1
|
Barko PC, Rubin SI, Swanson KS, McMichael MA, Ridgway MD, Williams DA. Untargeted Analysis of Serum Metabolomes in Dogs with Exocrine Pancreatic Insufficiency. Animals (Basel) 2023; 13:2313. [PMID: 37508091 PMCID: PMC10376357 DOI: 10.3390/ani13142313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Exocrine pancreatic insufficiency (EPI) is a malabsorptive syndrome resulting from insufficient secretion of pancreatic digestive enzymes. EPI is treated with pancreatic enzyme replacement therapy (PERT), but the persistence of clinical signs, especially diarrhea, is common after treatment. We used untargeted metabolomics of serum to identify metabolic disturbances associated with EPI and generate novel hypotheses related to its pathophysiology. Fasted serum samples were collected from dogs with EPI (n = 20) and healthy controls (n = 10), all receiving PERT. Serum metabolomes were generated using UPLC-MS/MS, and differences in relative metabolite abundances were compared between the groups. Of the 759 serum metabolites detected, 114 varied significantly (p < 0.05, q < 0.2) between dogs with EPI and healthy controls. Differences in amino acids (arginate, homoarginine, 2-oxoarginine, N-acetyl-cadaverine, and α-ketoglutaramate) and lipids (free fatty acids and docosahexaenoylcarnitine) were consistent with increased proteolysis and lipolysis, indicating a persistent catabolic state in dogs with EPI. Relative abundances of gut microbial metabolites (phenyllactate, 4-hydroxyphenylacetate, phenylacetyl-amino acids, catechol sulfates, and o-cresol-sulfate) were altered in dogs with EPI, consistent with disruptions in gut microbial communities. Increased kynurenine is consistent with the presence of intestinal inflammation in dogs with EPI. Whether these metabolic disturbances participate in the pathophysiology of EPI or contribute to the persistence of clinical signs after treatment is unknown, but they are targets for future investigations.
Collapse
Affiliation(s)
- Patrick C Barko
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences and Division of Nutritional Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Marcella D Ridgway
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - David A Williams
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| |
Collapse
|
2
|
Novak I, Yu H, Magni L, Deshar G. Purinergic Signaling in Pancreas-From Physiology to Therapeutic Strategies in Pancreatic Cancer. Int J Mol Sci 2020; 21:E8781. [PMID: 33233631 PMCID: PMC7699721 DOI: 10.3390/ijms21228781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The purinergic signaling has an important role in regulating pancreatic exocrine secretion. The exocrine pancreas is also a site of one of the most serious cancer forms, the pancreatic ductal adenocarcinoma (PDAC). Here, we explore how the network of purinergic and adenosine receptors, as well as ecto-nucleotidases regulate normal pancreatic cells and various cells within the pancreatic tumor microenvironment. In particular, we focus on the P2X7 receptor, P2Y2 and P2Y12 receptors, as well as A2 receptors and ecto-nucleotidases CD39 and CD73. Recent studies indicate that targeting one or more of these candidates could present new therapeutic approaches to treat pancreatic cancer. In pancreatic cancer, as much as possible of normal pancreatic function should be preserved, and therefore physiology of purinergic signaling in pancreas needs to be considered.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/immunology
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Apyrase/genetics
- Apyrase/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Clinical Trials as Topic
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy/methods
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/immunology
- Pancreatic Stellate Cells/pathology
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/immunology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/immunology
- Receptors, Purinergic P2Y12/genetics
- Receptors, Purinergic P2Y12/immunology
- Receptors, Purinergic P2Y2/genetics
- Receptors, Purinergic P2Y2/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (H.Y.); (L.M.); (G.D.)
