1
|
Salt sensitivity and hypertension. J Hum Hypertens 2020; 35:184-192. [PMID: 32862203 DOI: 10.1038/s41371-020-00407-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Salt sensitivity refers to the physiological trait present in mammals, including humans, by which the blood pressure (BP) of some members of the population exhibits changes parallel to changes in salt intake. It is commoner in elderly, females, Afro-Americans, patients with chronic kidney disease (CKD) and insulin resistance. Increased salt intake promotes an expansion of extracellular fluid volume and increases cardiac output. Salt-sensitive individuals present an abnormal kidney reaction to salt intake; the kidneys retain most of the salt due to an abnormal over-reactivity of sympathetic nervous system and a blunted suppression of renin-angiotensin axis. Moreover, instead of peripheral vascular resistance falling, salt-sensitive subjects present increased vascular resistance due mainly to impaired nitric oxide synthesis in endothelium. Recent studies have shown that part of the dietary salt loading accumulates in skin. Hypertensive and patients with CKD seem to have more sodium in skin comparing to healthy ones. However, we still have not fully explained the link between skin sodium, BP and salt sensitivity. Finally, although salt sensitivity plays a meaningful role in BP pathophysiology, it cannot be used by the physician in everyday patient's care, mainly due to lack of a simple and practical diagnostic test.
Collapse
|
2
|
Liu HB, Zhang J, Sun YY, Li XY, Jiang S, Liu MY, Shi J, Song BL, Zhao D, Ma HP, Zhang ZR. Dietary salt regulates epithelial sodium channels in rat endothelial cells: adaptation of vasculature to salt. Br J Pharmacol 2015; 172:5634-46. [PMID: 25953733 DOI: 10.1111/bph.13185] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 04/03/2015] [Accepted: 04/26/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE The epithelial sodium channel (ENaC) is expressed in vascular endothelial cells and is a negative modulator of vasodilation. However, the role of endothelial ENaCs in salt-sensitive hypertension remains unclear. Here, we have investigated how endothelial ENaCs in Sprague-Dawley (SD) rats respond to high-salt (HS) challenge. EXPERIMENTAL APPROACH BP and plasma aldosterone levels were measured. We used patch-clamp technique to record ENaC activity in split-open mesenteric arteries (MAs). Western blot and Griess assay were used to detect expression of α-ENaCs, eNOS and NO. Vasorelaxation in second-order MAs was measured with wire myograph assays. KEY RESULTS Functional ENaCs were observed in endothelial cells and their activity was significantly decreased after 1 week of HS diet. After 3 weeks of HS diet, ENaC expression was also reduced. When either ENaC activity or expression was reduced, endothelium-dependent relaxation (EDR) of MAs, in response to ACh, was enhanced. This enhancement of EDR was mimicked by amiloride, a blocker of ENaCs. By contrast, HS diet significantly increased contractility of MAs, accompanied by decreased eNOS activity and NO levels. However, ACh-induced release of NO was much higher in MAs isolated from HS rats than those from NS rats. CONCLUSIONS AND IMPLICATIONS HS intake increased the BP of SD rats, but simultaneously enhanced EDR by reducing ENaC activity and expression due to feedback inhibition. Therefore, ENaCs may play an important role in endothelial cells allowing the vasculature to adapt to HS conditions.
Collapse
Affiliation(s)
- Hui-Bin Liu
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Jun Zhang
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ying-Ying Sun
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Xin-Yuan Li
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Shuai Jiang
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Ming-Yu Liu
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Jing Shi
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Bin-Lin Song
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - Dan Zhao
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhi-Ren Zhang
- Departments of Clinical Pharmacy and Cardiology, Institute of Clinical Pharmacy, the 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China
| |
Collapse
|
3
|
Abstract
Guidelines on the appropriate use of perioperative steroids in patients with inflammatory bowel disease (IBD) are lacking. As a result, corticosteroid supplementation during and after colorectal surgery procedures has been shown to be highly variable. A clearer understanding of the indications for perioperative corticosteroid administration relative to preoperative corticosteroid dosing and duration of therapy is essential. In this review, we outline the basic tenets of the hypothalamic-pituitary-adrenal (HPA) axis and its normal response to stress, describe how corticosteroid use is thought to affect this system, and provide an overview of the currently available data on perioperative corticosteroid supplementation including the limited evidence pertaining to patients with inflammatory bowel disease. Based on currently existing data, we define "adrenal suppression," and propose a patient-based approach to perioperative corticosteroid management in the inflammatory bowel disease population based on an individual's historical use of corticosteroids, the type of surgery they are undergoing, and HPA axis testing when applicable. Patients without adrenal suppression (<5 mg prednisone per day) do not require extra corticosteroid supplementation in the perioperative period; patients with adrenal suppression (>20 mg prednisone per day) should be treated with additional perioperative corticosteroid coverage above their baseline home regimen; and patients with unclear HPA axis function (>5 and <20 mg prednisone per day) should undergo preoperative HPA axis testing to determine the best management practices. The proposed management algorithm attempts to balance the risks of adrenal insufficiency and immunosuppression.
