1
|
Abstract
PURPOSE OF REVIEW To present a method enabling in vivo quantification of tissue membrane potential (ΔΨT), a proxy of mitochondrial membrane potential (ΔΨm), to review the origin and role of ΔΨm, and to highlight potential applications of myocardial ΔΨT imaging. RECENT FINDINGS Radiolabelled lipophilic cations have been used for decades to measure ΔΨm in vitro. Using similar compounds labeled with positron emitters and appropriate compartment modeling, this technique now allows in vivo quantification of ΔΨT with positron emission tomography. Studies have confirmed the feasibility of measuring myocardial ΔΨT in both animals and humans. In addition, ΔΨT showed very low variability among healthy subjects, suggesting that this method could allow detection of relatively small pathological changes. In vivo assessment of myocardial ΔΨT provides a new tool to study the pathophysiology of cardiovascular diseases and has the potential to serve as a new biomarker to assess disease stage, prognosis, and response to therapy.
Collapse
|
2
|
Pelletier-Galarneau M, Petibon Y, Ma C, Han P, Kim SJW, Detmer FJ, Yokell D, Guehl N, Normandin M, El Fakhri G, Alpert NM. In vivo quantitative mapping of human mitochondrial cardiac membrane potential: a feasibility study. Eur J Nucl Med Mol Imaging 2020; 48:414-420. [PMID: 32719915 DOI: 10.1007/s00259-020-04878-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Alteration in mitochondrial membrane potential (ΔΨm) is an important feature of many pathologic processes, including heart failure, cardiotoxicity, ventricular arrhythmia, and myocardial hypertrophy. We present the first in vivo, non-invasive, assessment of regional ΔΨm in the myocardium of normal human subjects. METHODS Thirteen healthy subjects were imaged using [18F]-triphenylphosphonium ([18F]TPP+) on a PET/MR scanner. The imaging protocol consisted of a bolus injection of 300 MBq followed by a 120-min infusion of 0.6 MBq/min. A 60 min, dynamic PET acquisition was started 1 h after bolus injection. The extracellular space fraction (fECS) was simultaneously measured using MR T1-mapping images acquired at baseline and 15 min after gadolinium injection with correction for the subject's hematocrit level. Serial venous blood samples were obtained to calculate the plasma tracer concentration. The tissue membrane potential (ΔΨT), a proxy of ΔΨm, was calculated from the myocardial tracer concentration at secular equilibrium, blood concentration, and fECS measurements using a model based on the Nernst equation. RESULTS In 13 healthy subjects, average tissue membrane potential (ΔΨT), representing the sum of cellular membrane potential (ΔΨc) and ΔΨm, was - 160.7 ± 3.7 mV, in excellent agreement with previous in vitro assessment. CONCLUSION In vivo quantification of the mitochondrial function has the potential to provide new diagnostic and prognostic information for several cardiac diseases as well as allowing therapy monitoring. This feasibility study lays the foundation for further investigations to assess these potential roles. Clinical trial identifier: NCT03265431.
Collapse
Affiliation(s)
- Matthieu Pelletier-Galarneau
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Yoann Petibon
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Chao Ma
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Paul Han
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Sally Ji Who Kim
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Felicitas J Detmer
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Daniel Yokell
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Nicolas Guehl
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Marc Normandin
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA.
