1
|
Tsuji T, Hasegawa J, Sasaki T, Fujimoto T. Definition of phosphatidylinositol 4,5-bisphosphate distribution by freeze-fracture replica labeling. J Cell Biol 2025; 224:e202311067. [PMID: 39495319 PMCID: PMC11535894 DOI: 10.1083/jcb.202311067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/18/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] is a phospholipid essential for plasma membrane functions, but its two-dimensional distribution is not clear. Here, we compared the result of sodium dodecyl sulfate-treated freeze-fracture replica labeling (SDS-FRL) of quick-frozen cells with the actual PtdIns(4,5)P2 content and the results obtained by fluorescence biosensor and by labeling of chemically-fixed membranes. In yeast, enrichment of PtdIns(4,5)P2 in the membrane compartment of Can1 (MCC)/eisosome, especially in the curved MCC/eisosome, was evident by SDS-FRL, but not by fluorescence biosensor, GFP-PLC1δ-PH. PtdIns(4,5)P2 remaining after acute ATP depletion and in the stationary phase, 30.0% and 56.6% of the control level, respectively, was not detectable by fluorescence biosensor, whereas the label intensity by SDS-FRL reflected the PtdIns(4,5)P2 amount. In PC12 cells, PtdIns(4,5)P2 was observed in a punctate pattern in the formaldehyde-fixed plasma membrane, whereas it was distributed randomly by SDS-FRL and showed clustering after formaldehyde fixation. The results indicate that the distribution of PtdIns(4,5)P2 can be defined most reliably by SDS-FRL of quick-frozen cells.
Collapse
Affiliation(s)
- Takuma Tsuji
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Junya Hasegawa
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takehiko Sasaki
- Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toyoshi Fujimoto
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Shultz KD, Al Anbari YF, Wright NT. I told you to stop: obscurin's role in epithelial cell migration. Biochem Soc Trans 2024; 52:1947-1956. [PMID: 39051125 DOI: 10.1042/bst20240564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
The giant cytoskeletal protein obscurin contains multiple cell signaling domains that influence cell migration. Here, we follow each of these pathways, examine how these pathways modulate epithelial cell migration, and discuss the cross-talk between these pathways. Specifically, obscurin uses its PH domain to inhibit phosphoinositide-3-kinase (PI3K)-dependent migration and its RhoGEF domain to activate RhoA and slow cell migration. While obscurin's effect on the PI3K pathway agrees with the literature, obscurin's effect on the RhoA pathway runs counter to most other RhoA effectors, whose activation tends to lead to enhanced motility. Obscurin also phosphorylates cadherins, and this may also influence cell motility. When taken together, obscurin's ability to modulate three independent cell migration pathways is likely why obscurin knockout cells experience enhanced epithelial to mesenchymal transition, and why obscurin is a frequently mutated gene in several types of cancer.
Collapse
Affiliation(s)
- Kamrin D Shultz
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| | - Yasmin F Al Anbari
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, U.S.A
| |
Collapse
|
3
|
Wang Q, Tao C, Wu Y, Anderson KE, Hannan A, Lin CS, Hawkins P, Stephens L, Zhang X. Phospholipase Cγ regulates lacrimal gland branching by competing with PI3K in phosphoinositide metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601066. [PMID: 39005344 PMCID: PMC11244885 DOI: 10.1101/2024.06.28.601066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Although the regulation of branching morphogenesis by spatially distributed cues is well established, the role of intracellular signaling in determining the branching pattern remains poorly understood. In this study, we investigated the regulation and function of phospholipase C gamma (PLCγ) in Fibroblast Growth Factor (FGF) signaling in lacrimal gland development. We showed that deletion of PLCγ1 in the lacrimal gland epithelium leads to ectopic branching and acinar hyperplasia, which was phenocopied by either mutating the PLCγ1 binding site on Fgfr2 or disabling any of its SH2 domains. PLCγ1 inactivation did not change the level of Fgfr2 or affect MAPK signaling, but instead led to sustained AKT phosphorylation due to increased PIP3 production. Consistent with this, PLCγ1 mutant phenotype can be reproduced by elevation of PI3K signaling in Pten knockout and attenuated by blocking AKT signaling. This study demonstrated that PLCγ modulates PI3K signaling by shifting phosphoinositide metabolism, revealing an important role of signaling dynamics in conjunction with spatial cues in shaping branching morphogenesis.
Collapse
|
4
|
Krajewska M, Możajew M, Filipek S, Koprowski P. Interaction of ROMK2 channel with lipid kinases DGKE and AGK: Potential channel activation by localized anionic lipid synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159443. [PMID: 38056763 DOI: 10.1016/j.bbalip.2023.159443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
In this study, we utilized enzyme-catalyzed proximity labeling with the engineered promiscuous biotin ligase Turbo-ID to identify the proxisome of the ROMK2 channel. This channel resides in various cellular membrane compartments of the cell including the plasma membrane, endoplasmic reticulum and mitochondria. Within mitochondria, ROMK2 has been suggested as a pore-forming subunit of mitochondrial ATP-regulated potassium channel (mitoKATP). We found that ROMK2 proxisome in addition to previously known protein partners included two lipid kinases: acylglycerol kinase (AGK) and diacylglycerol kinase ε (DGKE), which are localized in mitochondria and the endoplasmic reticulum, respectively. Through co-immunoprecipitation, we confirmed that these two kinases are present in complexes with ROMK2 channels. Additionally, we found that the products of AGK and DGKE, lysophosphatidic acid (LPA) and phosphatidic acid (PA), stimulated the activity of ROMK2 channels in artificial lipid bilayers. Our molecular docking studies revealed the presence of acidic lipid binding sites in the ROMK2 channel, similar to those previously identified in Kir2 channels. Based on these findings, we propose a model wherein localized lipid synthesis, mediated by channel-bound lipid kinases, contributes to the regulation of ROMK2 activity within distinct intracellular compartments, such as mitochondria and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Milena Krajewska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Mariusz Możajew
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland; Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Sławomir Filipek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| |
Collapse
|
5
|
Ma M, Zheng Y, Lu S, Pan X, Worley KC, Burrage LC, Blieden LS, Allworth A, Chen WL, Merla G, Mandriani B, Rosenfeld JA, Li-Kroeger D, Dutta D, Yamamoto S, Wangler MF, Glass IA, Strohbehn S, Blue E, Prontera P, Lalani SR, Bellen HJ. De novo variants in PLCG1 are associated with hearing impairment, ocular pathology, and cardiac defects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.23300523. [PMID: 38260438 PMCID: PMC10802640 DOI: 10.1101/2024.01.08.23300523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Phospholipase C isozymes (PLCs) hydrolyze phosphatidylinositol 4,5-bisphosphate into inositol 1,4,5-trisphosphate and diacylglycerol, important signaling molecules involved in many cellular processes. PLCG1 encodes the PLCγ1 isozyme that is broadly expressed. Hyperactive somatic mutations of PLCG1 are observed in multiple cancers, but only one germline variant has been reported. Here we describe three unrelated individuals with de novo heterozygous missense variants in PLCG1 (p.Asp1019Gly, p.His380Arg, and p.Asp1165Gly) who exhibit variable phenotypes including hearing loss, ocular pathology and cardiac septal defects. To model these variants in vivo, we generated the analogous variants in the Drosophila ortholog, small wing (sl). We created a null allele slT2A and assessed the expression pattern. sl is broadly expressed, including in wing discs, eye discs, and a subset of neurons and glia. Loss of sl causes wing size reductions, ectopic wing veins and supernumerary photoreceptors. We document that mutant flies exhibit a reduced lifespan and age-dependent locomotor defects. Expressing wild-type sl in slT2A mutant rescues the loss-of-function phenotypes whereas expressing the variants causes lethality. Ubiquitous overexpression of the variants also reduces viability, suggesting that the variants are toxic. Ectopic expression of an established hyperactive PLCG1 variant (p.Asp1165His) in the wing pouch causes severe wing phenotypes, resembling those observed with overexpression of the p.Asp1019Gly or p.Asp1165Gly variants, further arguing that these two are gain-of-function variants. However, the wing phenotypes associated with p.His380Arg overexpression are mild. Our data suggest that the PLCG1 de novo heterozygous missense variants are pathogenic and contribute to the features observed in the probands.
Collapse
Affiliation(s)
- Mengqi Ma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Yiming Zheng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
- Current affiliation: State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Xueyang Pan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Kim C. Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren S. Blieden
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Aimee Allworth
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wei-Liang Chen
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Current affiliation: Children’s National Medical Center and George Washington University, Washington DC 20010, USA
| | - Giuseppe Merla
- Laboratory of Regulatory & Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia 71013, Italy
- Department of Molecular Medicine & Medical Biotechnology, University of Naples Federico II, Naples 80131, Italy
| | - Barbara Mandriani
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Li-Kroeger
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | | | - Ian A. Glass
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
| | - Sam Strohbehn
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth Blue
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Institute for Public Health Genetics, University of Washington, Seattle, WA 98195, USA
| | - Paolo Prontera
- Medical Genetics Unit, Hospital of Perugia, Perugia 06129, Italy
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
6
|
Khananshvili D. Neuronal and astrocyte NCX isoform/splice variants: How do they participate in Na + and Ca 2+ signalling? Cell Calcium 2023; 116:102818. [PMID: 37918135 DOI: 10.1016/j.ceca.2023.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
NCX1, NCX2, and NCX3 gene isoforms and their splice variants are characteristically expressed in different regions of the brain. The tissue-specific splice variants of NCX1-3 isoforms show specific expression profiles in neurons and astrocytes, whereas the relevant NCX isoform/splice variants exhibit diverse allosteric modes of Na+- and Ca2+-dependent regulation. In general, overexpression of NCX1-3 genes leads to neuroprotective effects, whereas their ablation gains the opposite results. At this end, the partial contributions of NCX isoform/splice variants to neuroprotective effects remain unresolved. The glutamate-dependent Na+ entry generates Na+ transients (in response to neuronal cell activities), whereas the Na+-driven Ca2+ entry (through the reverse NCX mode) raises Ca2+ transients. This special mode of signal coupling translates Na+ transients into the Ca2+ signals while being a part of synaptic neurotransmission. This mechanism is of general interest since disease-related conditions (ischemia, metabolic stress, and stroke among many others) trigger Na+ and Ca2+ overload with deadly outcomes of downstream apoptosis and excitotoxicity. The recently discovered mechanisms of NCX allosteric regulation indicate that some NCX variants might play a critical role in the dynamic coupling of Na+-driven Ca2+ entry. In contrast, the others are less important or even could be dangerous under altered conditions (e.g., metabolic stress). This working hypothesis can be tested by applying advanced experimental approaches and highly focused computational simulations. This may allow the development of structure-based blockers/activators that can selectively modulate predefined NCX variants to lessen the life-threatening outcomes of excitotoxicity, ischemia, apoptosis, metabolic deprivation, brain injury, and stroke.