Collapse
|
4
|
Abstract
Classical effects of mineralocorticoids include stimulation of Na(+) reabsorption and K(+) secretion in the kidney and other epithelia including colon and several glands. Moreover, mineralocorticoids enhance the excretion of Mg(2+) and renal tubular H(+) secretion. The renal salt retention following mineralocorticoid excess leads to extracellular volume expansion and hypertension. The increase of blood pressure following mineralocorticoid excess is, however, not only the result of volume expansion but may result from stiff endothelial cell syndrome impairing the release of vasodilating nitric oxide. Beyond that, mineralocorticoids are involved in the regulation of a wide variety of further functions, including cardiac fibrosis, platelet activation, neuronal function and survival, inflammation as well as vascular and tissue fibrosis and calcification. Those functions are briefly discussed in this short introduction to the special issue. Beyond that, further contributions of this special issue amplify on mineralocorticoid-induced sodium appetite and renal salt retention, the role of mineralocorticoids in the regulation of acid-base balance, the involvement of aldosterone and its receptors in major depression, the mineralocorticoid stimulation of inflammation and tissue fibrosis and the effect of aldosterone on osteoinductive signaling and vascular calcification. Clearly, still much is to be learned about the various ramifications of mineralocorticoid-sensitive physiology and pathophysiology.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Liu G, Liu G, Alzoubi K, Umbach AT, Pelzl L, Borst O, Gawaz M, Lang F. Upregulation of store operated Ca channel Orai1, stimulation of Ca(2+) entry and triggering of cell membrane scrambling in platelets by mineralocorticoid DOCA. Kidney Blood Press Res 2014; 38:21-30. [PMID: 24525794 DOI: 10.1159/000355750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Mineralocorticoid excess leads to vascular injury, which is partially due to hypertension but in addition involves increased concentration of cytosolic Ca(2+) concentration in platelets, key players in the pathophysiology of occlusive vascular disease. Mineralocorticoids are in part effective by rapid nongenomic mechanisms including phosphatidylinositide-3-kinase (PI3K) signaling, which involves activation of the serum & glucocorticoid inducible kinase (SGK) isoforms. SGK1 has in turn been shown to participate in the regulation of the pore forming Ca(2+) channel protein Orai1 in platelets. Orai1 accomplishes entry of Ca(2+), which is in turn known to trigger cell membrane scrambling. Platelets lack nuclei but are able to express protein by translation, which is stimulated by PI3K signaling. The present study explored whether the mineralocorticoid desoxycorticosterone acetate (DOCA) influences platelet Orai1 protein abundance, cytosolic Ca(2+)-activity ([Ca(2+)]i), phosphatidylserine abundance at the cell surface and/or cell volume. METHODS Orai1 protein abundance was estimated utilizing CF™488A conjugated antibodies, [Ca(2+)]i utilizing Fluo3-fluorescence, phosphatidylserine abundance utilizing FITC-labelled annexin V, and cell volume utilizing forward scatter in flow cytometry. RESULTS DOCA (10 µg/ml) treatment of murine platelets was followed by a significant increase of Orai1 protein abundance, [Ca(2+)]i, percentage of phosphatidylserine exposing platelets and platelet swelling. The effect on [Ca(2+)]i, phosphatidylserine abundance and cell volume were completely abrogated by addition of the specific SGK inhibitor EMD638683 (50 µM) CONCLUSIONS: The mineralocorticoid DOCA upregulates Orai1 protein abundance in the cell membrane, thus increasing [Ca(2+)]i and triggering phosphatidylserine abundance, effects paralleled by platelet swelling.