| | | | | | | |
Collapse
|
3
|
Expression of Adenosine Receptors in Rodent Pancreas. Int J Mol Sci 2019; 20:ijms20215329. [PMID: 31717704 PMCID: PMC6862154 DOI: 10.3390/ijms20215329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Adenosine regulates exocrine and endocrine secretions in the pancreas. Adenosine is considered to play a role in acini-to-duct signaling in the exocrine pancreas. To identify the molecular basis of functional adenosine receptors in the exocrine pancreas, immunohistochemical analysis was performed in the rat, mouse, and guinea pig pancreas, and the secretory rate and concentration of HCO3− in pancreatic juice from the rat pancreas were measured. The A2A adenosine receptor colocalized with ezrin, an A-kinase anchoring protein, in the luminal membrane of duct cells in the mouse and guinea pig pancreas. However, a strong signal ascribed to A2B adenosine receptors was detected in insulin-positive β cells in islets of Langerhans. The A2A adenosine receptor agonist 4-[2-[[6-Amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid (CGS 21680) stimulated HCO3−-rich fluid secretion from the rat pancreas. These results indicate that A2A adenosine receptors may be, at least in part, involved in the exocrine secretion of pancreatic duct cells via acini-to-duct signaling. The adenosine receptors may be a potential therapeutic target for cancer as well as exocrine dysfunctions of the pancreas.
Collapse
|
4
|
The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells. Pflugers Arch 2016; 468:1171-1181. [PMID: 26965147 PMCID: PMC4943985 DOI: 10.1007/s00424-016-1806-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 12/13/2022]
Abstract
Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl− channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (Vte) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl− currents in Capan-1 single cells. The effects of adenosine on Vte, an equivalent short-circuit current (Isc), and whole-cell Cl− currents were inhibited by CFTRinh-172, a cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel inhibitor. The adenosine A2B receptor agonist, BAY 60-6583, increased Isc and whole-cell Cl− currents through CFTR Cl− channels, whereas the A2A receptor agonist, CGS 21680, had negligible effects. The A2B receptor antagonist, PSB 603, inhibited the response of Isc to adenosine. Immunohistochemical analysis showed that the A2A and A2B receptors colocalized with Ezrin in the luminal membranes of Capan-1 monolayers and in rat pancreatic ducts. Adenosine elicited the whole-cell Cl− currents in guinea pig duct cells. These results demonstrate that luminal adenosine regulates anion secretion by activating CFTR Cl− channels via adenosine A2B receptors on the luminal membranes of Capan-1 cells. The present study endorses that purinergic signaling is important in the regulation of pancreatic secretion.
Collapse
|
5
|
Novak I, Haanes KA, Wang J. Acid-base transport in pancreas-new challenges. Front Physiol 2013; 4:380. [PMID: 24391597 PMCID: PMC3868914 DOI: 10.3389/fphys.2013.00380] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/04/2013] [Indexed: 12/11/2022] Open
Abstract
Along the gastrointestinal tract a number of epithelia contribute with acid or basic secretions in order to aid digestive processes. The stomach and pancreas are the most extreme examples of acid (H(+)) and base (HCO(-) 3) transporters, respectively. Nevertheless, they share the same challenges of transporting acid and bases across epithelia and effectively regulating their intracellular pH. In this review, we will make use of comparative physiology to enlighten the cellular mechanisms of pancreatic HCO(-) 3 and fluid secretion, which is still challenging physiologists. Some of the novel transporters to consider in pancreas are the proton pumps (H(+)-K(+)-ATPases), as well as the calcium-activated K(+) and Cl(-) channels, such as KCa3.1 and TMEM16A/ANO1. Local regulators, such as purinergic signaling, fine-tune, and coordinate pancreatic secretion. Lastly, we speculate whether dys-regulation of acid-base transport contributes to pancreatic diseases including cystic fibrosis, pancreatitis, and cancer.
Collapse
Affiliation(s)
- Ivana Novak
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| | | | - Jing Wang
- Department of Biology, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
6
|
Prozorow-Krol B, Korolczuk A, Czechowska G, Slomka M, Madro A, Celinski K. The effects of the adenosine A3 receptor agonist IB-MECA on sodium taurocholate-induced experimental acute pancreatitis. Arch Pharm Res 2013; 36:1126-32. [PMID: 23625750 PMCID: PMC3766514 DOI: 10.1007/s12272-013-0126-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The role of adenosine A3 receptors and their distribution in the gastrointestinal tract have been widely investigated. Most of the reports discuss their role in intestinal inflammations. However, the role of adenosine A3 receptor agonist in pancreatitis has not been well established. The aim of this study is [corrected] to evaluate the effects of the adenosine A3 receptor agonist on the course of sodium taurocholate-induced experimental acute pancreatitis (EAP). The experiments were performed on 80 male Wistar rats, 58 of which survived, subdivided into 3 groups: C--control rats, I--EAP group, and II--EAP group treated with the adenosine A3 receptor agonist IB-MECA (1-deoxy-1-6[[(3-iodophenyl) methyl]amino]-9H-purin-9-yl)-N-methyl-B-D-ribofuronamide at a dose of 0.75 mg/kg b.w. i.p. at 48, 24, 12 and 1 h before and 1 h after the injection of 5% sodium taurocholate solution into the biliary-pancreatic duct. Serum for α-amylase and lipase determinations and tissue samples for morphological examinations were collected at 2, 6, and 24 h of the experiment. In the IB-MECA group, α-amylase activity was decreased with statistically high significance compared to group I. The activity of lipase was not significantly different among the experimental groups but higher than in the control group. The administration of IB-MECA attenuated the histological parameters of inflammation as compared to untreated animals. The use of A3 receptor agonist IB-MECA attenuates EAP. Our findings suggest that stimulation of adenosine A3 receptors plays a positive role in the sodium taurocholate-induced EAP in rats.