Collapse
Affiliation(s)
- Daniel Khananshvili
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
7
|
Beta C, Edelstein-Keshet L, Gov N, Yochelis A. From actin waves to mechanism and back: How theory aids biological understanding. eLife 2023; 12:e87181. [PMID: 37428017 DOI: 10.7554/elife.87181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Actin dynamics in cell motility, division, and phagocytosis is regulated by complex factors with multiple feedback loops, often leading to emergent dynamic patterns in the form of propagating waves of actin polymerization activity that are poorly understood. Many in the actin wave community have attempted to discern the underlying mechanisms using experiments and/or mathematical models and theory. Here, we survey methods and hypotheses for actin waves based on signaling networks, mechano-chemical effects, and transport characteristics, with examples drawn from Dictyostelium discoideum, human neutrophils, Caenorhabditis elegans, and Xenopus laevis oocytes. While experimentalists focus on the details of molecular components, theorists pose a central question of universality: Are there generic, model-independent, underlying principles, or just boundless cell-specific details? We argue that mathematical methods are equally important for understanding the emergence, evolution, and persistence of actin waves and conclude with a few challenges for future studies.
Collapse
Affiliation(s)
- Carsten Beta
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| | | | - Nir Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Arik Yochelis
- Swiss Institute for Dryland Environmental and Energy Research, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
8
|
Ferreira G, Santander A, Cardozo R, Chavarría L, Domínguez L, Mujica N, Benítez M, Sastre S, Sobrevia L, Nicolson GL. Nutrigenomics of inward rectifier potassium channels. Biochim Biophys Acta Mol Basis Dis 2023:166803. [PMID: 37406972 DOI: 10.1016/j.bbadis.2023.166803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/07/2023]
Abstract
Inwardly rectifying potassium (Kir) channels play a key role in maintaining the resting membrane potential and supporting potassium homeostasis. There are many variants of Kir channels, which are usually tetramers in which the main subunit has two trans-membrane helices attached to two N- and C-terminal cytoplasmic tails with a pore-forming loop in between that contains the selectivity filter. These channels have domains that are strongly modulated by molecules present in nutrients found in different diets, such as phosphoinositols, polyamines and Mg2+. These molecules can impact these channels directly or indirectly, either allosterically by modulation of enzymes or via the regulation of channel expression. A particular type of these channels is coupled to cell metabolism and inhibited by ATP (KATP channels, essential for insulin release and for the pathogenesis of metabolic diseases like diabetes mellitus). Genomic changes in Kir channels have a significant impact on metabolism, such as conditioning the nutrients and electrolytes that an individual can take. Thus, the nutrigenomics of ion channels is an important emerging field in which we are attempting to understand how nutrients and diets can affect the activity and expression of ion channels and how genomic changes in such channels may be the basis for pathological conditions that limit nutrition and electrolyte intake. In this contribution we briefly review Kir channels, discuss their nutrigenomics, characterize how different components in the diet affect their function and expression, and suggest how their genomic changes lead to pathological phenotypes that affect diet and electrolyte intake.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Romina Cardozo
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Luisina Chavarría
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Lucía Domínguez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Nicolás Mujica
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Milagros Benítez
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay
| | - Santiago Sastre
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling, Dept. of Biophysics, Facultad de Medicina, CP 11800, Universidad de la Republica, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo CP 11800, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Brazil; University of Queensland, Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, 4029, Queensland, Australia; Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
9
|
Hofbrucker-MacKenzie SA, Seemann E, Westermann M, Qualmann B, Kessels MM. Long-term depression in neurons involves temporal and ultra-structural dynamics of phosphatidylinositol-4,5-bisphosphate relying on PIP5K, PTEN and PLC. Commun Biol 2023; 6:366. [PMID: 37012315 PMCID: PMC10070498 DOI: 10.1038/s42003-023-04726-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
Synaptic plasticity involves proper establishment and rearrangement of structural and functional microdomains. Yet, visualization of the underlying lipid cues proved challenging. Applying a combination of rapid cryofixation, membrane freeze-fracturing, immunogold labeling and electron microscopy, we visualize and quantitatively determine the changes and the distribution of phosphatidylinositol-4,5-bisphosphate (PIP2) in the plasma membrane of dendritic spines and subareas thereof at ultra-high resolution. These efforts unravel distinct phases of PIP2 signals during induction of long-term depression (LTD). During the first minutes PIP2 rapidly increases in a PIP5K-dependent manner forming nanoclusters. PTEN contributes to a second phase of PIP2 accumulation. The transiently increased PIP2 signals are restricted to upper and middle spine heads. Finally, PLC-dependent PIP2 degradation provides timely termination of PIP2 cues during LTD induction. Together, this work unravels the spatial and temporal cues set by PIP2 during different phases after LTD induction and dissects the molecular mechanisms underlying the observed PIP2 dynamics.
Collapse
Affiliation(s)
- Sarah A Hofbrucker-MacKenzie
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Eric Seemann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Martin Westermann
- Center for Electron Microscopy, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Britta Qualmann
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| | - Michael M Kessels
- Institute of Biochemistry I, Jena University Hospital - Friedrich Schiller University Jena, 07743, Jena, Germany.
| |
Collapse
|
10
|
Bukiya AN, Rosenhouse-Dantsker A. From Crosstalk to Synergism: The Combined Effect of Cholesterol and PI(4,5)P 2 on Inwardly Rectifying Potassium Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:169-191. [PMID: 36988881 DOI: 10.1007/978-3-031-21547-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Inwardly rectifying potassium (Kir) channels are integral membrane proteins that control the flux of potassium ions across cell membranes and regulate membrane permeability. All eukaryotic Kir channels require the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) for activation. In recent years, it has become evident that the function of many members of this family of channels is also mediated by another essential lipid-cholesterol. Here, we focus on members of the Kir2 and Kir3 subfamilies and their modulation by these two key lipids. We discuss how PI(4,5)P2 and cholesterol bind to Kir2 and Kir3 channels and how they affect channel activity. We also discuss the accumulating evidence indicating that there is interplay between PI(4,5)P2 and cholesterol in the modulation of Kir2 and Kir3 channels. In particular, we review the crosstalk between PI(4,5)P2 and cholesterol in the modulation of the ubiquitously expressed Kir2.1 channel and the synergy between these two lipids in the modulation of the Kir3.4 channel, which is primarily expressed in the heart. Additionally, we demonstrate that there is also synergy in the modulation of Kir3.2 channels, which are expressed in the brain. These observations suggest that alterations in the relative levels PI(4,5)P2 and cholesterol may fine-tune Kir channel activity.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
11
|
Structure-Based Function and Regulation of NCX Variants: Updates and Challenges. Int J Mol Sci 2022; 24:ijms24010061. [PMID: 36613523 PMCID: PMC9820601 DOI: 10.3390/ijms24010061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The plasma-membrane homeostasis Na+/Ca2+ exchangers (NCXs) mediate Ca2+ extrusion/entry to dynamically shape Ca2+ signaling/in biological systems ranging from bacteria to humans. The NCX gene orthologs, isoforms, and their splice variants are expressed in a tissue-specific manner and exhibit nearly 104-fold differences in the transport rates and regulatory specificities to match the cell-specific requirements. Selective pharmacological targeting of NCX variants could benefit many clinical applications, although this intervention remains challenging, mainly because a full-size structure of eukaryotic NCX is unavailable. The crystal structure of the archaeal NCX_Mj, in conjunction with biophysical, computational, and functional analyses, provided a breakthrough in resolving the ion transport mechanisms. However, NCX_Mj (whose size is nearly three times smaller than that of mammalian NCXs) cannot serve as a structure-dynamic model for imitating high transport rates and regulatory modules possessed by eukaryotic NCXs. The crystal structures of isolated regulatory domains (obtained from eukaryotic NCXs) and their biophysical analyses by SAXS, NMR, FRET, and HDX-MS approaches revealed structure-based variances of regulatory modules. Despite these achievements, it remains unclear how multi-domain interactions can decode and integrate diverse allosteric signals, thereby yielding distinct regulatory outcomes in a given ortholog/isoform/splice variant. This article summarizes the relevant issues from the perspective of future developments.
Collapse
|
12
|
Wills RC, Hammond GRV. PI(4,5)P2: signaling the plasma membrane. Biochem J 2022; 479:2311-2325. [PMID: 36367756 PMCID: PMC9704524 DOI: 10.1042/bcj20220445] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
In the almost 70 years since the first hints of its existence, the phosphoinositide, phosphatidyl-D-myo-inositol 4,5-bisphosphate has been found to be central in the biological regulation of plasma membrane (PM) function. Here, we provide an overview of the signaling, transport and structural roles the lipid plays at the cell surface in animal cells. These include being substrate for second messenger generation, direct modulation of receptors, control of membrane traffic, regulation of ion channels and transporters, and modulation of the cytoskeleton and cell polarity. We conclude by re-evaluating PI(4,5)P2's designation as a signaling molecule, instead proposing a cofactor role, enabling PM-selective function for many proteins.
Collapse
Affiliation(s)
- Rachel C. Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
13
|
Mahoney JP, Bruguera ES, Vasishtha M, Killingsworth LB, Kyaw S, Weis WI. PI(4,5)P 2-stimulated positive feedback drives the recruitment of Dishevelled to Frizzled in Wnt-β-catenin signaling. Sci Signal 2022; 15:eabo2820. [PMID: 35998232 PMCID: PMC9528458 DOI: 10.1126/scisignal.abo2820] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the Wnt-β-catenin pathway, Wnt binding to Frizzled (Fzd) and LRP5 or LRP6 (LRP5/6) co-receptors inhibits the degradation of the transcriptional coactivator β-catenin by recruiting the cytosolic effector Dishevelled (Dvl). Polymerization of Dvl at the plasma membrane recruits the β-catenin destruction complex, enabling the phosphorylation of LRP5/6, a key step in inhibiting β-catenin degradation. Using purified Fzd proteins reconstituted in lipid nanodiscs, we investigated the factors that promote the recruitment of Dvl to the plasma membrane. We found that the affinity of Fzd for Dvl was not affected by Wnt ligands, in contrast to other members of the GPCR superfamily for which the binding of extracellular ligands affects the affinity for downstream transducers. Instead, Fzd-Dvl binding was enhanced by increased concentration of the lipid PI(4,5)P2, which is generated by Dvl-associated lipid kinases in response to Wnt and which is required for LRP5/6 phosphorylation. Moreover, binding to Fzd did not promote Dvl DEP domain dimerization, which has been proposed to be required for signaling downstream of Fzd. Our findings suggest a positive feedback loop in which Wnt-stimulated local PI(4,5)P2 production enhances Dvl recruitment and further PI(4,5)P2 production to support Dvl polymerization, LRP5/6 phosphorylation, and β-catenin stabilization.