Collapse
Affiliation(s)
- Guoxing Liu
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang S, Huang Q, Guo J, Guo X, Sun Q, Brunk UT, Han D, Zhao K, Zhao M. Local thermal injury induces general endothelial cell contraction through p38 MAP kinase activation. APMIS 2014; 122:832-41. [DOI: 10.1111/apm.12226] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/31/2013] [Indexed: 02/05/2023]
Affiliation(s)
- Shuyun Wang
- Department of Pathophysiology; Southern Medical University; Guangzhou China
| | - Qiaobing Huang
- Department of Pathophysiology; Southern Medical University; Guangzhou China
| | - Jingxin Guo
- Department of Pathophysiology; Southern Medical University; Guangzhou China
| | - Xiaohua Guo
- Department of Pathophysiology; Southern Medical University; Guangzhou China
| | - Quanmei Sun
- National Center for Nanoscience and Technology; Beijing China
| | - Ulf T. Brunk
- Division of Pharmacology; Faculty of Health Sciences; Linköping University; Linköping Sweden
| | - Dong Han
- National Center for Nanoscience and Technology; Beijing China
| | - Kesen Zhao
- Department of Pathophysiology; Southern Medical University; Guangzhou China
| | - Ming Zhao
- Department of Pathophysiology; Southern Medical University; Guangzhou China
| |
Collapse
|
7
|
Pelzl L, Pakladok T, Pathare G, Fakhri H, Michael D, Wagner CA, Paulmichl M, Lang F. DOCA sensitive pendrin expression in kidney, heart, lung and thyroid tissues. Cell Physiol Biochem 2012; 30:1491-501. [PMID: 23235354 DOI: 10.1159/000343337] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND/AIMS Pendrin (SLC26A4), a transporter accomplishing anion exchange, is expressed in inner ear, thyroid gland, kidneys, lung, liver and heart. Loss or reduction of function mutations of SLC26A4 underlie Pendred syndrome, a disorder invariably leading to hearing loss with enlarged vestibular aqueducts and in some patients to hypothyroidism and goiter. Renal pendrin expression is up-regulated by mineralocorticoids such as aldosterone or deoxycorticosterone (DOCA). Little is known about the impact of mineralocorticoids on pendrin expression in extrarenal tissues. METHODS The present study utilized RT-qPCR and Western blotting to quantify the transcript levels and protein abundance of Slc26a4 in murine kidney, thyroid, heart and lung prior to and following subcutaneous administration of 100 mg/kg DOCA. RESULTS Slc26a4 transcript levels as compared to Gapdh transcript levels were significantly increased by DOCA treatment in kidney, heart, lung and thyroid. Accordingly pendrin protein expression was again significantly increased by DOCA treatment in kidney, heart, lung and thyroid. CONCLUSION The observations reveal mineralocorticoid sensitivity of pendrin expression in kidney, heart, thyroid and lung.
Collapse
Affiliation(s)
- Lisann Pelzl
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shi X, Zhang X, Xia T, Fang X. Living cell study at the single-molecule and single-cell levels by atomic force microscopy. Nanomedicine (Lond) 2012; 7:1625-37. [DOI: 10.2217/nnm.12.130] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Atomic force microscopy (AFM) has been emerging as a multifunctional molecular tool in nanobiology and nanomedicine. This review summarizes the recent advances in AFM study of living mammalian cells at the single-molecule and single-cell levels. Besides nanoscale imaging of cell membrane structure, AFM-based force measurements on living cells are mainly discussed. These include the development and application of single-molecule force spectroscopy to investigate ligand–receptor binding strength and dissociation dynamics, and the characterization of cell mechanical properties in a physiological environment. Molecular manipulation of cells by AFM to change the cellular process is also described. Living-cell AFM study offers a new approach to understand the molecular mechanisms of cell function, disease development and drug effect, as well as to develop new strategies to achieve single-cell-based diagnosis.
Collapse
Affiliation(s)
- Xiaoli Shi
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| | - Xuejie Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| | - Tie Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| | - Xiaohong Fang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Zhongguancun North First Street, 100190 Beijing, PR China
| |
Collapse
|
9
|
Szczygiel AM, Brzezinka G, Targosz-Korecka M, Chlopicki S, Szymonski M. Elasticity changes anti-correlate with NO production for human endothelial cells stimulated with TNF-α. Pflugers Arch 2012; 463:487-96. [PMID: 22160395 PMCID: PMC3276767 DOI: 10.1007/s00424-011-1051-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/04/2011] [Accepted: 10/17/2011] [Indexed: 12/21/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) is a critical cytokine that is involved in systemic inflammatory response and contributes to the activation of the pro-inflammatory phenotype of the endothelium. In the present study, effects of TNF-α on morphology and elasticity of endothelium in relation to the production of NO and actin fiber reorganization were analyzed in human dermal microvascular endothelial cells. The cells were incubated in MCDB medium solution and stimulated with [Formula: see text] of TNF-α. Atomic force microscopy measurements have enabled characterization of cell morphology and elastic properties in physiological conditions. The spectrophotometric Griess method was applied to estimate nitric oxide (NO) production of the cells. We demonstrated that TNF-α-induced changes in elasticity of endothelium anti-correlate with NO production and are associated with the reorganization of actin cytoskeleton.