Collapse
MESH Headings
- Adenosine/administration & dosage
- Adenosine/analogs & derivatives
- Adenosine/therapeutic use
- Adenosine A3 Receptor Agonists/administration & dosage
- Adenosine A3 Receptor Agonists/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Disease Models, Animal
- Edema/etiology
- Edema/prevention & control
- Injections, Intraperitoneal
- Lipase/metabolism
- Male
- Necrosis
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/metabolism
- Pancreas/pathology
- Pancreatic alpha-Amylases/blood
- Pancreatitis, Acute Necrotizing/immunology
- Pancreatitis, Acute Necrotizing/metabolism
- Pancreatitis, Acute Necrotizing/pathology
- Pancreatitis, Acute Necrotizing/prevention & control
- Rats
- Rats, Wistar
- Receptor, Adenosine A3/chemistry
- Receptor, Adenosine A3/metabolism
- Taurocholic Acid
- Time Factors
Collapse
Affiliation(s)
- Beata Prozorow-Krol
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Jaczewski Street 8, 20-954 Lublin, Poland
| | - Agnieszka Korolczuk
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Grazyna Czechowska
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Jaczewski Street 8, 20-954 Lublin, Poland
| | - Maria Slomka
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Jaczewski Street 8, 20-954 Lublin, Poland
| | - Agnieszka Madro
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Jaczewski Street 8, 20-954 Lublin, Poland
| | - Krzysztof Celinski
- Department of Gastroenterology with Endoscopic Unit, Medical University of Lublin, Jaczewski Street 8, 20-954 Lublin, Poland
| |
Collapse
|
7
|
Ohtani M, Oka T, Ohura K. Possible involvement of A₂A and A₃ receptors in modulation of insulin secretion and β-cell survival in mouse pancreatic islets. Gen Comp Endocrinol 2013; 187:86-94. [PMID: 23453966 DOI: 10.1016/j.ygcen.2013.02.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
Abstract
Adenosine A1, A₂A, A₂B and A₃ receptor mRNAs were found to be expressed in mouse pancreatic islets and Beta-TC6 cells but their physiological or pharmacological actions are not fully clarified. We showed that adenosine (100 μM) augmented insulin secretion by islets in the presence of either normal (5.5 mM) or a high concentration of glucose (20 mM). The augmentation of insulin secretion in the presence of high glucose was blocked by an A₂A antagonist, but not by A₂B and A₃ antagonists, while an A₁ antagonist potentiated the adenosine effect. An adenosine analogue 5'-N-ethylcarboxamidoadenosine (NECA) as well as A₁, A₂A and A₃ receptor agonists also produced stimulation. On the other hand, an A₃ agonist markedly reduced Beta-TC6 cell proliferation and the islet cell viability, while adenosine and NECA did not. The effect of A₃ agonist was partially blocked by the A₃ antagonist. In addition, treatment with the A₃ agonist produced a small but significant extent of apoptosis in Beta-TC6 cells as judged by terminal transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay. These results combined together suggested that like the A₁ receptor, activation of A₂A receptors by adenosine results in augmented insulin secretion, while the A₃ receptor is involved in modulation of the survival of pancreatic β-cells.