| | - Nathaniel M Alpert
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 125 Nashua Street, #6604, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Miranda‐Silva D, Wüst RCI, Conceição G, Gonçalves‐Rodrigues P, Gonçalves N, Gonçalves A, Kuster DWD, Leite‐Moreira AF, Velden J, Sousa Beleza JM, Magalhães J, Stienen GJM, Falcão‐Pires I. Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. Acta Physiol (Oxf) 2020; 228:e13378. [PMID: 31520455 PMCID: PMC7064935 DOI: 10.1111/apha.13378] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
Abstract
AIM Calcium ions play a pivotal role in matching energy supply and demand in cardiac muscle. Mitochondrial calcium concentration is lower in animal models of heart failure with reduced ejection fraction (HFrEF), but limited information is available about mitochondrial calcium handling in heart failure with preserved ejection fraction (HFpEF). METHODS We assessed mitochondrial Ca2+ handling in intact cardiomyocytes from Zucker/fatty Spontaneously hypertensive F1 hybrid (ZSF1)-lean (control) and ZSF1-obese rats, a metabolic risk-related model of HFpEF. A mitochondrially targeted Ca2+ indicator (MitoCam) was expressed in cultured adult rat cardiomyocytes. Cytosolic and mitochondrial Ca2+ transients were measured at different stimulation frequencies. Mitochondrial respiration and swelling, and expression of key proteins were determined ex vivo. RESULTS At rest, mitochondrial Ca2+ concentration in ZSF1-obese was larger than in ZSF1-lean. The diastolic and systolic mitochondrial Ca2+ concentrations increased with stimulation frequency, but the steady-state levels were larger in ZSF1-obese. The half-widths of the contractile responses, the resting cytosolic Ca2+ concentration and the decay half-times of the cytosolic Ca2+ transients were higher in ZSF1-obese, likely because of a lower SERCA2a/phospholamban ratio. Mitochondrial respiration was lower, particularly with nicotinamide adenine dinucleotide (NADH) (complex I) substrates, and mitochondrial swelling was larger in ZSF1-obese. CONCLUSION The free mitochondrial calcium concentration is higher in HFpEF owing to alterations in mitochondrial and cytosolic Ca2+ handling. This coupling between cytosolic and mitochondrial Ca2+ levels may compensate for myocardial ATP supply in vivo under conditions of mild mitochondrial dysfunction. However, if mitochondrial Ca2+ concentration is sustainedly increased, it might trigger mitochondrial permeability transition pore opening.
Collapse
Affiliation(s)
- Daniela Miranda‐Silva
- Department of Surgery and Physiology Cardiovascular R & D center Faculty of Medicine of the University of Porto Porto Portugal
| | - Rob C. I. Wüst
- Department of Physiology Amsterdam UMC VUmc Amsterdam Cardiovascular Sciences Amsterdam the Netherlands
- Department of Human Movement Sciences Laboratory for Myology Faculty of Behavioural and Movement Sciences Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam the Netherlands
| | - Glória Conceição
- Department of Surgery and Physiology Cardiovascular R & D center Faculty of Medicine of the University of Porto Porto Portugal
| | - Patrícia Gonçalves‐Rodrigues
- Department of Surgery and Physiology Cardiovascular R & D center Faculty of Medicine of the University of Porto Porto Portugal
| | - Nádia Gonçalves
- Department of Surgery and Physiology Cardiovascular R & D center Faculty of Medicine of the University of Porto Porto Portugal
| | - Alexandre Gonçalves
- Department of Surgery and Physiology Cardiovascular R & D center Faculty of Medicine of the University of Porto Porto Portugal
| | - Diederik W. D. Kuster
- Department of Physiology Amsterdam UMC VUmc Amsterdam Cardiovascular Sciences Amsterdam the Netherlands
| | - Adelino F. Leite‐Moreira
- Department of Surgery and Physiology Cardiovascular R & D center Faculty of Medicine of the University of Porto Porto Portugal
| | - Jolanda Velden
- Department of Physiology Amsterdam UMC VUmc Amsterdam Cardiovascular Sciences Amsterdam the Netherlands
- Netherlands Heart Institute Utrecht the Netherlands
| | - Jorge M. Sousa Beleza
- LaMetEx—Laboratory of Metabolism and Exercise Faculty of Sport Cardiovascular Research Center - UniC, University of Porto Porto Portugal
| | - José Magalhães
- LaMetEx—Laboratory of Metabolism and Exercise Faculty of Sport Cardiovascular Research Center - UniC, University of Porto Porto Portugal
| | - Ger J. M. Stienen
- Department of Physiology Amsterdam UMC VUmc Amsterdam Cardiovascular Sciences Amsterdam the Netherlands
| | - Inês Falcão‐Pires
- Department of Surgery and Physiology Cardiovascular R & D center Faculty of Medicine of the University of Porto Porto Portugal
| |
Collapse
|
4
|
The Role of Cardiolipin in Cardiovascular Health. BIOMED RESEARCH INTERNATIONAL 2015; 2015:891707. [PMID: 26301254 PMCID: PMC4537736 DOI: 10.1155/2015/891707] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/08/2015] [Indexed: 12/20/2022]
Abstract
Cardiolipin (CL), the signature phospholipid of mitochondrial membranes, is crucial for both mitochondrial function and cellular processes outside of the mitochondria. The importance of CL in cardiovascular health is underscored by the life-threatening genetic disorder Barth syndrome (BTHS), which manifests clinically as cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the gene encoding tafazzin, the transacylase that carries out the second CL remodeling step. In addition to BTHS, CL is linked to other cardiovascular diseases (CVDs), including cardiomyopathy, atherosclerosis, myocardial ischemia-reperfusion injury, heart failure, and Tangier disease. The link between CL and CVD may possibly be explained by the physiological roles of CL in pathways that are cardioprotective, including mitochondrial bioenergetics, autophagy/mitophagy, and mitogen activated protein kinase (MAPK) pathways. In this review, we focus on the role of CL in the pathogenesis of CVD as well as the molecular mechanisms that may link CL functions to cardiovascular health.