Collapse
Affiliation(s)
- Jacob P Mahoney
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Elise S Bruguera
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Mansi Vasishtha
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Lauren B Killingsworth
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - Saw Kyaw
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| | - William I Weis
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94035, USA
| |
Collapse
|
14
|
Critical contributions of pre-S1 shoulder and distal TRP box in DAG-activated TRPC6 channel by PIP 2 regulation. Sci Rep 2022; 12:10766. [PMID: 35750783 PMCID: PMC9232555 DOI: 10.1038/s41598-022-14766-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 or PIP2) regulates the activities of numerous membrane proteins, including diacylglycerol(DAG)-activated TRPC3/6/7 channels. Although PIP2 binding is known to support DAG-activated TRP channel activity, its binding site remains unknown. We screened for PIP2 binding sites within TRPC6 channels through extensive mutagenesis. Using voltage-sensitive phosphatase (DrVSP), we found that Arg437 and Lys442, located in the channel’s pre-S1 domain/shoulder, are crucial for interaction with PIP2. To gain structural insights, we conducted computer protein–ligand docking simulations with the pre-S1 domain/shoulder of TRPC6 channels. Further, the functional significance of PIP2 binding to the pre-S1 shoulder was assessed for receptor-operated channel functions, cross-reactivity to DAG activation, and the kinetic model simulation. These results revealed that basic residues in the pre-S1 domain/shoulder play a central role in the regulation of PIP2-dependent gating. In addition, neutralizing mutation of K771 in the distal TRP box reversed the effect of PIP2 depletion from inhibiting to potentiating channel activity. A similar effect was seen in TRPV1 channels, which suggests that TRPC6 possesses a common but robust polarity switch mediating the PIP2-dependent effect. Overall, these mutagenesis studies reveal functional and structural insights for how basic residues and channel segments in TRP channels are controlled through phosphoinositides recognition.
Collapse
|
15
|
Design principles of PI(4,5)P 2 clustering under protein-free conditions: Specific cation effects and calcium-potassium synergy. Proc Natl Acad Sci U S A 2022; 119:e2202647119. [PMID: 35605121 DOI: 10.1073/pnas.2202647119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceClustering of phosphatidylinositol 4,5-bisphosphate (PIP2) with proteins into what are known as "PIP2 rafts" is a critical component of intracellular signaling, yet little is known about PIP2 clusters at the atomic level. Using molecular dynamics simulations and network theory, this paper shows that Ca2+ generates large clusters by linking PIP2 dimers already formed by doubly charged P4/P5 phosphates, while monovalent cations form smaller and less-stable clusters by adding PIP2 monomers preferentially via weaker interactions with P4/P5 (for Na+) or with glycerol P1 (for K+). Synergy arises between K+ and Ca2+ because each ion forms linkages with different phosphates, thereby giving clusters more ways to grow. This explains why Ca2+ is pumped into cells by ion channels to form PIP2 rafts.
Collapse
|
16
|
Yu Y, Krämer A, Venable RM, Simmonett AC, MacKerell AD, Klauda JB, Pastor RW, Brooks BR. Semi-automated Optimization of the CHARMM36 Lipid Force Field to Include Explicit Treatment of Long-Range Dispersion. J Chem Theory Comput 2021; 17:1562-1580. [PMID: 33620214 PMCID: PMC8059446 DOI: 10.1021/acs.jctc.0c01326] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of the CHARMM lipid force field (FF) can be traced back to the early 1990s with its current version denoted CHARMM36 (C36). The parametrization of C36 utilized high-level quantum mechanical data and free energy calculations of model compounds before parameters were manually adjusted to yield agreement with experimental properties of lipid bilayers. While such manual fine-tuning of FF parameters is based on intuition and trial-and-error, automated methods can identify beneficial modifications of the parameters via their sensitivities and thereby guide the optimization process. This work introduces a semi-automated approach to reparametrize the CHARMM lipid FF with consistent inclusion of long-range dispersion through the Lennard-Jones particle-mesh Ewald (LJ-PME) approach. The optimization method is based on thermodynamic reweighting with regularization with respect to the C36 set. Two independent optimizations with different topology restrictions are presented. Targets of the optimizations are primarily liquid crystalline phase properties of lipid bilayers and the compression isotherm of monolayers. Pair correlation functions between water and lipid functional groups in aqueous solution are also included to address headgroup hydration. While the physics of the reweighting strategy itself is well-understood, applying it to heterogeneous, complex anisotropic systems poses additional challenges. These were overcome through careful selection of target properties and reweighting settings allowing for the successful incorporation of the explicit treatment of long-range dispersion, and we denote the newly optimized lipid force field as C36/LJ-PME. The current implementation of the optimization protocol will facilitate the future development of the CHARMM and related lipid force fields.
Collapse
Affiliation(s)
- Yalun Yu
- Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Andreas Krämer
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Richard M Venable
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Andrew C Simmonett
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jeffery B Klauda
- Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Richard W Pastor
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
17
|
Abstract
Ion channel are embedded in the lipid bilayers of biological membranes. Membrane phospholipids constitute a barrier to ion movement, and they have been considered for a long time as a passive environment for channel proteins. Membrane phospholipids, however, do not only serve as a passive amphipathic environment, but they also modulate channel activity by direct specific lipid-protein interactions. Phosphoinositides are quantitatively minor components of biological membranes, and they play roles in many cellular functions, including membrane traffic, cellular signaling and cytoskeletal organization. Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is mainly found in the inner leaflet of the plasma membrane. Its role as a potential ion channel regulator was first appreciated over two decades ago and by now this lipid is a well-established cofactor or regulator of many different ion channels. The past two decades witnessed the steady development of techniques to study ion channel regulation by phosphoinositides with progress culminating in recent cryoEM structures that allowed visualization of how PI(4,5)P2 opens some ion channels. This chapter will provide an overview of the methods to study regulation by phosphoinositides, focusing on plasma membrane ion channels and PI(4,5)P2.
Collapse
|
18
|
Parton RG, Kozlov MM, Ariotti N. Caveolae and lipid sorting: Shaping the cellular response to stress. J Cell Biol 2020; 219:133844. [PMID: 32328645 PMCID: PMC7147102 DOI: 10.1083/jcb.201905071] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/30/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Caveolae are an abundant and characteristic surface feature of many vertebrate cells. The uniform shape of caveolae is characterized by a bulb with consistent curvature connected to the plasma membrane (PM) by a neck region with opposing curvature. Caveolae act in mechanoprotection by flattening in response to increased membrane tension, and their disassembly influences the lipid organization of the PM. Here, we review evidence for caveolae as a specialized lipid domain and speculate on mechanisms that link changes in caveolar shape and/or protein composition to alterations in specific lipid species. We propose that high membrane curvature in specific regions of caveolae can enrich specific lipid species, with consequent changes in their localization upon caveolar flattening. In addition, we suggest how changes in the association of lipid-binding caveolar proteins upon flattening of caveolae could allow release of specific lipids into the bulk PM. We speculate that the caveolae-lipid system has evolved to function as a general stress-sensing and stress-protective membrane domain.
Collapse
Affiliation(s)
- Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia.,Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Kensington, Australia.,Department of Pathology, School of Medical Sciences, The University of New South Wales, Kensington, Australia
| |
Collapse
|
19
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Katan M, Cockcroft S. Phosphatidylinositol(4,5)bisphosphate: diverse functions at the plasma membrane. Essays Biochem 2020; 64:513-531. [PMID: 32844214 PMCID: PMC7517351 DOI: 10.1042/ebc20200041] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Phosphatidylinositol(4,5) bisphosphate (PI(4,5)P2) has become a major focus in biochemistry, cell biology and physiology owing to its diverse functions at the plasma membrane. As a result, the functions of PI(4,5)P2 can be explored in two separate and distinct roles - as a substrate for phospholipase C (PLC) and phosphoinositide 3-kinase (PI3K) and as a primary messenger, each having unique properties. Thus PI(4,5)P2 makes contributions in both signal transduction and cellular processes including actin cytoskeleton dynamics, membrane dynamics and ion channel regulation. Signalling through plasma membrane G-protein coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immune receptors all use PI(4,5)P2 as a substrate to make second messengers. Activation of PI3K generates PI(3,4,5)P3 (phosphatidylinositol(3,4,5)trisphosphate), a lipid that recruits a plethora of proteins with pleckstrin homology (PH) domains to the plasma membrane to regulate multiple aspects of cellular function. In contrast, PLC activation results in the hydrolysis of PI(4,5)P2 to generate the second messengers, diacylglycerol (DAG), an activator of protein kinase C and inositol(1,4,5)trisphosphate (IP3/I(1,4,5)P3) which facilitates an increase in intracellular Ca2+. Decreases in PI(4,5)P2 by PLC also impact on functions that are dependent on the intact lipid and therefore endocytosis, actin dynamics and ion channel regulation are subject to control. Spatial organisation of PI(4,5)P2 in nanodomains at the membrane allows for these multiple processes to occur concurrently.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, U.K
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, U.K
| |
Collapse
|
21
|
Stephens DC, Powell TW, Taraska JW, Harris DA. Imaging the rapid yet transient accumulation of regulatory lipids, lipid kinases, and protein kinases during membrane fusion, at sites of exocytosis of MMP-9 in MCF-7 cells. Lipids Health Dis 2020; 19:195. [PMID: 32829709 PMCID: PMC7444259 DOI: 10.1186/s12944-020-01374-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 11/10/2022] Open
Abstract
Background The regulation of exocytosis is physiologically vital in cells and requires a variety of distinct proteins and lipids that facilitate efficient, fast, and timely release of secretory vesicle cargo. Growing evidence suggests that regulatory lipids act as important lipid signals and regulate various biological processes including exocytosis. Though functional roles of many of these regulatory lipids has been linked to exocytosis, the dynamic behavior of these lipids during membrane fusion at sites of exocytosis in cell culture remains unknown. Methods Total internal reflection fluorescence microscopy (TIRF) was used to observe the spatial organization and temporal dynamics (i.e. spatial positioning and timing patterns) of several lipids, and accessory proteins, like lipid kinases and protein kinases, in the form of protein kinase C (PRKC) associated with sites of exocytosis of matrix metalloproteinase-9 (MMP-9) in living MCF-7 cancer cells. Results Following stimulation with phorbol myristate acetate (PMA) to promote exocytosis, a transient accumulation of several distinct regulatory lipids, lipid kinases, and protein kinases at exocytic sites was observed. This transient accumulation centered at the time of membrane fusion is followed by a rapid diffusion away from the fusion sites. Additionally, the synthesis of these regulatory lipids, degradation of these lipids, and the downstream effectors activated by these lipids, are also achieved by the recruitment and accumulation of key enzymes at exocytic sites (during the moment of cargo release). This includes key enzymes like lipid kinases, protein kinases, and phospholipases that facilitate membrane fusion and exocytosis of MMP-9. Conclusions This work suggests that these regulatory lipids and associated effector proteins are locally synthesized and/or recruited to sites of exocytosis, during membrane fusion and cargo release. More importantly, their enrichment at fusion sites serves as an important spatial and temporal organizing “element” defining individual exocytic sites.