Collapse
Affiliation(s)
- M Ohtani
- Department of Pharmacology, Osaka Dental University, 8-1 Kuzuhahanazono-cho, Hirakata, Osaka 573-1121, Japan.
| | | | | |
Collapse
|
8
|
Ntantie E, Gonyo P, Lorimer EL, Hauser AD, Schuld N, McAllister D, Kalyanaraman B, Dwinell MB, Auchampach JA, Williams CL. An adenosine-mediated signaling pathway suppresses prenylation of the GTPase Rap1B and promotes cell scattering. Sci Signal 2013; 6:ra39. [PMID: 23716716 DOI: 10.1126/scisignal.2003374] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During metastasis, cancer cells acquire the ability to dissociate from each other and migrate, which is recapitulated in vitro as cell scattering. The small guanosine triphosphatase (GTPase) Rap1 opposes cell scattering by promoting cell-cell adhesion, a function that requires its prenylation, or posttranslational modification with a carboxyl-terminal isoprenoid moiety, to enable its localization at cell membranes. Thus, signaling cascades that regulate the prenylation of Rap1 offer a mechanism to control the membrane localization of Rap1. We identified a signaling cascade initiated by adenosine A2B receptors that suppressed the prenylation of Rap1B through phosphorylation of Rap1B, which decreased its interaction with the chaperone protein SmgGDS (small GTPase guanosine diphosphate dissociation stimulator). These events promoted the cytosolic and nuclear accumulation of nonprenylated Rap1B and diminished cell-cell adhesion, resulting in cell scattering. We found that nonprenylated Rap1 was more abundant in mammary tumors than in normal mammary tissue in rats and that activation of adenosine receptors delayed Rap1B prenylation in breast, lung, and pancreatic cancer cell lines. Our findings support a model in which high concentrations of extracellular adenosine, such as those that arise in the tumor microenvironment, can chronically activate A2B receptors to suppress Rap1B prenylation and signaling at the cell membrane, resulting in reduced cell-cell contact and promoting cell scattering. Inhibiting A2B receptors may be an effective method to prevent metastasis.
Collapse
Affiliation(s)
- Elizabeth Ntantie
- 1Department of Pharmacology and Toxicology, Cancer Center, and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ion transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, and purinergic receptors. Pancreas 2013; 42:452-60. [PMID: 22982819 DOI: 10.1097/mpa.0b013e318264c302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The objective of the study was to establish a solid model of polarized epithelium for human pancreatic ducts, where electrical parameters could be measured as indicators of ion transport. Further, we aimed to determine functional expression of several receptors, in particular, purinergic receptors, and determine their effects on ion transport. METHODS Human adenocarcinoma cell line Capan-1 cells were grown on permeable supports and set in Ussing chambers for electrophysiological recordings. Transepithelial voltage (Vte), resistance, and short-circuit currents (Isc) were measured in response to agonists. RESULTS Secretin, vasoactive intestinal peptide (VIP), acetylcholine, forskolin, ionomycin, adenosine 5'-triphosphate (ATP), uridine 5'-triphosphate (UTP), 3'-O-(4-benzoyl)benzoyl ATP, and adenosine induced lumen negative Vte and Isc. These changes were consistent with anion secretion, as verified in forskolin-stimulated preparations. Extracellular nucleotides, ATP, and UTP, applied from luminal and basolateral sides, caused largest responses: Vte increased up to -5 mV, Isc increased to 20 to 30 μA/cm, and resistance decreased by up to 200 Ω·cm. CONCLUSIONS Transepithelial transport in human pancreatic duct epithelium, Capan-1 cells, is regulated by secretin, VIP, acetylcholine, adenosine, and purinergic P2 receptors; and this human model has a good potential for studies of physiology and pathophysiology of pancreatic duct ion transport.