Collapse
|
5
|
Gong G, Liu X, Wang W. Regulation of metabolism in individual mitochondria during excitation-contraction coupling. J Mol Cell Cardiol 2014; 76:235-46. [PMID: 25252178 DOI: 10.1016/j.yjmcc.2014.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 09/11/2014] [Indexed: 01/03/2023]
Abstract
The heart is an excitable organ that undergoes spontaneous force generation and relaxation cycles driven by excitation-contraction (EC) coupling. A fraction of the oscillating cytosolic Ca(2+) during each heartbeat is taken up by mitochondria to stimulate mitochondrial metabolism, the major source of energy in the heart. Whether the mitochondrial metabolism is regulated individually during EC coupling and whether this heterogeneous regulation bears any physiological or pathological relevance have not been studied. Here, we developed a novel approach to determine the regulation of individual mitochondrial metabolism during cardiac EC coupling. Through monitoring superoxide flashes, which are stochastic and bursting superoxide production events arising from increased metabolism in individual mitochondria, we found that EC coupling stimulated the metabolism in individual mitochondria as indicated by significantly increased superoxide flash activity during electrical stimulation of the cultured intact myocytes or perfused heart. Mechanistically, cytosolic calcium transients promoted individual mitochondria to take up calcium via mitochondrial calcium uniporter, which subsequently triggered transient opening of the permeability transition pore and stimulated metabolism and bursting superoxide flash in that mitochondrion. The bursting superoxide, in turn, promoted local calcium release. In the early stage of heart failure, EC coupling regulation of superoxide flashes was compromised. This study highlights the heterogeneity in the regulation of cardiac mitochondrial metabolism, which may contribute to local redox signaling.
Collapse
Affiliation(s)
- Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Xiaoyun Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA; Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Fernández-Sada E, Silva-Platas C, Villegas CA, Rivero SL, Willis BC, García N, Garza JR, Oropeza-Almazán Y, Valverde CA, Mazzocchi G, Zazueta C, Torre-Amione G, García-Rivas G. Cardiac responses to β-adrenoceptor stimulation is partly dependent on mitochondrial calcium uniporter activity. Br J Pharmacol 2014; 171:4207-21. [PMID: 24628066 DOI: 10.1111/bph.12684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 02/06/2014] [Accepted: 03/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Despite the importance of mitochondrial Ca(2+) to metabolic regulation and cell physiology, little is known about the mechanisms that regulate Ca(2+) entry into the mitochondria. Accordingly, we established a system to determine the role of the mitochondrial Ca(2+) uniporter in an isolated heart model, at baseline and during increased workload following β-adrenoceptor stimulation. EXPERIMENTAL APPROACH Cardiac contractility, oxygen consumption and intracellular Ca(2+) transients were measured in ex vivo perfused murine hearts. Ru360 and spermine were used to modify mitochondrial Ca(2+) uniporter activity. Changes in mitochondrial Ca(2+) content and energetic phosphate metabolite levels were determined. KEY RESULTS The addition of Ru360 , a selective inhibitor of the mitochondrial Ca(2+) uniporter, induced progressively and sustained negative inotropic effects that were dose-dependent with an EC50 of 7 μM. Treatment with spermine, a uniporter agonist, showed a positive inotropic effect that was blocked by Ru360 . Inotropic stimulation with isoprenaline elevated oxygen consumption (2.7-fold), Ca(2+) -dependent activation of pyruvate dehydrogenase (5-fold) and mitochondrial Ca(2+) content (2.5-fold). However, in Ru360 -treated hearts, this parameter was attenuated. In addition, β-adrenoceptor stimulation in the presence of Ru360 did not affect intracellular Ca(2+) handling, PKA or Ca(2+) /calmodulin-dependent PK signalling. CONCLUSIONS AND IMPLICATIONS Inhibition of the mitochondrial Ca(2+) uniporter decreases β-adrenoceptor response, uncoupling between workload and production of energetic metabolites. Our results support the hypothesis that the coupling of workload and energy supply is partly dependent on mitochondrial Ca(2+) uniporter activity.