Collapse
Affiliation(s)
- Dominique C Stephens
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA
| | - Tyrel W Powell
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA
| | - Justin W Taraska
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dinari A Harris
- Department of Chemistry, Howard University, 525 College Street NW, Washington, D.C, 20059, USA.
| |
Collapse
|
22
|
Sancho M, Welsh DG. K IR channels in the microvasculature: Regulatory properties and the lipid-hemodynamic environment. CURRENT TOPICS IN MEMBRANES 2020; 85:227-259. [PMID: 32402641 DOI: 10.1016/bs.ctm.2020.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Basal tone and perfusion control is set in cerebral arteries by the sensing of pressure and flow, key hemodynamic stimuli. These forces establish a contractile foundation within arterial networks upon which local neurovascular stimuli operate. This fundamental process is intimately tied to arterial VM and the rise in cytosolic [Ca2+] by the graded opening of voltage-operated Ca2+ channels. Arterial VM is in turn controlled by a dynamic interaction among several resident ion channels, KIR being one of particular significance. As the name suggests, KIR displays strong inward rectification, retains a small outward component, potentiated by extracellular K+ and blocked by micromolar Ba2+. Cerebrovascular KIR is unique from other K+ currents as it is present in both smooth muscle and endothelium yet lacking in classical regulatory modulation. Such observations have fostered the view that KIR is nothing more than a background conductance, activated by extracellular K+ and which passively facilitates dilation. Recent work in cell model systems has; however, identified two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, that interact with KIR2.x, to stabilize the channel in the preferred open or silent state, respectively. Translating this unique form of regulation, recent studies have demonstrated that specific lipid-protein interactions enable unique KIR populations to sense distinct hemodynamic stimuli and set basal tone. This review summarizes the current knowledge of vascular KIR channels and how the lipid and hemodynamic impact their activity.
Collapse
Affiliation(s)
- Maria Sancho
- Robarts Research Institute and the Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada
| | - Donald G Welsh
- Robarts Research Institute and the Department of Physiology & Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
23
|
Robinson CV, Rohacs T, Hansen SB. Tools for Understanding Nanoscale Lipid Regulation of Ion Channels. Trends Biochem Sci 2019; 44:795-806. [PMID: 31060927 PMCID: PMC6729126 DOI: 10.1016/j.tibs.2019.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
Abstract
Anionic phospholipids are minor but prominent components of the plasma membrane that are necessary for ion channel function. Their persistence in bulk membranes, in particular phosphatidylinositol 4,5-bisphosphate (PIP2), initially suggested they act as channel cofactors. However, recent technologies have established an emerging system of nanoscale signaling to ion channels based on lipid compartmentalization (clustering), direct lipid binding, and local lipid dynamics that allow cells to harness lipid heterogeneity to gate ion channels. The new tools to study lipid binding are set to transform our view of the membrane and answer important questions surrounding ion channel-delimited processes such as mechanosensation.
Collapse
Affiliation(s)
- Carol V Robinson
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Scott B Hansen
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
24
|
PIP2 Reshapes Membranes through Asymmetric Desorption. Biophys J 2019; 117:962-974. [PMID: 31445680 DOI: 10.1016/j.bpj.2019.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 11/24/2022] Open
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2) is an important signaling lipid in eukaryotic cell plasma membranes, playing an essential role in diverse cellular processes. The headgroup of PIP2 is highly negatively charged, and this lipid displays a high critical micellar concentration compared to housekeeping phospholipid analogs. Given the crucial role of PIP2, it is imperative to study its localization, interaction with proteins, and membrane-shaping properties. Biomimetic membranes have served extensively to elucidate structural and functional aspects of cell membranes including protein-lipid and lipid-lipid interactions, as well as membrane mechanics. Incorporation of PIP2 into biomimetic membranes, however, has at times resulted in discrepant findings described in the literature. With the goal to elucidate the mechanical consequences of PIP2 incorporation, we studied the desorption of PIP2 from biomimetic giant unilamellar vesicles by means of a fluorescent marker. A decrease in fluorescence intensity with the age of the vesicles suggested that PIP2 lipids were being desorbed from the outer leaflet of the membrane. To evaluate whether this desorption was asymmetric, the vesicles were systematically diluted. This resulted in an increase in the number of internally tubulated vesicles within minutes after dilution, suggesting that the desorption was asymmetric and also generated membrane curvature. By means of a saturated chain homolog of PIP2, we showed that the fast desorption of PIP2 is facilitated by presence of an arachidonic lipid tail and is possibly due to its oxidation. Through measurements of the pulling force of membrane tethers, we quantified the effect of this asymmetric desorption on the spontaneous membrane curvature. Furthermore, we found that the spontaneous curvature could be modulated by externally increasing the concentration of PIP2 micelles. Given that the local concentration of PIP2 in biological membranes is variable, spontaneous curvature generated by PIP2 may affect the formation of highly curved structures that can serve as initiators for signaling events.
Collapse
|
25
|
The membrane environment of cadherin adhesion receptors: a working hypothesis. Biochem Soc Trans 2019; 47:985-995. [DOI: 10.1042/bst20180012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Classical cadherin cell adhesion receptors are integral membrane proteins that mediate cell–cell interactions, tissue integrity and morphogenesis. Cadherins are best understood to function as membrane-spanning molecular composites that couple adhesion to the cytoskeleton. On the other hand, the membrane lipid environment of the cadherins is an under-investigated aspect of their cell biology. In this review, we discuss two lines of research that show how the membrane can directly or indirectly contribute to cadherin function. Firstly, we consider how modification of its local lipid environment can potentially influence cadherin signalling, adhesion and dynamics, focusing on a role for phosphoinositide-4,5-bisphosphate. Secondly, we discuss how caveolae may indirectly regulate cadherins by modifying either the lipid composition and/or mechanical tension of the plasma membrane. Thus, we suggest that the membrane is a frontier of cadherin biology that is ripe for re-exploration.
Collapse
|
26
|
Sancho M, Fabris S, Hald BO, Brett SE, Sandow SL, Poepping TL, Welsh DG. Membrane Lipid-K
IR
2.x Channel Interactions Enable Hemodynamic Sensing in Cerebral Arteries. Arterioscler Thromb Vasc Biol 2019; 39:1072-1087. [DOI: 10.1161/atvbaha.119.312493] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective—
Inward rectifying K
+
(K
IR
) channels are present in cerebral arterial smooth muscle and endothelial cells, a tandem arrangement suggestive of a dynamic yet undiscovered role for this channel. This study defined whether distinct pools of cerebral arterial K
IR
channels were uniquely modulated by membrane lipids and hemodynamic stimuli.
Approach and Results—
A Ba
2+
-sensitive K
IR
current was isolated in smooth muscle and endothelial cells of rat cerebral arteries; molecular analyses subsequently confirmed K
IR
2.1/K
IR
2.2 mRNA and protein expression in both cells. Patch-clamp electrophysiology next demonstrated that each population of K
IR
channels was sensitive to key membrane lipids and hemodynamic stimuli. In this regard, endothelial K
IR
was sensitive to phosphatidylinositol 4,5-bisphosphate content, with depletion impairing the ability of laminar shear stress to activate this channel pool. In contrast, smooth muscle K
IR
was sensitive to membrane cholesterol content, with sequestration blocking the ability of pressure to inhibit channel activity. The idea that membrane lipids help confer shear stress and pressure sensitivity of K
IR
channels was confirmed in intact arteries using myography. Virtual models integrating structural/electrical observations reconceptualized K
IR
as a dynamic regulator of membrane potential working in concert with other currents to set basal tone across a range of shear stresses and intravascular pressures.
Conclusions—
The data show for the first time that specific membrane lipid-K
IR
interactions enable unique channel populations to sense hemodynamic stimuli and drive vasomotor responses to set basal perfusion in the cerebral circulation.