Collapse
|
10
|
Wang J, Haanes KA, Novak I. Purinergic regulation of CFTR and Ca(2+)-activated Cl(-) channels and K(+) channels in human pancreatic duct epithelium. Am J Physiol Cell Physiol 2013; 304:C673-84. [PMID: 23364268 DOI: 10.1152/ajpcell.00196.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purinergic agonists have been considered for the treatment of respiratory epithelia in cystic fibrosis (CF) patients. The pancreas, one of the most seriously affected organs in CF, expresses various purinergic receptors. Studies on the rodent pancreas show that purinergic signaling regulates pancreatic secretion. In the present study we aim to identify Cl(-) and K(+) channels in human pancreatic ducts and their regulation by purinergic receptors. Human pancreatic duct epithelia formed by Capan-1 or CFPAC-1 cells were studied in open-circuit Ussing chambers. In Capan-1 cells, ATP/UTP effects were dependent on intracellular Ca(2+). Apically applied ATP/UTP stimulated CF transmembrane conductance regulator (CFTR) and Ca(2+)-activated Cl(-) (CaCC) channels, which were inhibited by CFTRinh-172 and niflumic acid, respectively. The basolaterally applied ATP stimulated CFTR. In CFPAC-1 cells, which have mutated CFTR, basolateral ATP and UTP had negligible effects. In addition to Cl(-) transport in Capan-1 cells, the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DC-EBIO) and clotrimazole indicated functional expression of the intermediate conductance K(+) channels (IK, KCa3.1). The apical effects of ATP/UTP were greatly potentiated by the IK channel opener DC-EBIO. Determination of RNA and protein levels revealed that Capan-1 cells have high expression of TMEM16A (ANO1), a likely CaCC candidate. We conclude that in human pancreatic duct cells ATP/UTP regulates via purinergic receptors both Cl(-) channels (TMEM16A/ANO1 and CFTR) and K(+) channels (IK). The K(+) channels provide the driving force for Cl(-)-channel-dependent secretion, and luminal ATP provided locally or secreted from acini may potentiate secretory processes. Future strategies in augmenting pancreatic duct function should consider sidedness of purinergic signaling and the essential role of K(+) channels.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
11
|
Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM, German MS, Stainier DYR. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab 2012; 15:885-94. [PMID: 22608007 PMCID: PMC3372708 DOI: 10.1016/j.cmet.2012.04.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 02/07/2012] [Accepted: 04/18/2012] [Indexed: 11/29/2022]
Abstract
Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing β cells is still needed. Using a zebrafish model of diabetes, we screened ~7,000 small molecules to identify enhancers of β cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of β cell regeneration was the adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA), which, acting through the adenosine receptor A2aa, increased β cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating β cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in β cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes.
Collapse
Affiliation(s)
- Olov Andersson
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology and Program in Genetics and Human Genetics, Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California, San Francisco, 1550 4th Street, San Francisco, CA 94158, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming evidence for the role of purinergic signalling in the pathophysiology of the pancreas, and the new challenge is to understand how it is integrated with other pathological processes.
Collapse
Affiliation(s)
- G Burnstock
- University College Medical School, Autonomic Neuroscience Centre, Rowland Hill Street, London NW3 2PF, UK.
| | | |
Collapse
|
13
|
Novak I. Purinergic signalling in epithelial ion transport: regulation of secretion and absorption. Acta Physiol (Oxf) 2011; 202:501-22. [PMID: 21073662 DOI: 10.1111/j.1748-1716.2010.02225.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular ATP, the energy source for many reactions, is crucial for the activity of plasma membrane pumps and, thus, for the maintenance of transmembrane ion gradients. Nevertheless, ATP and other nucleotides/nucleosides are also extracellular molecules that regulate diverse cellular functions, including ion transport. In this review, I will first introduce the main components of the extracellular ATP signalling, which have become known as the purinergic signalling system. With more than 50 components or processes, just at cell membranes, it ranks as one of the most versatile signalling systems. This multitude of system components may enable differentiated regulation of diverse epithelial functions. As epithelia probably face the widest variety of potential ATP-releasing stimuli, a special attention will be given to stimuli and mechanisms of ATP release with a focus on exocytosis. Subsequently, I will consider membrane transport of major ions (Cl(-) , HCO(3)(-) , K(+) and Na(+) ) and integrate possible regulatory functions of P2Y2, P2Y4, P2Y6, P2Y11, P2X4, P2X7 and adenosine receptors in some selected epithelia at the cellular level. Some purinergic receptors have noteworthy roles. For example, many studies to date indicate that the P2Y2 receptor is one common denominator in regulating ion channels on both the luminal and basolateral membranes of both secretory and absorptive epithelia. In exocrine glands though, P2X4 and P2X7 receptors act as cation channels and, possibly, as co-regulators of secretion. On an organ level, both receptor types can exert physiological functions and together with other partners in the purinergic signalling, integrated models for epithelial secretion and absorption are emerging.