Collapse
Affiliation(s)
- Agnieszka M. Szczygiel
- Department of Physics of Nanostructures and Nanotechnology, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| | - Grzegorz Brzezinka
- Department of Physics of Nanostructures and Nanotechnology, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| | - Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| | - Stefan Chlopicki
- Department of Experimental Pharmacology, Chair of Pharmacology, Medical College and Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marek Szymonski
- Department of Physics of Nanostructures and Nanotechnology, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| |
Collapse
|
10
|
Callies C, Fels J, Liashkovich I, Kliche K, Jeggle P, Kusche-Vihrog K, Oberleithner H. Membrane potential depolarization decreases the stiffness of vascular endothelial cells. J Cell Sci 2011; 124:1936-42. [PMID: 21558418 DOI: 10.1242/jcs.084657] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The stiffness of vascular endothelial cells is crucial to mechanically withstand blood flow and, at the same time, to control deformation-dependent nitric oxide release. However, the regulation of mechanical stiffness is not yet understood. There is evidence that a possible regulator is the electrical plasma membrane potential difference. Using a novel technique that combines fluorescence-based membrane potential recordings with atomic force microscopy (AFM)-based stiffness measurements, the present study shows that membrane depolarization is associated with a decrease in the stiffness of endothelial cells. Three different depolarization protocols were applied, all of which led to a similar and significant decrease in cell stiffness, independently of changes in cell volume. Moreover, experiments using the actin-destabilizing agent cytochalasin D indicated that depolarization acts by affecting the cortical actin cytoskeleton. A model is proposed whereby a change of the electrical field across the plasma membrane is directly sensed by the submembranous actin network, regulating the actin polymerization:depolymerization ratio and thus cell stiffness. This depolarization-induced decrease in the stiffness of endothelial cells could play a role in flow-mediated nitric-oxide-dependent vasodilation.
Collapse
Affiliation(s)
- Chiara Callies
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
11
|
Kusche-Vihrog K, Urbanova K, Blanqué A, Wilhelmi M, Schillers H, Kliche K, Pavenstädt H, Brand E, Oberleithner H. C-reactive protein makes human endothelium stiff and tight. Hypertension 2010; 57:231-7. [PMID: 21149827 DOI: 10.1161/hypertensionaha.110.163444] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevation of C-reactive protein (CRP) in human blood accompanies inflammatory processes, including cardiovascular diseases. There is increasing evidence that the acute-phase reactant CRP is not only a passive marker protein for systemic inflammation but also affects the vascular system. Further, CRP is an independent risk factor for atherosclerosis and the development of hypertension. Another crucial player in atherosclerotic processes is the mineralocorticoid hormone aldosterone. Even in low physiological concentrations, it stimulates the expression and membrane insertion of the epithelial sodium channel, thereby increasing the mechanical stiffness of endothelial cells. This contributes to the progression of endothelial dysfunction. In the present study, the hypothesis was tested that the acute application of CRP (25 mg/L), in presence of aldosterone (0.5 nmol/L; 24 hour incubation), modifies the mechanical stiffness and permeability of the endothelium. We found that endothelial cells stiffen in response to CRP. In parallel, endothelial epithelial sodium channel is inserted into the plasma membrane, while, surprisingly, the endothelial permeability decreases. CRP actions are prevented either by the inhibition of the intracellular aldosterone receptors using spironolactone (5 nmol/L) or by the inactivation of epithelial sodium channel using specific blockers. In contrast, inhibition of the release of the vasodilating gas nitric oxide via blockade of the phosphoinositide 3-kinase/Akt pathway has no effect on the CRP-induced stiffening of endothelial cells. The data indicate that CRP enhances the effects of aldosterone on the mechanical properties of the endothelium. Thus, CRP could counteract any decrease in arterial blood pressure that accompanies severe acute inflammatory processes.
Collapse
|
12
|
Atomic force microscopy of microvillous cell surface dynamics at fixed and living alveolar type II cells. Anal Bioanal Chem 2010; 399:2369-78. [DOI: 10.1007/s00216-010-4407-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/11/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
|
13
|
Amiloride lowers arterial pressure in cyp1a1ren-2 transgenic rats without affecting renal vascular function. J Hypertens 2010; 28:2267-77. [DOI: 10.1097/hjh.0b013e32833d77b4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Nitric oxide release follows endothelial nanomechanics and not vice versa. Pflugers Arch 2010; 460:915-23. [PMID: 20809399 DOI: 10.1007/s00424-010-0871-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/05/2010] [Accepted: 08/09/2010] [Indexed: 12/27/2022]
Abstract
In the vascular endothelium, mechanical cell stiffness (К) and nitric oxide (NO) release are tightly coupled. "Soft" cells release more NO compared to "stiff" cells. Currently, however, it is not known whether NO itself is the primary factor that softens the cells or whether NO release is the result of cell softening. To address this question, a hybrid fluorescence/atomic force microscope was used in order to measure changes in К and NO release simultaneously in living vascular endothelial cells. Aldosterone was applied to soften the cells transiently and to trigger NO release. NO synthesis was then either blocked or stimulated and, simultaneously, К was measured. Cell indentation experiments were performed to evaluate К, while NO release was measured either by an intracellular NO-dependent fluorescence indicator (DAF-FM/DA) or by NO-selective electrodes located close to the cell surface. After the application of aldosterone, К decreases, within 10 min, to 80.5 ± 1.7% of control (100%). DAF-FM fluorescence intensity increases simultaneously to 132.9 ± 2.2%, which indicates a significant increase in the activity of endothelial NO synthase (eNOS). Inhibition of eNOS (by N (ω)-nitro-L: -arginine methyl ester) blocks the NO release, but does not affect the aldosterone-induced changes in К. Application of an eNOS-independent NO donor (NONOate/AM) raises intracellular NO concentration, but, again, does not affect К. Data analysis indicates that a decrease of К by about 10% is sufficient to induce a significant increase of eNOS activity. In conclusion, these nanomechanic properties of endothelial cells in vascular endothelium determine NO release, and not vice versa.