Collapse
Affiliation(s)
- Maria Sancho
- From the Department of Physiology and Pharmacology, Robarts Research Institute (M.S., S.F., S.E.B., D.G.W.), University of Western Ontario, London, Canada
| | - Sergio Fabris
- From the Department of Physiology and Pharmacology, Robarts Research Institute (M.S., S.F., S.E.B., D.G.W.), University of Western Ontario, London, Canada
| | - Bjorn O. Hald
- Department of Neuroscience, Translational Neurobiology, University of Copenhagen, Denmark (B.O.H.)
| | - Suzanne E. Brett
- From the Department of Physiology and Pharmacology, Robarts Research Institute (M.S., S.F., S.E.B., D.G.W.), University of Western Ontario, London, Canada
| | - Shaun L. Sandow
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Queensland, Australia (S.L.S.)
| | - Tamie L. Poepping
- Department of Physics and Astronomy (T.L.P.), University of Western Ontario, London, Canada
| | - Donald G. Welsh
- From the Department of Physiology and Pharmacology, Robarts Research Institute (M.S., S.F., S.E.B., D.G.W.), University of Western Ontario, London, Canada
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada (D.G.W.)
| |
Collapse
|
27
|
Gq-Coupled Muscarinic Receptor Enhancement of KCNQ2/3 Channels and Activation of TRPC Channels in Multimodal Control of Excitability in Dentate Gyrus Granule Cells. J Neurosci 2018; 39:1566-1587. [PMID: 30593498 DOI: 10.1523/jneurosci.1781-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
KCNQ (Kv7, "M-type") K+ channels and TRPC (transient receptor potential, "canonical") cation channels are coupled to neuronal discharge properties and are regulated via Gq/11-protein-mediated signals. Stimulation of Gq/11-coupled receptors both consumes phosphatidylinositol 4,5-bisphosphate (PIP2) via phosphalipase Cβ hydrolysis and stimulates PIP2 synthesis via rises in Ca2+ i and other signals. Using brain-slice electrophysiology and Ca2+ imaging from male and female mice, we characterized threshold K+ currents in dentate gyrus granule cells (DGGCs) and CA1 pyramidal cells, the effects of Gq/11-coupled muscarinic M1 acetylcholine (M1R) stimulation on M current and on neuronal discharge properties, and elucidated the intracellular signaling mechanisms involved. We observed disparate signaling cascades between DGGCs and CA1 neurons. DGGCs displayed M1R enhancement of M-current, rather than suppression, due to stimulation of PIP2 synthesis, which was paralleled by increased PIP2-gated G-protein coupled inwardly rectifying K+ currents as well. Deficiency of KCNQ2-containing M-channels ablated the M1R-induced enhancement of M-current in DGGCs. Simultaneously, M1R stimulation in DGGCs induced robust increases in [Ca2+]i, mostly due to TRPC currents, consistent with, and contributing to, neuronal depolarization and hyperexcitability. CA1 neurons did not display such multimodal signaling, but rather M current was suppressed by M1R stimulation in these cells, similar to the previously described actions of M1R stimulation on M-current in peripheral ganglia that mostly involves PIP2 depletion. Therefore, these results point to a pleiotropic network of cholinergic signals that direct cell-type-specific, precise control of hippocampal function with strong implications for hyperexcitability and epilepsy.SIGNIFICANCE STATEMENT At the neuronal membrane, protein signaling cascades consisting of ion channels and metabotropic receptors govern the electrical properties and neurotransmission of neuronal networks. Muscarinic acetylcholine receptors are G-protein-coupled metabotropic receptors that control the excitability of neurons through regulating ion channels, intracellular Ca2+ signals, and other second-messenger cascades. We have illuminated previously unknown actions of muscarinic stimulation on the excitability of hippocampal principal neurons that include M channels, TRPC (transient receptor potential, "canonical") cation channels, and powerful regulation of lipid metabolism. Our results show that these signaling pathways, and mechanisms of excitability, are starkly distinct between peripheral ganglia and brain, and even between different principal neurons in the hippocampus.
Collapse
|
28
|
A Closely Associated Phospholipase C Regulates Cation Channel Function through Phosphoinositide Hydrolysis. J Neurosci 2018; 38:7622-7634. [PMID: 30037836 DOI: 10.1523/jneurosci.0586-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/28/2018] [Accepted: 07/17/2018] [Indexed: 11/21/2022] Open
Abstract
In the hemaphroditic sea snail, Aplysia californica, reproduction is initiated when the bag cell neurons secrete egg-laying hormone during a protracted afterdischarge. A source of depolarization for the afterdischarge is a voltage-gated, nonselective cation channel, similar to transient receptor potential (TRP) channels. Once the afterdischarge is triggered, phospholipase C (PLC) is activated to hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol trisphosphate (IP3). We previously reported that a DAG analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG), activates a prominent, inward whole-cell cationic current that is enhanced by IP3 To examine the underlying mechanism, we investigated the effect of exogenous OAG and IP3, as well as PLC activation, on cation channel activity and voltage dependence in excised, inside-out patches from cultured bag cell neurons. OAG transiently elevated channel open probability (PO) when applied to excised patches; however, coapplication of IP3 prolonged the OAG-induced response. In patches exposed to OAG and IP3, channel voltage dependence was left-shifted; this was also observed with OAG, but not to the same extent. Introducing the PLC activator, m-3M3FBS, to patches increased channel PO, suggesting PLC may be physically linked to the channels. Accordingly, blocking PLC with U-73122 ablated the m-3M3FBS-induced elevation in PO Treatment with m-3M3FBS left-shifted cation channel voltage dependence to a greater extent than exogenous OAG and IP3 Finally, OAG and IP3 potentiated the stimulatory effect of PKC, which is also associated with the channel. Thus, the PLC-PKC signaling system is physically localized such that PIP2 breakdown products liberated during the afterdischarge modulate the cation channel and temporally influence neuronal activity.SIGNIFICANCE STATEMENT Using excised patches from Aplysia bag cell neurons, we present the first evidence of a nonselective cation channel physically associating with phospholipase C (PLC) at the single-channel level. PLC-mediated breakdown of phospholipids generates diacylglycerol and inositol trisphosphate, which activate the cation channel. This is mimicked by exogenous lipids; furthermore, these second messengers left-shift channel voltage dependence and enhance the response of the channel to protein kinase C. PLC-mediated lipid signaling controls single-channel currents to ensure depolarization is maintained for an extended period of firing, termed the afterdischarge, when the bag cell neurons secrete egg-laying hormone to trigger reproduction.
Collapse
|
29
|
Traynor-Kaplan A, Kruse M, Dickson EJ, Dai G, Vivas O, Yu H, Whittington D, Hille B. Fatty-acyl chain profiles of cellular phosphoinositides. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:513-522. [PMID: 28189644 PMCID: PMC5392126 DOI: 10.1016/j.bbalip.2017.02.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/24/2022]
Abstract
Phosphoinositides are rapidly turning-over phospholipids that play key roles in intracellular signaling and modulation of membrane effectors. Through technical refinements we have improved sensitivity in the analysis of the phosphoinositide PI, PIP, and PIP2 pools from living cells using mass spectrometry. This has permitted further resolution in phosphoinositide lipidomics from cell cultures and small samples of tissue. The technique includes butanol extraction, derivatization of the lipids, post-column infusion of sodium to stabilize formation of sodiated adducts, and electrospray ionization mass spectrometry in multiple reaction monitoring mode, achieving a detection limit of 20pg. We describe the spectrum of fatty-acyl chains in the cellular phosphoinositides. Consistent with previous work in other mammalian primary cells, the 38:4 fatty-acyl chains dominate in the phosphoinositides of the pineal gland and of superior cervical ganglia, and many additional fatty acid combinations are found at low abundance. However, Chinese hamster ovary cells and human embryonic kidney cells (tsA201) in culture have different fatty-acyl chain profiles that change with growth state. Their 38:4 lipids lose their dominance as cultures approach confluence. The method has good time resolution and follows well the depletion in <20s of both PIP2 and PIP that results from strong activation of Gq-coupled receptors. The receptor-activated phospholipase C exhibits no substrate selectivity among the various fatty-acyl chain combinations.
Collapse
Affiliation(s)
- Alexis Traynor-Kaplan
- ATK Innovation, Analytics and Discovery, North Bend, WA 98045, USA; Department of Medicine/Gastroenterology, University of Washington School of Medicine, Seattle, WA, USA.
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Eamonn J Dickson
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Gucan Dai
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Oscar Vivas
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Haijie Yu
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington School of Medicine, Seattle, WA, USA
| | - Bertil Hille
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
30
|
Anderluh A, Hofmaier T, Klotzsch E, Kudlacek O, Stockner T, Sitte HH, Schütz GJ. Direct PIP 2 binding mediates stable oligomer formation of the serotonin transporter. Nat Commun 2017; 8:14089. [PMID: 28102201 PMCID: PMC5253637 DOI: 10.1038/ncomms14089] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
The human serotonin transporter (hSERT) mediates uptake of serotonin from the synaptic cleft and thereby terminates serotonergic signalling. We have previously found by single-molecule microscopy that SERT forms stable higher-order oligomers of differing stoichiometry at the plasma membrane of living cells. Here, we report that SERT oligomer assembly at the endoplasmic reticulum (ER) membrane follows a dynamic equilibration process, characterized by rapid exchange of subunits between different oligomers, and by a concentration dependence of the degree of oligomerization. After trafficking to the plasma membrane, however, the SERT stoichiometry is fixed. Stabilization of the oligomeric SERT complexes is mediated by the direct binding to phosphoinositide phosphatidylinositol-4,5-biphosphate (PIP2). The observed spatial decoupling of oligomer formation from the site of oligomer operation provides cells with the ability to define protein quaternary structures independent of protein density at the cell surface.
Collapse
Affiliation(s)
- Andreas Anderluh
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| | - Tina Hofmaier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Enrico Klotzsch
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Oliver Kudlacek
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Waehringerstrasse 13A, Vienna 1090, Austria
| | - Gerhard J. Schütz
- Institute of Applied Physics, TU Wien, Wiedner Hauptstrasse 8-10, Vienna 1040, Austria
| |
Collapse
|
31
|
On the possible structural role of single chain sphingolipids Sphingosine and Sphingosine 1-phosphate in the amyloid-β peptide interactions with membranes. Consequences for Alzheimer’s disease development. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Masters TA, Sheetz MP, Gauthier NC. F-actin waves, actin cortex disassembly and focal exocytosis driven by actin-phosphoinositide positive feedback. Cytoskeleton (Hoboken) 2016; 73:180-96. [PMID: 26915738 DOI: 10.1002/cm.21287] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/11/2016] [Accepted: 02/18/2016] [Indexed: 12/29/2022]
Abstract
Actin polymerization is controlled by the phosphoinositide composition of the plasma membrane. However, the molecular mechanisms underlying the spatiotemporal regulation of actin network organization over extended length scales are still unclear. To observe phosphoinositide-dependent cytoskeletal dynamics we combined the model system of frustrated phagocytosis, total internal reflection microscopy and manipulation of the buffer tonicity. We found that macrophages interacting with IgG-coated glass substrates formed circular F-actin waves on their ventral surface enclosing a region of plasma membrane devoid of cortical actin. Plasma membrane free of actin cortex was strongly depleted of PI(4,5)P2 , but enriched in PI(3,4)P2 and displayed a fivefold increase in exocytosis. Wave formation could be promoted by application of a hypotonic shock. The actin waves were characteristic of a bistable wavefront at the boundary between the regions of membrane containing and lacking cortical actin. Phosphoinositide modifiers and RhoGTPase activities dramatically redistributed with respect to the wavefronts, which often exhibited spatial oscillations. Perturbation of either lipid or actin cytoskeleton-related pathways led to rapid loss of both the polarized lipid distribution and the wavefront. As waves travelled over the plasma membrane, wavefront actin was seen to rapidly polymerize and depolymerize at pre-existing clusters of FcγRIIA, coincident with rapid changes in lipid composition. Thus the potential of receptors to support rapid F-actin polymerization appears to depend acutely on the local concentrations of multiple lipid species. We propose that interdependence through positive feedback from the cytoskeleton to lipid modifiers leads to coordinated local cortex remodeling, focal exocytosis, and organizes extended actin networks.