Collapse
Affiliation(s)
- I Novak
- Department of Biology, August Krogh Building, University of Copenhagen, Denmark.
| |
Collapse
|
14
|
Turkish A, Husain SZ. Pancreatic Development. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2011:878-889.e5. [DOI: 10.1016/b978-1-4377-0774-8.10080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
15
|
Ham M, Mizumori M, Watanabe C, Wang JH, Inoue T, Nakano T, Guth PH, Engel E, Kaunitz JD, Akiba Y. Endogenous luminal surface adenosine signaling regulates duodenal bicarbonate secretion in rats. J Pharmacol Exp Ther 2010; 335:607-13. [PMID: 20805305 DOI: 10.1124/jpet.110.171520] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Luminal ATP increases duodenal bicarbonate secretion (DBS) via brush border P2Y receptors. Because ATP is sequentially dephosphorylated to adenosine (ADO) and the brush border highly expresses adenosine deaminase (ADA), we hypothesized that luminal [ADO] regulators and sensors, including P1 receptors, ADA, and nucleoside transporters (NTs) regulate DBS. We measured DBS with pH and CO(2) electrodes, perfusing ADO ± adenosine receptor agonists or antagonists or the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTR(inh)-172 on DBS. Furthermore, we examined the effect of inhibitors of ADA or NT on DBS. Perfusion of AMP or ADO (0.1 mM) uniformly increased DBS, whereas inosine had no effect. The A(1/2) receptor agonist 5'-(N-ethylcarboxamido)-adenosine (0.1 mM) increased DBS, whereas ADO-augmented DBS was inhibited by the potent A(2B) receptor antagonist N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy]-acetamide (MRS1754) (10 μM). Other selective adenosine receptor agonists or antagonists had no effect. The A(2B) receptor was immunolocalized to the brush border membrane of duodenal villi, whereas the A(2A) receptor was immunolocalized primarily to the vascular endothelium. Furthermore, ADO-induced DBS was enhanced by 2'-deoxycoformycin (1 μM) and formycin B (0.1 mM), but not by S-(4-nitrobenzyl)-6-thioinosine (0.1 mM), and it was abolished by CFTR(inh)-172 pretreatment (1 mg/kg i.p). Moreover, ATP (0.1 mM)-induced DBS was partially reduced by (1R,2S,4S,5S)-4-2-iodo-6-(methylamino)-9H-purin-9-yl]-2-(phosphonooxy)bicyclo[3.1.0]hexane-1-methanol dihydrogen phosphate ester tetraammonium salt (MRS2500) or 8-[4-[4-(4-chlorophenzyl)piperazide-1-sulfonyl)phenyl]]-1-propylxanthine (PSB603) and abolished by both, suggesting that ATP is sequentially degraded to ADO. Luminal ADO stimulates DBS via A(2B) receptors and CFTR. ATP release, ecto-phosphohydrolases, ADA, and concentrative NT may coordinately regulate luminal surface ADO concentration to modulate ADO-P1 receptor signaling in rat duodenum.
Collapse
Affiliation(s)
- Maggie Ham
- Department of Medicine, School of Medicine, University of California, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Carlsson SK, Edman MC, Delbro D, Gierow JP. Adenosine A2 receptor presence and synergy with cholinergic stimulation in rabbit lacrimal gland. Curr Eye Res 2010; 35:466-74. [PMID: 20465439 DOI: 10.3109/02713681003602667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Secretion from the lacrimal gland is an important part of the well-being of the eye, and a central part in the search for treatment of dry eye syndrome. Adenosine has stimulatory effects on the lacrimal gland, and can potentiate the effect of the cholinergic agonist carbachol (Cch). The aim of the present study is to investigate the presence of the adenosine A(2) receptor subtypes A(2A) and A(2B) in the rabbit lacrimal gland, and to characterize their role in regulated acinar cell secretion. METHODS Expression of the receptors was investigated using reverse transcriptase-PCR (RT-PCR) and immunofluorescence, and secretion effects were studied using a secretion assay in isolated lacrimal gland acinar cells. RESULTS Presence of both receptors was detected by RT-PCR and immunofluorescence. The secretion assay revealed a minor effect of stimulation of the A(2) receptors, and a strong synergistic effect with the cholinergic agonist Cch. The synergistic effect was significantly reduced by the A(2B) antagonist PSB 1115, but not by the A(2A) antagonist SCH 58261, indicating that A(2B) is the receptor responsible for this potentiation. CONCLUSIONS The study reveals the presence of the adenosine A(2) receptor subtypes as well as a role for them in lacrimal gland secretion, and especially in the synergy with purinergic and cholinergic stimulation.