Collapse
|
15
|
Kusche-Vihrog K, Callies C, Fels J, Oberleithner H. The epithelial sodium channel (ENaC): Mediator of the aldosterone response in the vascular endothelium? Steroids 2010; 75:544-9. [PMID: 19778545 DOI: 10.1016/j.steroids.2009.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/11/2009] [Accepted: 09/14/2009] [Indexed: 12/15/2022]
Abstract
In the kidney the epithelial sodium channel (ENaC) is regulated by the mineralocorticoid hormone aldosterone, which is essential for long-term blood pressure control. Evidence has accumulated showing that ENaC is expressed in endothelial cells. Moreover, its activity modifies the biomechanical properties of the endothelium. Therefore, the vascular system is also an important target for aldosterone and responds to the hormone with an increase in cell volume, surface area, and mechanical stiffness. These changes occur in a concerted fashion from minutes to hours and can be prevented by the specific sodium channel blocker amiloride and the mineralocorticoid receptor (MR) blocker spironolactone. Aldosterone acts on cells of the vascular system via genomic and non-genomic pathways. There is evidence that the classical cytosolic MR could mediate both types of response. Using a nanosensor covalently linked to aldosterone, binding sites at the plasma membrane were identified by atomic force microscopy. The interaction of aldosterone and this newly identified surface receptor could precede the slow classic genomic aldosterone response resulting in fast activation of endothelial ENaC. Recent data suggest that aldosterone-induced ENaC activation initiates a sequence of cellular events leading to a reduced release of vasodilating nitric oxide. We propose a model in which ENaC is the key mediator of aldosterone-dependent blood pressure control in the vascular endothelium.
Collapse
|
16
|
|
17
|
Fels J, Oberleithner H, Kusche-Vihrog K. Ménage à trois: aldosterone, sodium and nitric oxide in vascular endothelium. Biochim Biophys Acta Mol Basis Dis 2010; 1802:1193-202. [PMID: 20302930 DOI: 10.1016/j.bbadis.2010.03.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 12/16/2022]
Abstract
Aldosterone, a mineralocorticoid hormone mainly synthesized in the adrenal cortex, has been recognized to be a regulator of cell mechanics. Recent data from a number of laboratories implicate that, besides kidney, the cardiovascular system is an important target for aldosterone. In the endothelium, it promotes the expression of epithelial sodium channels (ENaC) and modifies the morphology of cells in terms of mechanical stiffness, surface area and volume. Additionally, it renders the cells highly sensitive to small changes in extracellular sodium and potassium. In this context, the time course of aldosterone action is pivotal. In the fast (seconds to minutes), non-genomic signalling pathway vascular endothelial cells respond to aldosterone with transient swelling, softening and insertion of ENaC in the apical plasma membrane. In parallel, nitric oxide (NO) is released from the cells. In the long-term (hours), aldosterone has opposite effects: The mechanical stiffness increases, the cells shrink and NO production decreases. This leads to the conclusion that both the physiology and pathophysiology of aldosterone action in the vascular endothelium are closely related. Aldosterone, at concentrations in the physiological range and over limited time periods can stabilize blood pressure and regulate tissue perfusion while chronically high concentrations of this hormone over extended time periods impair sodium homeostasis promoting endothelial dysfunction and the development of tissue fibrosis.
Collapse
Affiliation(s)
- Johannes Fels
- Institute of Physiology II, University of Münster, Germany
| | | | | |
Collapse
|
18
|
Abstract
Inflammation is a key feature in the initiation, progression, and clinical implications of cardiovascular disorders, including essential hypertension. Increasing evidence shows that activation of renin-angiotensin-aldosterone system and enhanced local production of angiotensin II have been implicated in the pathophysiology of inflammation. Besides being a potent vasoactive peptide, angiotensin II regulates the inflammatory process. Specifically, it increases vascular permeability, participates in the recruitment of inflammatory cells and their adhesion to the activated endothelium, and regulates cell growth and fibrosis. Reactive oxygen species are implicated at every stage in inflammation and activate multiple intracellular signaling molecules and transcription factors associated with inflammatory responses, such as nuclear factor-kappa B and activator protein-1. Other components of the renin-angiotensin-aldosterone system, including aldosterone and/or mineralocorticoid receptor, induce the production of reactive oxygen species and participate in vascular inflammation. Several studies suggest a role of endothelin-1 as an important mediator of chronic inflammation and there is an increasing interest in the relationship between endothelin-1 and reactive oxygen species. These data may have great impact on future therapeutic strategies.