Collapse
Affiliation(s)
- Thomas A Masters
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore.,Department of Biological Sciences, Columbia University, New York, New York, 10027
| | - Nils C Gauthier
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| |
Collapse
|
33
|
Lee SY, Giladi M, Bohbot H, Hiller R, Chung KY, Khananshvili D. Structure‐dynamic basis of splicing‐dependent regulation in tissue‐specific variants of the sodium‐calcium exchanger. FASEB J 2015; 30:1356-66. [DOI: 10.1096/fj.15-282251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Su Youn Lee
- School of PharmacySungkyunkwan UniversityJangan‐guSuwonSouth Korea
| | - Moshe Giladi
- Department of Physiology and PharmacologyTel‐Aviv UniversityTel‐AvivIsrael
| | - Hilla Bohbot
- Department of Physiology and PharmacologyTel‐Aviv UniversityTel‐AvivIsrael
| | - Reuben Hiller
- Department of Physiology and PharmacologyTel‐Aviv UniversityTel‐AvivIsrael
| | - Ka Young Chung
- School of PharmacySungkyunkwan UniversityJangan‐guSuwonSouth Korea
| | | |
Collapse
|
34
|
Tan X, Thapa N, Choi S, Anderson RA. Emerging roles of PtdIns(4,5)P2--beyond the plasma membrane. J Cell Sci 2015; 128:4047-56. [PMID: 26574506 PMCID: PMC4712784 DOI: 10.1242/jcs.175208] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phosphoinositides are a collection of lipid messengers that regulate most subcellular processes. Amongst the seven phosphoinositide species, the roles for phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] at the plasma membrane, such as in endocytosis, exocytosis, actin polymerization and focal adhesion assembly, have been extensively studied. Recent studies have argued for the existence of PtdIns(4,5)P2 at multiple intracellular compartments, including the nucleus, endosomes, lysosomes, autolysosomes, autophagic precursor membranes, ER, mitochondria and the Golgi complex. Although the generation, regulation and functions of PtdIns(4,5)P2 are less well-defined in most other intracellular compartments, accumulating evidence demonstrates crucial roles for PtdIns(4,5)P2 in endolysosomal trafficking, endosomal recycling, as well as autophagosomal pathways, which are the focus of this Commentary. We summarize and discuss how phosphatidylinositol phosphate kinases, PtdIns(4,5)P2 and PtdIns(4,5)P2-effectors regulate these intracellular protein and membrane trafficking events.
Collapse
Affiliation(s)
- Xiaojun Tan
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Narendra Thapa
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Suyong Choi
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| | - Richard A Anderson
- Program in Molecular and Cellular Pharmacology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA Program in Cellular and Molecular Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1300 University Avenue, Madison, WI 53706, USA
| |
Collapse
|
35
|
PIP2Clustering: From model membranes to cells. Chem Phys Lipids 2015; 192:33-40. [DOI: 10.1016/j.chemphyslip.2015.07.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022]
|
36
|
Rjasanow A, Leitner MG, Thallmair V, Halaszovich CR, Oliver D. Ion channel regulation by phosphoinositides analyzed with VSPs-PI(4,5)P2 affinity, phosphoinositide selectivity, and PI(4,5)P2 pool accessibility. Front Pharmacol 2015; 6:127. [PMID: 26150791 PMCID: PMC4472987 DOI: 10.3389/fphar.2015.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/05/2015] [Indexed: 11/13/2022] Open
Abstract
The activity of many proteins depends on the phosphoinositide (PI) content of the membrane. E.g., dynamic changes of the concentration of PI(4,5)P2 are cellular signals that regulate ion channels. The susceptibility of a channel to such dynamics depends on its affinity for PI(4,5)P2. Yet, measuring affinities for endogenous PIs has not been possible directly, but has relied largely on the response to soluble analogs, which may not quantitatively reflect binding to native lipids. Voltage-sensitive phosphatases (VSPs) turn over PI(4,5)P2 to PI(4)P when activated by depolarization. In combination with voltage-clamp electrophysiology VSPs are useful tools for rapid and reversible depletion of PI(4,5)P2. Because cellular PI(4,5)P2 is resynthesized rapidly, steady state PI(4,5)P2 changes with the degree of VSP activation and thus depends on membrane potential. Here we show that titration of endogenous PI(4,5)P2 with Ci-VSP allows for the quantification of relative PI(4,5)P2 affinities of ion channels. The sensitivity of inward rectifier and voltage-gated K+ channels to Ci-VSP allowed for comparison of PI(4,5)P2 affinities within and across channel subfamilies and detected changes of affinity in mutant channels. The results also reveal that VSPs are useful only for PI effectors with high binding specificity among PI isoforms, because PI(4,5)P2 depletion occurs at constant overall PI level. Thus, Kir6.2, a channel activated by PI(4,5)P2 and PI(4)P was insensitive to VSP. Surprisingly, despite comparable PI(4,5)P2 affinity as determined by Ci-VSP, the Kv7 and Kir channel families strongly differed in their sensitivity to receptor-mediated depletion of PI(4,5)P2. While Kv7 members were highly sensitive to activation of PLC by Gq-coupled receptors, Kir channels were insensitive even when PI(4,5)P2 affinity was lowered by mutation. We hypothesize that different channels may be associated with distinct pools of PI(4,5)P2 that differ in their accessibility to PLC and VSPs.
Collapse
Affiliation(s)
- Alexandra Rjasanow
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Germany ; Institute of Physiology, University of Freiburg Freiburg, Germany
| | - Michael G Leitner
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Germany
| | - Veronika Thallmair
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Germany
| | - Christian R Halaszovich
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Germany
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Germany
| |
Collapse
|
37
|
Identification of the Conformational transition pathway in PIP2 Opening Kir Channels. Sci Rep 2015; 5:11289. [PMID: 26063437 PMCID: PMC4462750 DOI: 10.1038/srep11289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/29/2015] [Indexed: 11/08/2022] Open
Abstract
The gating of Kir channels depends critically on phosphatidylinositol 4,5-bisphosphate (PIP2), but the detailed mechanism by which PIP2 regulates Kir channels remains obscure. Here, we performed a series of Targeted molecular dynamics simulations on the full-length Kir2.1 channel and, for the first time, were able to achieve the transition from the closed to the open state. Our data show that with the upward motion of the cytoplasmic domain (CTD) the structure of the C-Linker changes from a loop to a helix. The twisting of the C-linker triggers the rotation of the CTD, which induces a small downward movement of the CTD and an upward motion of the slide helix toward the membrane that pulls the inner helix gate open. At the same time, the rotation of the CTD breaks the interaction between the CD- and G-loops thus releasing the G-loop. The G-loop then bounces away from the CD-loop, which leads to the opening of the G-loop gate and the full opening of the pore. We identified a series of interaction networks, between the N-terminus, CD loop, C linker and G loop one by one, which exquisitely regulates the global conformational changes during the opening of Kir channels by PIP2.
Collapse
|
38
|
Hansen SB. Lipid agonism: The PIP2 paradigm of ligand-gated ion channels. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:620-8. [PMID: 25633344 PMCID: PMC4540326 DOI: 10.1016/j.bbalip.2015.01.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/05/2015] [Accepted: 01/17/2015] [Indexed: 01/08/2023]
Abstract
The past decade, membrane signaling lipids emerged as major regulators of ion channel function. However, the molecular nature of lipid binding to ion channels remained poorly described due to a lack of structural information and assays to quantify and measure lipid binding in a membrane. How does a lipid-ligand bind to a membrane protein in the plasma membrane, and what does it mean for a lipid to activate or regulate an ion channel? How does lipid binding compare to activation by soluble neurotransmitter? And how does the cell control lipid agonism? This review focuses on lipids and their interactions with membrane proteins, in particular, ion channels. I discuss the intersection of membrane lipid biology and ion channel biophysics. A picture emerges of membrane lipids as bona fide agonists of ligand-gated ion channels. These freely diffusing signals reside in the plasma membrane, bind to the transmembrane domain of protein, and cause a conformational change that allosterically gates an ion channel. The system employs a catalog of diverse signaling lipids ultimately controlled by lipid enzymes and raft localization. I draw upon pharmacology, recent protein structure, and electrophysiological data to understand lipid regulation and define inward rectifying potassium channels (Kir) as a new class of PIP2 lipid-gated ion channels.
Collapse
Affiliation(s)
- Scott B Hansen
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter FL 33458, USA.
| |
Collapse
|
39
|
Watanabe C, Puff N, Staneva G, Seigneuret M, Angelova MI. Antagonism and synergy of single chain sphingolipids sphingosine and sphingosine-1-phosphate toward lipid bilayer properties. Consequences for their role as cell fate regulators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13956-13963. [PMID: 25386673 DOI: 10.1021/la5039816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A recurring question in membrane biological chemistry is whether bioactive signaling lipids act only as second messenger ligands or also through an effect on bilayer physical properties. Sphingosine (Sph) and sphingosine-1-phosphate (S1P) are single-chained charged sphingolipids that have antagonistic functions in the "sphingolipid rheostat" which determines cell fate. Sph and S1P respectively promote apoptosis and cell growth. In the present study, potential effects of these bioactive lipids on physicochemical properties of the lipid bilayer of cell membranes were evaluated. We have investigated the effect of both sphingolipids, incorporated separately or, for the first time, together, in large or giant phosphadidylcholine (PC) unilamellar vesicles. Three bilayer properties were examined: membrane surface charge, lipid packing, and formation of membrane microdomains. Sph and S1P appear to have distinct, when not inverse, effects on all three properties. Besides, when both sphingolipids are mixed together, their effects on lipid packing are synergistic, whereas their effects on microdomain formation and zeta-potential are mostly antagonistic. These results are interpreted as arising from different electrostatic interactions between lipid headgroups. In particular, Sph and S1P may interact together electrostatically and form a complex. These mostly inverse and opposing effects of both single-chain phospholipids on membrane physical properties might be involved in their antagonistic role in regulating cell fate. Particularly, the mutual interaction between Sph and S1P as a complex might be able to sequester both molecules in a biologically inactive form and therefore to promote a mutual regulation of their biological activities, depending on their ratio, consistent with the sphingolipid rheostat.