Collapse
Affiliation(s)
- E Fernández-Sada
- Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina, Tecnológico de Monterrey, Monterrey, Nuevo León, México
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Ca²⁺ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca²⁺ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca²⁺ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca²⁺ homeostatic and structural proteins, ion channels, and enzymes. This review focuses on the molecular mechanisms of defective Ca²⁺ cycling in heart failure and considers how fundamental understanding of these pathways may translate into novel and innovative therapies.
Collapse
Affiliation(s)
- Min Luo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
8
|
Affiliation(s)
- Eugene Braunwald
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
9
|
Myocardial energetics in heart failure. Basic Res Cardiol 2013; 108:358. [PMID: 23740216 DOI: 10.1007/s00395-013-0358-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/24/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
It has become common sense that the failing heart is an "engine out of fuel". However, undisputable evidence that, indeed, the failing heart is limited by insufficient ATP supply is currently lacking. Over the last couple of years, an increasingly complex picture of mechanisms evolved that suggests that potentially metabolic intermediates and redox state could play the more dominant roles for signaling that eventually results in left ventricular remodeling and contractile dysfunction. In the pathophysiology of heart failure, mitochondria emerge in the crossfire of defective excitation-contraction coupling and increased energetic demand, which may provoke oxidative stress as an important upstream mediator of cardiac remodeling and cell death. Thus, future therapies may be guided towards restoring defective ion homeostasis and mitochondrial redox shifts rather than aiming solely at improving the generation of ATP.
Collapse
|
10
|
Kohlhaas M, Maack C. Interplay of defective excitation-contraction coupling, energy starvation, and oxidative stress in heart failure. Trends Cardiovasc Med 2012; 21:69-73. [PMID: 22626245 DOI: 10.1016/j.tcm.2012.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In chronic heart failure, maladaptive remodeling of the left ventricle (LV) with systolic and diastolic dysfunction underlies the inability of the heart to pump sufficient blood to supply the body with blood and oxygen. Three integral aspects of this maladaptive LV remodeling are (1) defects in excitation-contraction (EC) coupling, particularly of cellular Ca(2+) and Na(+) homeostasis; (2) an energetic deficit; and (3) oxidative stress. Although these three aspects are often investigated separately from each other, their close and dynamic interplay are increasingly recognized. Central to this novel approach are mitochondria, which are the main source for cellular ATP, but also for reactive oxygen species, and their function is critically regulated by Ca(2+) and Na(+). Here, we review recent advances in our understanding of how maladaptive changes of EC coupling can contribute to the energetic deficit and oxidative stress, which may initiate a vicious cycle leading to progressive cardiac dysfunction.
Collapse
Affiliation(s)
- Michael Kohlhaas
- Medizinische Klinik und Poliklinik, Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg/Saar, Germany
| | | |
Collapse
|
11
|
Griffiths EJ. Mitochondria and heart disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 942:249-67. [PMID: 22399426 DOI: 10.1007/978-94-007-2869-1_11] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mitochondria play a key role in the normal functioning of the heart, and in the pathogenesis and development of various types of heart disease. Physiologically, mitochondrial ATP supply needs to be matched to the often sudden changes in ATP demand of the heart, and this is mediated to a large extent by the mitochondrial Ca(2+) transport pathways allowing elevation of mitochondrial [Ca(2+)] ([Ca(2+)](m)). In turn this activates dehydrogenase enzymes to increase NADH and hence ATP supply. Pathologically, [Ca(2+)](m) is also important in generation of reactive oxygen species, and in opening of the mitochondrial permeability transition pore (MPTP); factors involved in both ischaemia-reperfusion injury and in heart failure. The MPTP has proved a promising target for protective strategies, with inhibitors widely used to show cardioprotection in experimental, and very recently human, studies. Similarly mitochondrially-targeted antioxidants have proved protective in various animal models of disease and await clinical trials. The mitochondrial Ca(2+) transport pathways, although in theory promising therapeutic targets, cannot yet be targeted in human studies due to non-specific effects of drugs used experimentally to inhibit them. Finally, specific mitochondrial cardiomyopathies due to mutations in mtDNA have been identified, usually in a gene for a tRNA, which, although rare, are almost always very severe once the mutation has exceeded its threshold.
