and specific roles of different Ca(2+) channels in stimulus-secretion coupling of chromaffin cells are intriguing issues still open to discussion. Most of the evidence supports a role of high-voltage activated (HVA) Ca(2+) channels (L-, N-, P/Q- and R-types) in the control of exocytosis: some suggesting a preferential coupling of specific Ca(2+) channel subunits with the secretory apparatus, others favoring the idea of a contribution to secretion proportional to the expression density and gating properties of Ca(2+) channels. In this work we review recent findings and bring new evidence in favor of the hypothesis that also the LVA (low-voltage-activated, T-type) Ca(2+) channels effectively control fast exocytosis near resting potential in adrenal chromaffin cells of adult rats. T-type channels recruited after long-term treatments with pCPT-cAMP (or chronic hypoxia) are shown to control exocytosis with the same efficacy of L-type channels, which are the dominant Ca(2+) channel types expressed in rodent chromaffin cells. A rigorous comparison of T- and L-type channel properties shows that, although operating at different potentials and with different voltage-sensitivity, the two channels possess otherwise similar Ca(2+)-dependence of exocytosis, size and kinetics of depletion of the immediately releasable pool and mobilize vesicles of the same quantal size. Thus, T- and L-type channels are coupled with the same Ca(2+)-efficiency to the secretory apparatus and deplete the same number of vesicles ready for release. The major difference of the secretory signals controlled by the two channels appear to be the voltage range of operation, suggesting the idea that stressful conditions (hypoxia and persistent beta-adrenergic stimulation) can lower the threshold of cell excitability by recruiting new Ca(2+) channels and activate an additional source of catecholamine secretion.
Collapse
Affiliation(s)
- V Carabelli
- Department of Neuroscience, Centre of Excellence NIS, CNISM UdR, Corso Raffaello 30, Turin, Italy.
| | | | | | | |
Collapse
|