Collapse
Affiliation(s)
- Chiho Watanabe
- Matière et Systèmes Complexes, UMR 7057, Université Paris 7 Diderot & CNRS , Paris, France
| | | | | | | | | |
Collapse
|
40
|
Itsuki K, Imai Y, Hase H, Okamura Y, Inoue R, Mori MX. PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. ACTA ACUST UNITED AC 2014; 143:183-201. [PMID: 24470487 PMCID: PMC4001779 DOI: 10.1085/jgp.201311033] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transient receptor potential classical (or canonical) (TRPC)3, TRPC6, and TRPC7 are a subfamily of TRPC channels activated by diacylglycerol (DAG) produced through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) by phospholipase C (PLC). PI(4,5)P2 depletion by a heterologously expressed phosphatase inhibits TRPC3, TRPC6, and TRPC7 activity independently of DAG; however, the physiological role of PI(4,5)P2 reduction on channel activity remains unclear. We used Förster resonance energy transfer (FRET) to measure PI(4,5)P2 or DAG dynamics concurrently with TRPC6 or TRPC7 currents after agonist stimulation of receptors that couple to Gq and thereby activate PLC. Measurements made at different levels of receptor activation revealed a correlation between the kinetics of PI(4,5)P2 reduction and those of receptor-operated TRPC6 and TRPC7 current activation and inactivation. In contrast, DAG production correlated with channel activation but not inactivation; moreover, the time course of channel inactivation was unchanged in protein kinase C-insensitive mutants. These results suggest that inactivation of receptor-operated TRPC currents is primarily mediated by the dissociation of PI(4,5)P2. We determined the functional dissociation constant of PI(4,5)P2 to TRPC channels using FRET of the PLCδ Pleckstrin homology domain (PHd), which binds PI(4,5)P2, and used this constant to fit our experimental data to a model in which channel gating is controlled by PI(4,5)P2 and DAG. This model predicted similar FRET dynamics of the PHd to measured FRET in either human embryonic kidney cells or smooth muscle cells, whereas a model lacking PI(4,5)P2 regulation failed to reproduce the experimental data, confirming the inhibitory role of PI(4,5)P2 depletion on TRPC currents. Our model also explains various PLC-dependent characteristics of channel activity, including limitation of maximum open probability, shortening of the peak time, and the bell-shaped response of total current. In conclusion, our studies demonstrate a fundamental role for PI(4,5)P2 in regulating TRPC6 and TRPC7 activity triggered by PLC-coupled receptor stimulation.
Collapse
Affiliation(s)
- Kyohei Itsuki
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Wang J, Sohn H, Sun G, Milner JD, Pierce SK. The autoinhibitory C-terminal SH2 domain of phospholipase C-γ2 stabilizes B cell receptor signalosome assembly. Sci Signal 2014; 7:ra89. [PMID: 25227611 DOI: 10.1126/scisignal.2005392] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The binding of antigen to the B cell receptor (BCR) stimulates the assembly of a signaling complex (signalosome) composed initially of the kinases Lyn, spleen tyrosine kinase (Syk), and Bruton's tyrosine kinase (Btk), as well as the adaptor protein B cell linker (BLNK). Together, these proteins recruit and activate phospholipase C-γ2 (PLC-γ2), a critical effector that stimulates increases in intracellular Ca(2+) and activates various signaling pathways downstream of the BCR. Individuals with one copy of a mutant PLCG2 gene, which encodes a variant PLC-γ2 that lacks the autoinhibitory C-terminal Src homology 2 (cSH2) domain, exhibit PLC-γ2-associated antibody deficiency and immune dysregulation (PLAID). Paradoxically, although COS-7 cells expressing the variant PLC-γ2 show enhanced basal and stimulated PLC-γ2 activity, B cells from PLAID patients show defective intracellular Ca(2+) responses upon cross-linking of the BCR. We found that the cSH2 domain of PLC-γ2 played a critical role in stabilizing the early signaling complex that is stimulated by BCR cross-linking. In the presence of the variant PLC-γ2, Syk, Btk, and BLNK were only weakly phosphorylated and failed to stably associate with the BCR. Thus, BCRs could not form stable clusters, resulting in dysregulation of downstream signaling and trafficking of the BCR. Thus, the cSH2 domain functions not only to inhibit the active site of PLC-γ2 but also to directly or indirectly stabilize the early BCR signaling complex.
Collapse
Affiliation(s)
- Jing Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Guangping Sun
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
42
|
Falkenburger BH, Dickson EJ, Hille B. Quantitative properties and receptor reserve of the DAG and PKC branch of G(q)-coupled receptor signaling. ACTA ACUST UNITED AC 2014; 141:537-55. [PMID: 23630338 PMCID: PMC3639584 DOI: 10.1085/jgp.201210887] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gq protein–coupled receptors (GqPCRs) of the plasma membrane activate the phospholipase C (PLC) signaling cascade. PLC cleaves the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) into the second messengers diacylgycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), leading to calcium release, protein kinase C (PKC) activation, and in some cases, PIP2 depletion. We determine the kinetics of each of these downstream endpoints and also ask which is responsible for the inhibition of KCNQ2/3 (KV7.2/7.3) potassium channels in single living tsA-201 cells. We measure DAG production and PKC activity by Förster resonance energy transfer–based sensors, and PIP2 by KCNQ2/3 channels. Fully activating endogenous purinergic receptors by uridine 5′triphosphate (UTP) leads to calcium release, DAG production, and PKC activation, but no net PIP2 depletion. Fully activating high-density transfected muscarinic receptors (M1Rs) by oxotremorine-M (Oxo-M) leads to similar calcium, DAG, and PKC signals, but PIP2 is depleted. KCNQ2/3 channels are inhibited by the Oxo-M treatment (85%) and not by UTP (<1%), indicating that depletion of PIP2 is required to inhibit KCNQ2/3 in response to receptor activation. Overexpression of A kinase–anchoring protein (AKAP)79 or calmodulin (CaM) does not increase KCNQ2/3 inhibition by UTP. From these results and measurements of IP3 and calcium presented in our companion paper (Dickson et al. 2013. J. Gen. Physiol.http://dx.doi.org/10.1085/jgp.201210886), we extend our kinetic model for signaling from M1Rs to DAG/PKC and IP3/calcium signaling. We conclude that calcium/CaM and PKC-mediated phosphorylation do not underlie dynamic KCNQ2/3 channel inhibition during GqPCR activation in tsA-201 cells. Finally, our experimental data provide indirect evidence for cleavage of PI(4)P by PLC in living cells, and our modeling revisits/explains the concept of receptor reserve with measurements from all steps of GqPCR signaling.
Collapse
Affiliation(s)
- Björn H Falkenburger
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
43
|
Xu JX, Si M, Zhang HR, Chen XJ, Zhang XD, Wang C, Du XN, Zhang HL. Phosphoinositide kinases play key roles in norepinephrine- and angiotensin II-induced increase in phosphatidylinositol 4,5-bisphosphate and modulation of cardiac function. J Biol Chem 2014; 289:6941-6948. [PMID: 24448808 DOI: 10.1074/jbc.m113.527952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The seemly paradoxical Gq agonist-stimulated phosphoinositide production has long been known, but the underlying mechanism and its physiological significance are not known. In this study, we studied cardiac phosphoinositide levels in both cells and whole animals under the stimulation of norepinephrine (NE), angiotensin II (Ang II), and other physiologically relevant interventions. The results demonstrated that activation of membrane receptors related to NE or Ang II caused an initial increase and a later fall in phosphatidylinositol 4,5-bisphosphate (PIP2) levels in the primary cultured cardiomyocytes from adult rats. The possible mechanism underlying this increase in PIP2 was found to be through an enhanced activity of phosphatidylinositol 4-kinase IIIβ, which was mediated by an up-regulated interaction between phosphatidylinositol 4-kinase IIIβ and PKC; the increased activity of phosphatidylinositol 4-phosphate 5-kinase γ was also involved for NE-induced increase of PIP2. When the systolic functions of the NE/Ang II-treated cells were measured, a maintained or failed contractility was found to be correlated with a rise or fall in corresponding PIP2 levels. In two animal models of cardiac hypertrophy, PIP2 levels were significantly reduced in hypertrophic hearts induced by isoprenaline but not in those induced by swimming exercise. This study describes a novel mechanism for phosphoinositide metabolism and modulation of cardiac function.
Collapse
Affiliation(s)
- Jia-Xi Xu
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Man Si
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hui-Ran Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xing-Juan Chen
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xi-Dong Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Chuan Wang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xiao-Na Du
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Hai-Lin Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, the Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, and the Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| |
Collapse
|
44
|
Counterion-mediated cluster formation by polyphosphoinositides. Chem Phys Lipids 2014; 182:38-51. [PMID: 24440472 DOI: 10.1016/j.chemphyslip.2014.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/11/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023]
Abstract
Polyphosphoinositides (PPI) and in particular PI(4,5)P2, are among the most highly charged molecules in cell membranes, are important in many cellular signaling pathways, and are frequently targeted by peripheral polybasic proteins for anchoring through electrostatic interactions. Such interactions between PIP2 and proteins containing polybasic stretches depend on the physical state and the lateral distribution of PIP2 within the inner leaflet of the cell's lipid bilayer. The physical and chemical properties of PIP2 such as pH-dependent changes in headgroup ionization and area per molecule as determined by experiments together with molecular simulations that predict headgroup conformations at various ionization states have revealed the electrostatic properties and phase behavior of PIP2-containing membranes. This review focuses on recent experimental and computational developments in defining the physical chemistry of PIP2 and its interactions with counterions. Ca(2+)-induced changes in PIP2 charge, conformation, and lateral structure within the membrane are documented by numerous experimental and computational studies. A simplified electrostatic model successfully predicts the Ca(2+)-driven formation of PIP2 clusters but cannot account for the different effects of Ca(2+) and Mg(2+) on PIP2-containing membranes. A more recent computational study is able to see the difference between Ca(2+) and Mg(2+) binding to PIP2 in the absence of a membrane and without cluster formation. Spectroscopic studies suggest that divalent cation- and multivalent polyamine-induced changes in the PIP2 lateral distribution in model membrane are also different, and not simply related to the net charge of the counterion. Among these differences is the capacity of Ca(2+) but not other polycations to induce nm scale clusters of PIP2 in fluid membranes. Recent super resolution optical studies show that PIP2 forms nanoclusters in the inner leaflet of a plasma membrane with a similar size distribution as those induced by Ca(2+) in model membranes. The mechanisms by which PIP2 forms nanoclusters and other structures inside a cell remain to be determined, but the unique electrostatic properties of PIP2 and its interactions with multivalent counterions might have particular physiological relevance.