Collapse
|
12
|
Ryu SY, Beutner G, Kinnally KW, Dirksen RT, Sheu SS. Single channel characterization of the mitochondrial ryanodine receptor in heart mitoplasts. J Biol Chem 2011; 286:21324-9. [PMID: 21524998 DOI: 10.1074/jbc.c111.245597] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Heart mitochondria utilize multiple Ca(2+) transport mechanisms. Among them, the mitochondrial ryanodine receptor provides a fast Ca(2+) uptake pathway across the inner membrane to control "excitation and metabolism coupling." In the present study, we identified a novel ryanodine-sensitive channel in the native inner membrane of heart mitochondria and characterized its pharmacological and biophysical properties by directly patch clamping mitoplasts. Four distinct channel conductances of ∼100, ∼225, ∼700, and ∼1,000 picosiemens (pS) in symmetrical 150 mm CsCl were observed. The 225 pS cation-selective channel exhibited multiple subconductance states and was blocked by high concentrations of ryanodine and ruthenium red, known inhibitors of ryanodine receptors. Ryanodine exhibited a concentration-dependent modulation of this channel, with low concentrations stabilizing a subconductance state and high concentrations abolishing activity. The 100, 700, and 1,000 pS conductances exhibited different channel characteristics and were not inhibited by ryanodine. Taken together, these findings identified a novel 225 pS channel as the native mitochondrial ryanodine receptor channel activity in heart mitoplasts with biophysical and pharmacological properties that distinguish it from previously identified mitochondrial ion channels.
Collapse
Affiliation(s)
- Shin-Young Ryu
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
13
|
Fraysse B, Nagi SM, Boher B, Ragot H, Lainé J, Salmon A, Fiszman MY, Toussaint M, Fromes Y. Ca2+ overload and mitochondrial permeability transition pore activation in living delta-sarcoglycan-deficient cardiomyocytes. Am J Physiol Cell Physiol 2010; 299:C706-13. [PMID: 20592245 DOI: 10.1152/ajpcell.00545.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscular dystrophies are often associated with significant cardiac disease that can be the prominent feature associated with gene mutations in sarcoglycan. Cardiac cell death is a main feature of cardiomyopathy in sarcoglycan deficiency and may arise as a cardiomyocyte intrinsic process that remains unclear. Deficiency of delta-sarcoglycan (delta-SG) induces disruption of the dystrophin-associated glycoprotein complex, a known cause of membrane instability that may explain cardiomyocytes cytosolic Ca2+ increase. In this study we assessed the hypothesis that cytosolic Ca2+ increase triggers cardiomyocyte death through mitochondrial Ca2+ overload and dysfunction in the delta-SG-deficient CHF147 hamster. We showed that virtually all isolated CHF147 ventricular myocytes exhibited elevated cytosolic and mitochondrial Ca2+ levels by the use of the Fura-2 and Rhod-2 fluorescent probes. Observation of living cells with Mito-Tracker red lead to the conclusion that approximately 15% of isolated CHF147 cardiomyocytes had disorganized mitochondria. Transmission electron microscope imaging showed mitochondrial swelling associated with crest and membrane disruption. Analysis of the mitochondrial permeability transition pore (MPTP) activity using calcein revealed that mitochondria of CHF147 ventricular cells were twofold leakier than wild types, whereas reactive oxygen species production was unchanged. Bax, Bcl-2, and LC3 expression analysis by Western blot indicated that the intrinsic apoptosis and the cell death associated to autophagy pathways were not significantly activated in CHF147 hearts. Our results lead to conclusion that cardiomyocytes death in delta-SG-deficient animals is an intrinsic phenomenon, likely related to Ca2+-induced necrosis. In this process Ca2+ overload-induced MPTP activation and mitochondrial disorganization may have an important role.