Collapse
|
19
|
Tasatargil A, Tekcan M, Celik-Ozenci C, Ece Gungor N, Dalkiran B. Aldosterone-induced endothelial dysfunction of rat aorta: role of poly(ADP-ribose) activation. J Renin Angiotensin Aldosterone Syst 2009; 10:127-37. [PMID: 19713411 DOI: 10.1177/1470320309343655] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction. The aim of this study was to investigate whether activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) contributes to the development of aldosterone-induced endothelial dysfunction and treatment with the potent PARP inhibitor 1,5-isoquinolinediol (3 mg/kg/day, i.p.) could prevent endothelial dysfunction caused by aldosterone. Methods. Infusion of subpressor doses of aldosterone with subcutaneously implanted mini-osmotic pumps (0.05 mg/kg/day) to rats for 21 days induced the development of endothelial dysfunction. In order to evaluate endothelial function, isometric tension studies were performed in response to acetylcholine and sodium nitroprusside.Additionally, PAR (the end product of activated PARP) and PARP-1 expressions in the endothelium of thoracic aortas were evaluated by immunohistochemistry. Results. There was a significant loss of endothelium-dependent vasodilatation in response to acetylcholine in aldosterone-infused rats. In animals treated with 1,5-isoquinolinediol, the effect of aldosterone on vascular responsiveness was less than the untreated groups. Immunohistochemical studies demonstrated that aldosterone administration increased PAR and PARP-1 expressions in the endothelium of thoracic aortas, whereas PARP inhibition decreased their expressions to control levels. Conclusion. Our results indicate that PARP activation in the vascular system may be a contributory factor to the impaired endothelial function associated with aldosterone administration.
Collapse
Affiliation(s)
- Arda Tasatargil
- Department of Pharmacology, Medical Faculty, Akdeniz University, 07070, Antalya, Turkey
| | - Merih Tekcan
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, 07070, Antalya, Turkey
| | - Ciler Celik-Ozenci
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, 07070, Antalya, Turkey
| | - Nazli Ece Gungor
- Department of Histology and Embryology, Medical Faculty, Akdeniz University, 07070, Antalya, Turkey
| | - Bedriniam Dalkiran
- Department of Pharmacology, Medical Faculty, Akdeniz University, 07070, Antalya, Turkey
| |
Collapse
|
20
|
Nebivolol decreases endothelial cell stiffness via the estrogen receptor beta: a nano-imaging study. J Hypertens 2009; 27:517-26. [PMID: 19330906 DOI: 10.1097/hjh.0b013e32831fb389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nebivolol (NEB) is a [beta]1-receptor blocker with nitric oxide-dependent vasodilating properties. NEB-induced nitric oxide release is mediated through the estrogen receptor. METHOD Here, we tested the hypothesis that NEB decreases endothelial cell stiffness and that these effects can be abolished by both endothelial nitric oxide synthase and estrogen receptor blockade. Human endothelial cells (EAHy-926) were incubated with vehicle, NEB 0.7 nmol/l, metoprolol 200 nmol/l, 17[beta]-estradiol (E2) 15 nmol/l, the estrogen receptor antagonists tamoxifen 100 nmol/l and ICI 182780 (ICI) 100 nmol/l, the nitric oxide synthase inhibitor N[omega]-nitro-L-arginine methyl ester 1 mmol/l and combinations of NEB and E2 with either tamoxifen, ICI or N[omega]-nitro-L-arginine methyl ester as well as metoprolol and ICI. Atomic force microscopy was performed to measure cellular stiffness, cell volume and apical surface. Presence of estrogen receptor protein in EAHy-926 was confirmed by western blot analysis; quantification of ER[alpha] and ER[beta] total RNA was performed by semiquantitative PCR. RESULTS Both NEB as well as E2 decreased cellular stiffness to a similar extent (NEB: 0.83 +/- 0.03 pN/nm, E2: 0.87 +/- 0.03 pN/nm, vehicle: 2.19 +/- 0.07 pN/nm), whereas metoprolol had no effect on endothelial stiffness (2.07 +/- 0.04 pN/nm, all n = 60, P < 0.01). The decrease in stiffness occurred as soon as 5 min after starting NEB incubation. The effects are mediated through nongenomic ER[beta] pathways, as ER[alpha] is not translated into measurable protein levels in EAHy-926. Furthermore, NEB increased cell volume by 48 +/- 4% and apical surface by 34 +/- 3%. E2 had comparable effects. Tamoxifen, ICI and N[omega]-nitro-L-arginine methyl ester substantially diminished the effects of NEB and E2. CONCLUSION NEB decreases cellular stiffness and causes endothelial cell growth. These effects are nitric oxide-dependent and mediated through nongenomic ER[beta] pathways. The morphological and functional alterations observed in endothelial cells may explain improved endothelial function with NEB treatment.