Collapse
|
45
|
Hille B, Dickson E, Kruse M, Falkenburger B. Dynamic metabolic control of an ion channel. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 123:219-47. [PMID: 24560147 DOI: 10.1016/b978-0-12-397897-4.00008-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G-protein-coupled receptors mediate responses to external stimuli in various cell types. We are interested in the modulation of KCNQ2/3 potassium channels by the Gq-coupled M1 muscarinic (acetylcholine) receptor (M1R). Here, we describe development of a mathematical model that incorporates all known steps along the M1R signaling cascade and accurately reproduces the macroscopic behavior we observe when KCNQ2/3 currents are inhibited following M1R activation. Gq protein-coupled receptors of the plasma membrane activate phospholipase C (PLC) which cleaves the minor plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) into the second messengers diacylgycerol and inositol 1,4,5-trisphosphate, leading to calcium release, protein kinase C (PKC) activation, and PI(4,5)P2 depletion. Combining optical and electrical techniques with knowledge of relative abundance of each signaling component has allowed us to develop a kinetic model and determine that (i) M1R activation and M1R/Gβ interaction are fast; (ii) Gαq/Gβ separation and Gαq/PLC interaction have intermediate time constants; (iii) the amount of activated PLC limits the rate of KCNQ2/3 suppression; (iv) weak PLC activation can elicit robust calcium signals without net PI(4,5)P2 depletion or KCNQ2/3 channel inhibition; and (v) depletion of PI(4,5)P2, and not calcium/CaM or PKC-mediated phosphorylation, closes KCNQ2/3 potassium channels, thereby increasing neuronal excitability.
Collapse
Affiliation(s)
- Bertil Hille
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Eamonn Dickson
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Martin Kruse
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
46
|
Rusinova R, Hobart EA, Koeppe RE, Andersen OS. Phosphoinositides alter lipid bilayer properties. ACTA ACUST UNITED AC 2013; 141:673-90. [PMID: 23712549 PMCID: PMC3664701 DOI: 10.1085/jgp.201310960] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP2), which constitutes ∼1% of the plasma membrane phospholipid, plays a key role in membrane-delimited signaling. PIP2 regulates structurally and functionally diverse membrane proteins, including voltage- and ligand-gated ion channels, inwardly rectifying ion channels, transporters, and receptors. In some cases, the regulation is known to involve specific lipid–protein interactions, but the mechanisms by which PIP2 regulates many of its various targets remain to be fully elucidated. Because many PIP2 targets are membrane-spanning proteins, we explored whether the phosphoinositides might alter bilayer physical properties such as curvature and elasticity, which would alter the equilibrium between membrane protein conformational states—and thereby protein function. Taking advantage of the gramicidin A (gA) channels’ sensitivity to changes in lipid bilayer properties, we used gA-based fluorescence quenching and single-channel assays to examine the effects of long-chain PIP2s (brain PIP2, which is predominantly 1-stearyl-2-arachidonyl-PIP2, and dioleoyl-PIP2) on bilayer properties. When premixed with dioleoyl-phosphocholine at 2 mol %, both long-chain PIP2s produced similar changes in gA channel function (bilayer properties); when applied through the aqueous solution, however, brain PIP2 was a more potent modifier than dioleoyl-PIP2. Given the widespread use of short-chain dioctanoyl-phosphoinositides, we also examined the effects of diC8-phosphoinositol (PI), PI(4,5)P2, PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P3. The diC8 phosphoinositides, except for PI(3,5)P2, altered bilayer properties with potencies that decreased with increasing head group charge. Nonphosphoinositide diC8 phospholipids generally were more potent bilayer modifiers than the polyphosphoinositides. These results show that physiological increases or decreases in plasma membrane PIP2 levels, as a result of activation of PI kinases or phosphatases, are likely to alter lipid bilayer properties, in addition to any other effects they may have. The results further show that exogenous PIP2, as well as structural analogues that differ in acyl chain length or phosphorylation state, alters lipid bilayer properties at the concentrations used in many cell physiological experiments.
Collapse
Affiliation(s)
- Radda Rusinova
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
47
|
Membrane channels as integrators of G-protein-mediated signaling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:521-31. [PMID: 24028827 DOI: 10.1016/j.bbamem.2013.08.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 08/14/2013] [Accepted: 08/21/2013] [Indexed: 01/03/2023]
Abstract
A variety of extracellular stimuli regulate cellular responses via membrane receptors. A well-known group of seven-transmembrane domain-containing proteins referred to as G protein-coupled receptors, directly couple with the intracellular GTP-binding proteins (G proteins) across cell membranes and trigger various cellular responses by regulating the activity of several enzymes as well as ion channels. Many specific populations of ion channels are directly controlled by G proteins; however, indirect modulation of some channels by G protein-dependent phosphorylation events and lipid metabolism is also observed. G protein-mediated diverse modifications affect the ion channel activities and spatio-temporally regulate membrane potentials as well as of intracellular Ca(2+) concentrations in both excitatory and non-excitatory cells. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
48
|
Cao E, Cordero-Morales JF, Liu B, Qin F, Julius D. TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 2013; 77:667-79. [PMID: 23439120 DOI: 10.1016/j.neuron.2012.12.016] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2012] [Indexed: 01/20/2023]
Abstract
The capsaicin receptor, TRPV1, is regulated by phosphatidylinositol-4,5-bisphosphate (PIP(2)), although the precise nature of this effect (i.e., positive or negative) remains controversial. Here, we reconstitute purified TRPV1 into artificial liposomes, where it is gated robustly by capsaicin, protons, spider toxins, and, notably, heat, demonstrating intrinsic sensitivity of the channel to both chemical and thermal stimuli. TRPV1 is fully functional in the absence of phosphoinositides, arguing against their proposed obligatory role in channel activation. Rather, introduction of various phosphoinositides, including PIP(2), PI4P, and phosphatidylinositol, inhibits TRPV1, supporting a model whereby phosphoinositide turnover contributes to thermal hyperalgesia by disinhibiting the channel. Using an orthogonal chemical strategy, we show that association of the TRPV1 C terminus with the bilayer modulates channel gating, consistent with phylogenetic data implicating this domain as a key regulatory site for tuning stimulus sensitivity. Beyond TRPV1, these findings are relevant to understanding how membrane lipids modulate other "receptor-operated" TRP channels.
Collapse
Affiliation(s)
- Erhu Cao
- Department of Physiology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
49
|
Dai G, Varnum MD. CNGA3 achromatopsia-associated mutation potentiates the phosphoinositide sensitivity of cone photoreceptor CNG channels by altering intersubunit interactions. Am J Physiol Cell Physiol 2013; 305:C147-59. [PMID: 23552282 DOI: 10.1152/ajpcell.00037.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels are critical for sensory transduction in retinal photoreceptors and olfactory receptor cells; their activity is modulated by phosphoinositides (PIPn) such as phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3). An achromatopsia-associated mutation in cone photoreceptor CNGA3, L633P, is located in a carboxyl (COOH)-terminal leucine zipper domain shown previously to be important for channel assembly and PIPn regulation. We determined the functional consequences of this mutation using electrophysiological recordings of patches excised from cells expressing wild-type and mutant CNG channel subunits. CNGA3-L633P subunits formed functional channels with or without CNGB3, producing an increase in apparent cGMP affinity. Surprisingly, L633P dramatically potentiated PIPn inhibition of apparent cGMP affinity for these channels. The impact of L633P on PIPn sensitivity depended on an intact amino (NH2) terminal PIPn regulation module. These observations led us to hypothesize that L633P enhances PIPn inhibition by altering the coupling between NH2- and COOH-terminal regions of CNGA3. A recombinant COOH-terminal fragment partially restored normal PIPn sensitivity to channels with COOH-terminal truncation, but L633P prevented this effect. Furthermore, coimmunoprecipitation of channel fragments, and thermodynamic linkage analysis, also provided evidence for NH2-COOH interactions. Finally, tandem dimers of CNGA3 subunits that specify the arrangement of subunits containing L633P and other mutations indicated that the putative interdomain interaction occurs between channel subunits (intersubunit) rather than exclusively within the same subunit (intrasubunit). Collectively, these studies support a model in which intersubunit interactions control the sensitivity of cone CNG channels to regulation by phosphoinositides. Aberrant channel regulation may contribute to disease progression in patients with the L633P mutation.
Collapse
Affiliation(s)
- Gucan Dai
- Department of Integrative Physiology and Neuroscience, Program in Neuroscience and Center for Integrated Biotechnology, Washington State University, Pullman, Washington 99164-7620, USA
| | | |
Collapse
|
50
|
Kapustina M, Elston TC, Jacobson K. Compression and dilation of the membrane-cortex layer generates rapid changes in cell shape. ACTA ACUST UNITED AC 2013; 200:95-108. [PMID: 23295349 PMCID: PMC3542801 DOI: 10.1083/jcb.201204157] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A cyclic process of membrane-cortex compression and dilation generates a traveling wave of cortical actin density that in turn generates oscillations in cell morphology. Rapid changes in cellular morphology require a cell body that is highly flexible yet retains sufficient strength to maintain structural integrity. We present a mechanism that meets both of these requirements. We demonstrate that compression (folding) and subsequent dilation (unfolding) of the coupled plasma membrane–cortex layer generates rapid shape transformations in rounded cells. Two- and three-dimensional live-cell images showed that the cyclic process of membrane-cortex compression and dilation resulted in a traveling wave of cortical actin density. We also demonstrate that the membrane-cortex traveling wave led to amoeboid-like cell migration. The compression–dilation hypothesis offers a mechanism for large-scale cell shape transformations that is complementary to blebbing, where the plasma membrane detaches from the actin cortex and is initially unsupported when the bleb extends as a result of cytosolic pressure. Our findings provide insight into the mechanisms that drive the rapid morphological changes that occur in many physiological contexts, such as amoeboid migration and cytokinesis.
Collapse
Affiliation(s)
- Maryna Kapustina
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|