Collapse
|
14
|
|
15
|
Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, O'Rourke B, Maack C. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 2010; 121:1606-13. [PMID: 20351235 DOI: 10.1161/circulationaha.109.914911] [Citation(s) in RCA: 251] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oxidative stress is causally linked to the progression of heart failure, and mitochondria are critical sources of reactive oxygen species in failing myocardium. We previously observed that in heart failure, elevated cytosolic Na(+) ([Na(+)](i)) reduces mitochondrial Ca(2+) ([Ca(2+)](m)) by accelerating Ca(2+) efflux via the mitochondrial Na(+)/Ca(2+) exchanger. Because the regeneration of antioxidative enzymes requires NADPH, which is indirectly regenerated by the Krebs cycle, and Krebs cycle dehydrogenases are activated by [Ca(2+)](m), we speculated that in failing myocytes, elevated [Na(+)](i) promotes oxidative stress. METHODS AND RESULTS We used a patch-clamp-based approach to simultaneously monitor cytosolic and mitochondrial Ca(2+) and, alternatively, mitochondrial H(2)O(2) together with NAD(P)H in guinea pig cardiac myocytes. Cells were depolarized in a voltage-clamp mode (3 Hz), and a transition of workload was induced by beta-adrenergic stimulation. During this transition, NAD(P)H initially oxidized but recovered when [Ca(2+)](m) increased. The transient oxidation of NAD(P)H was closely associated with an increase in mitochondrial H(2)O(2) formation. This reactive oxygen species formation was potentiated when mitochondrial Ca(2+) uptake was blocked (by Ru360) or Ca(2+) efflux was accelerated (by elevation of [Na(+)](i)). In failing myocytes, H(2)O(2) formation was increased, which was prevented by reducing mitochondrial Ca(2+) efflux via the mitochondrial Na(+)/Ca(2+) exchanger. CONCLUSIONS Besides matching energy supply and demand, mitochondrial Ca(2+) uptake critically regulates mitochondrial reactive oxygen species production. In heart failure, elevated [Na(+)](i) promotes reactive oxygen species formation by reducing mitochondrial Ca(2+) uptake. This novel mechanism, by which defects in ion homeostasis induce oxidative stress, represents a potential drug target to reduce reactive oxygen species production in the failing heart.
Collapse
Affiliation(s)
- Michael Kohlhaas
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, 66421 Homburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mitochondrial calcium transport in the heart: Physiological and pathological roles. J Mol Cell Cardiol 2009; 46:789-803. [DOI: 10.1016/j.yjmcc.2009.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/28/2009] [Accepted: 03/03/2009] [Indexed: 12/20/2022]
|
17
|
Michels G, Khan IF, Endres-Becker J, Rottlaender D, Herzig S, Ruhparwar A, Wahlers T, Hoppe UC. Regulation of the Human Cardiac Mitochondrial Ca
2+
Uptake by 2 Different Voltage-Gated Ca
2+
Channels. Circulation 2009; 119:2435-43. [DOI: 10.1161/circulationaha.108.835389] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background—
Impairment of intracellular Ca
2+
homeostasis and mitochondrial function has been implicated in the development of cardiomyopathy. Mitochondrial Ca
2+
uptake is thought to be mediated by the Ca
2+
uniporter (MCU) and a thus far speculative non-MCU pathway. However, the identity and properties of these pathways are a matter of intense debate, and possible functional alterations in diseased states have remained elusive.
Methods and Results—
By patch clamping the inner membrane of mitochondria from nonfailing and failing human hearts, we have identified 2 previously unknown Ca
2+
-selective channels, referred to as mCa1 and mCa2. Both channels are voltage dependent but differ significantly in gating parameters. Compared with mCa2 channels, mCa1 channels exhibit a higher single-channel amplitude, shorter openings, a lower open probability, and 3 to 5 subconductance states. Similar to the MCU, mCa1 is inhibited by 200 nmol/L ruthenium 360, whereas mCa2 is insensitive to 200 nmol/L ruthenium 360 and reduced only by very high concentrations (10 μmol/L). Both mitochondrial Ca
2+
channels are unaffected by blockers of other possibly Ca
2+
-conducting mitochondrial pores but were activated by spermine (1 mmol/L). Notably, activity of mCa1 and mCa2 channels is decreased in failing compared with nonfailing heart conditions, making them less effective for Ca
2+
uptake and likely Ca
2+
-induced metabolism.
Conclusions—
Thus, we conclude that the human mitochondrial Ca
2+
uptake is mediated by these 2 distinct Ca
2+
channels, which are functionally impaired in heart failure. Current properties reveal that the mCa1 channel underlies the human MCU and that the mCa2 channel is responsible for the ruthenium red–insensitive/low-sensitivity non-MCU–type mitochondrial Ca
2+
uptake.