Collapse
|
21
|
Callies C, Schön P, Liashkovich I, Stock C, Kusche-Vihrog K, Fels J, Sträter AS, Oberleithner H. Simultaneous mechanical stiffness and electrical potential measurements of living vascular endothelial cells using combined atomic force and epifluorescence microscopy. NANOTECHNOLOGY 2009; 20:175104. [PMID: 19420584 DOI: 10.1088/0957-4484/20/17/175104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The degree of mechanical stiffness of vascular endothelial cells determines the endogenous production of the vasodilating gas nitric oxide (NO). However, the underlying mechanisms are not yet understood. Experiments on vascular endothelial cells suggest that the electrical plasma membrane potential is involved in this regulatory process. To test this hypothesis we developed a technique that simultaneously measures the electrical membrane potential and stiffness of vascular endothelial cells (GM7373 cell line derived from bovine aortic endothelium) under continuous perfusion with physiological electrolyte solution. The cellular stiffness was determined by nano-indentation using an atomic force microscope (AFM) while the electrical membrane potential was measured with bis-oxonol, a voltage-reporting fluorescent dye. These two methods were combined using an AFM attached to an epifluorescence microscope. The electrical membrane potential and mechanical stiffness of the same cell were continuously recorded for a time span of 5 min. Fast fluctuations (in the range of seconds) of both the electrical membrane potential and mechanical stiffness could be observed that were not related to each other. In contrast, slow cell depolarizations (in the range of minutes) were paralleled by significant increases in mechanical stiffness. In conclusion, using the combined AFM-fluorescence technique we monitored for the first time simultaneously the electrical plasma membrane potential and mechanical stiffness in a living cell. Vascular endothelial cells exhibit oscillatory non-synchronized waves of electrical potential and mechanical stiffness. The sustained membrane depolarization, however, is paralleled by a concomitant increase of cell stiffness. The described method is applicable for any fluorophore, which opens new perspectives in biomedical research.
Collapse
Affiliation(s)
- Chiara Callies
- Institute of Physiology II, University of Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Wildling L, Hinterdorfer P, Kusche-Vihrog K, Treffner Y, Oberleithner H. Aldosterone receptor sites on plasma membrane of human vascular endothelium detected by a mechanical nanosensor. Pflugers Arch 2008; 458:223-30. [DOI: 10.1007/s00424-008-0615-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 10/30/2008] [Indexed: 12/18/2022]
|
24
|
Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch 2008; 457:551-9. [DOI: 10.1007/s00424-008-0524-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 04/22/2008] [Indexed: 01/19/2023]
|
25
|
Hillebrand U, Hausberg M, Lang D, Stock C, Riethmüller C, Callies C, Büssemaker E. How steroid hormones act on the endothelium—insights by atomic force microscopy. Pflugers Arch 2008; 456:51-60. [DOI: 10.1007/s00424-007-0411-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Accepted: 11/20/2007] [Indexed: 02/05/2023]
|
26
|
Riethmuller C, Nasdala I, Vestweber D. Nano-surgery at the leukocyte-endothelial docking site. Pflugers Arch 2007; 456:71-81. [PMID: 18094992 PMCID: PMC2756369 DOI: 10.1007/s00424-007-0412-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 11/20/2007] [Indexed: 01/13/2023]
Abstract
The endothelium has an important role in controlling the extravasation of leukocytes from blood to tissues. Endothelial permeability for leukocytes is influenced by transmembrane proteins that control inter-endothelial adhesion, as well as steps of the leukocyte transmigration process. In a cascade consisting of leukocyte rolling, adhesion, firm adhesion, and diapedesis, a new step was recently introduced, the formation of a docking structure or “transmigratory cup.” Both terms describe a structure formed by endothelial pseudopods embracing the leukocyte. It has been found associated with both para- and transcellular diapedesis. The aim of this study was to characterize the leukocyte–endothelial contact area in terms of morphology and cell mechanics to investigate how the endothelial cytoskeleton reorganizes to engulf the leukocyte. We used atomic force microscopy (AFM) to selectively remove the leukocyte and then analyze the underlying cell at this specific spot. Firmly attached leukocytes could be removed by AFM nanomanipulation. In few cases, this exposed 8–12 μm wide and 1 μm deep footprints, representing the cup-like docking structure. Some of them were located near endothelial cell junctions. The interaction area did not exhibit significant alterations neither morphologically nor mechanically as compared to the surrounding cell surface. In conclusion, the endothelial invagination is formed without a net depolymerization of f-actin, as endothelial softening at the site of adhesion does not seem to be involved. Moreover, there were no cases of phagocytotic engulfment, but instead the formation of a transmigratory channel could be observed.