Collapse
Affiliation(s)
- Guido Michels
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Ismail F. Khan
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Jeannette Endres-Becker
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Dennis Rottlaender
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Stefan Herzig
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Arjang Ruhparwar
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Thorsten Wahlers
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| | - Uta C. Hoppe
- From the Department of Internal Medicine III (G.M., I.F.K., J.E.-B., D.R., U.C.H.), Center for Molecular Medicine (S.H., U.C.H.), Institute of Pharmacology (S.H.), and Department of Cardiothoracic Surgery (T.W.), University of Cologne, Cologne, and Department of Cardiac Surgery, University of Heidelberg, Heidelberg (A.R.), Germany
| |
Collapse
|
18
|
Collins A, Larson MK. Kir 2.2 inward rectifier potassium channels are inhibited by an endogenous factor in Xenopus oocytes independently from the action of a mitochondrial uncoupler. J Cell Physiol 2009; 219:8-13. [PMID: 19016473 DOI: 10.1002/jcp.21644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We previously showed inhibition of K(ir)2 inward rectifier K(+) channels expressed in Xenopus oocytes by the mitochondrial agents carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and sodium azide. Mutagenesis studies suggested that FCCP may act via phosphatidylinositol 4,5-bisphosphate (PIP(2)) depletion. This mechanism could be reversible in intact cells but not in excised membrane patches which preclude PIP(2) regeneration. This prediction was tested by investigating the reversibility of the inhibition of K(ir)2.2 by FCCP in intact cells and excised patches. We also investigated the effect of FCCP on K(ir)2.2 expressed in human embryonic kidney (HEK) cells. K(ir)2.2 current, expressed in Xenopus oocytes, increased in inside-out patches from FCCP-treated and untreated oocytes. The fraction of total current that increased was 0.79 +/- 0.05 in control and 0.89 +/- 0.03 in 10 microM FCCP-treated (P > .05). Following "run-up," K(ir)2.2 current was re-inhibited by "cramming" inside-out patches into oocytes. Therefore, run-up reflected not reversal of inhibition by FCCP, but washout of an endogenous inhibitor. K(ir)2.2 current recovered in intact oocytes within 26.5 h of FCCP removal. Injection of oocytes with 0.1 U apyrase completely depleted ATP (P < .001) but did not inhibit K(ir)2.2 and inhibited K(ir)2.1 by 35% (P < .05). FCCP only partially reduced [ATP] (P < .001), despite inhibiting K(ir)2.2 by 75% (P < .01) but not K(ir)2.1. FCCP inhibited K(ir)2.2 expressed in HEK cells. The recovery of K(ir)2.2 from inhibition by FCCP requires intracellular components, but direct depletion of ATP does not reproduce the differential inhibitory effect of FCCP. Inhibition of K(ir)2.2 by FCCP is not unique to Xenopus oocytes.
Collapse
Affiliation(s)
- Anthony Collins
- Cardiovascular Biomedical Research Centre, School of Medicine and Dentistry, Queen's University, Belfast, UK.
| | | |
Collapse
|
19
|
Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1324-33. [PMID: 19366607 DOI: 10.1016/j.bbabio.2009.01.019] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 12/30/2022]
Abstract
Mitochondrial Ca(2+) transport was initially considered important only in buffering of cytosolic Ca(2+) by acting as a "sink" under conditions of Ca(2+) overload. The main regulator of ATP production was considered to be the relative concentrations of high energy phosphates. However, work by Denton and McCormack in the 1970s and 1980s showed that free intramitochondrial Ca(2+) ([Ca(2+)](m)) activated dehydrogenase enzymes in mitochondria, leading to increased NADH and hence ATP production. This leads them to propose a scheme, subsequently termed a "parallel activation model" whereby increases in energy demand, such as hormonal stimulation or increased workload in muscle, produced an increase in cytosolic [Ca(2+)] that was relayed by the mitochondrial Ca(2+) transporters into the matrix to give an increase in [Ca(2+)](m). This then stimulated energy production to meet the increased energy demand. With the development of methods for measuring [Ca(2+)](m) in living cells that proved [Ca(2+)](m) changed over a dynamic physiological range rather than simply soaking up excess cytosolic [Ca(2+)], this model has now gained widespread acceptance. However, work by ourselves and others using targeted probes to measure changes in both [Ca(2+)] and [ATP] in different cell compartments has revealed variations in the interrelationships between these two in different tissues, suggesting that metabolic regulation by Ca(2+) is finely tuned to the demands and function of the individual organ.
Collapse
Affiliation(s)
- Elinor J Griffiths
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|