Collapse
Affiliation(s)
- Christoph Riethmuller
- Institute of Physiology II, University of Münster, Robert-Koch-Strasse 27 b, 48149 Münster, Germany.
| | | | | |
Collapse
|
27
|
Ludwig T, Kirmse R, Poole K, Schwarz US. Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Arch 2007; 456:29-49. [PMID: 18058123 DOI: 10.1007/s00424-007-0398-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 12/20/2022]
Abstract
The function of cells is strongly determined by the properties of their extracellular microenvironment. Biophysical parameters like environmental stiffness and fiber orientation in the surrounding matrix are important determinants of cell adhesion and migration. Processes like tissue maintenance, wound repair, cancer cell invasion, and morphogenesis depend critically on the ability of cells to actively sense and remodel their surroundings. Pericellular proteolytic activity and adaptation of migration tactics to the environment are strategies to achieve this aim. Little is known about the distinct regulatory mechanisms that are involved in these processes. The system's critical biophysical and biochemical determinants are well accessible by atomic force microscopy (AFM), a unique tool for functional, nanoscale probing and morphometric, high-resolution imaging of processes in live cells. This review highlights common principles of tissue remodeling and focuses on application examples of different AFM techniques, for example elasticity mapping, the combination of AFM and fluorescence microscopy, the morphometric imaging of proteolytic activity, and force spectroscopy applications of single molecules or individual cells. To achieve a more complete understanding of the processes underlying the interaction of cells with their environments, the combination of AFM force spectroscopy experiments will be essential.
Collapse
Affiliation(s)
- Thomas Ludwig
- Group Microenvironment of Tumor Cell Invasion, German Cancer Research Center, BIOQUANT-Zentrum; BQ 0009 NWG Ludwig, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | | | | | | |
Collapse
|
28
|
Imaging CFTR in its native environment. Pflugers Arch 2007; 456:163-77. [DOI: 10.1007/s00424-007-0399-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2007] [Accepted: 11/09/2007] [Indexed: 12/18/2022]
|
29
|
Oberleithner H, Riethmüller C, Schillers H, MacGregor GA, de Wardener HE, Hausberg M. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc Natl Acad Sci U S A 2007; 104:16281-6. [PMID: 17911245 PMCID: PMC1999397 DOI: 10.1073/pnas.0707791104] [Citation(s) in RCA: 363] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dietary salt plays a major role in the regulation of blood pressure, and the mineralocorticoid hormone aldosterone controls salt homeostasis and extracellular volume. Recent observations suggest that a small increase in plasma sodium concentration may contribute to the pressor response of dietary salt. Because endothelial cells are (i) sensitive to aldosterone, (ii) in physical contact with plasma sodium, and (iii) crucial regulators of vascular tone, we tested whether acute changes in plasma sodium concentration, within the physiological range, can alter the physical properties of endothelial cells. The tip of an atomic force microscope was used as a nanosensor to measure stiffness of living endothelial cells incubated for 3 days in a culture medium containing aldosterone at a physiological concentration (0.45 nM). Endothelial cell stiffness was unaffected by acute changes in sodium concentration <135 mM but rose steeply between 135 and 145 mM. The increase in stiffness occurred within minutes. Lack of aldosterone in the culture medium or treatment with the epithelial sodium channel inhibitor amiloride prevented this response. Nitric oxide formation was found down-regulated in cells cultured in aldosterone-containing high sodium medium. The results suggest that changes in plasma sodium concentration per se may affect endothelial function and thus control vascular tone.
Collapse
Affiliation(s)
- Hans Oberleithner
- Institute of Physiology II and Department of Internal Medicine D, University of Münster, 48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Kusche-Vihrog K, Sobczak K, Bangel N, Wilhelmi M, Nechyporuk-Zloy V, Schwab A, Schillers H, Oberleithner H. Aldosterone and amiloride alter ENaC abundance in vascular endothelium. Pflugers Arch 2007; 455:849-57. [PMID: 17891415 DOI: 10.1007/s00424-007-0341-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 08/29/2007] [Accepted: 08/30/2007] [Indexed: 10/22/2022]
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC) is usually found in the apical membrane of epithelial cells but has also recently been described in vascular endothelium. Because little is known about the regulation and cell surface density of ENaC, we studied the influence of aldosterone, spironolactone, and amiloride on its abundance in the plasma membrane of human endothelial cells. Three different methods were applied, single ENaC molecule detection in the plasma membrane, quantification by Western blotting, and cell surface imaging using atomic force microscopy. We found that aldosterone increases the surface expression of ENaC molecules by 36% and the total cellular amount by 91%. The aldosterone receptor antagonist spironolactone prevents these effects completely. Acute application of amiloride to aldosterone-pretreated cells led to a decline of intracellular ENaC by 84%. We conclude that, in vascular endothelium, aldosterone induces ENaC expression and insertion into the plasma membrane. Upon functional blocking with amiloride, the channel disappears from the cell surface and from intracellular pools, indicating either rapid degradation and/or membrane pinch-off. This opens new perspectives in the regulation of ENaC expressed in the vascular endothelium.
Collapse
Affiliation(s)
- Kristina Kusche-Vihrog
- Institute of Animal Physiology, University of Muenster, Hindenburgplatz 55, 48143 Muenster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|