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The pancreatic duct epithelium is remarkable for its capacity to secrete HCO(3)(-) ions at concentrations as high as 140 mmol/l. The properties of the key transporters involved in this process and the central role played by cystic fibrosis transmembrane conductance regulator (CFTR) are the main focus of this review. RECENT FINDINGS The Cl(-)/HCO(3)(-) exchanger at the apical membrane of pancreatic duct cells is now known to be SLC26A6. The 1: 2 stoichiometry and electrogenicity of this exchanger enable it to contribute to the secretion of HCO(3)(-) at high concentrations. The apical CFTR channels also appear to have sufficient HCO(3)(-) permeability to contribute directly to HCO(3)(-) secretion. There is a strong possibility that the Ca(2+)-activated Cl(-) channels at the apical membrane are members of the bestrophin family which, like CFTR, are also permeable to HCO(3)(-). More has been learned about the complex interactions between CFTR and other transporters within macromolecular complexes coordinated at the apical membrane by scaffolding proteins. Further details are also emerging of the protective paracrine roles of nucleotides, nucleosides, bile acids and trypsin in the regulation of ductal secretion. SUMMARY Most of the key transporters involved in Cl(-) and HCO(3)(-) secretion have now been identified and characterized. Current research focuses on the molecular interactions between these transporters and the ways in which they are regulated by extracellular signals.
Collapse
|
18
|
Novak I, Haanes KA, Hansen MR, Krabbe S, Hede SE. Extracellular purinergic signaling in pancreas. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56 Suppl:355-6. [PMID: 20224224 DOI: 10.2152/jmi.56.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ivana Novak
- Department of Biology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
19
|
Nielsen SK, Møllgård K, Clement CA, Veland IR, Awan A, Yoder BK, Novak I, Christensen ST. Characterization of primary cilia and Hedgehog signaling during development of the human pancreas and in human pancreatic duct cancer cell lines. Dev Dyn 2008; 237:2039-52. [PMID: 18629868 DOI: 10.1002/dvdy.21610] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hedgehog (Hh) signaling controls pancreatic development and homeostasis; aberrant Hh signaling is associated with several pancreatic diseases. Here we investigated the link between Hh signaling and primary cilia in the human developing pancreatic ducts and in cultures of human pancreatic duct adenocarcinoma cell lines, PANC-1 and CFPAC-1. We show that the onset of Hh signaling from human embryogenesis to fetal development is associated with accumulation of Hh signaling components Smo and Gli2 in duct primary cilia and a reduction of Gli3 in the duct epithelium. Smo, Ptc, and Gli2 localized to primary cilia of PANC-1 and CFPAC-1 cells, which may maintain high levels of nonstimulated Hh pathway activity. These findings indicate that primary cilia are involved in pancreatic development and postnatal tissue homeostasis.
Collapse
Affiliation(s)
- Sonja K Nielsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Richards-Williams C, Contreras JL, Berecek KH, Schwiebert EM. Extracellular ATP and zinc are co-secreted with insulin and activate multiple P2X purinergic receptor channels expressed by islet beta-cells to potentiate insulin secretion. Purinergic Signal 2008; 4:393-405. [PMID: 18946723 DOI: 10.1007/s11302-008-9126-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 10/07/2008] [Indexed: 01/16/2023] Open
Abstract
It is well established that ATP is co-secreted with insulin and zinc from pancreatic beta-cells (beta-cells) in response to elevations in extracellular glucose concentration. Despite this knowledge, the physiological roles of extracellular secreted ATP and zinc are ill-defined. We hypothesized that secreted ATP and zinc are autocrine purinergic signaling molecules that activate P2X purinergic receptor (P2XR) channels expressed by beta-cells to enhance glucose-stimulated insulin secretion (GSIS). To test this postulate, we performed ELISA assays for secreted insulin at fixed time points within a "real-time" assay and confirmed that the physiological insulin secretagogue glucose stimulates secretion of ATP and zinc into the extracellular milieu along with insulin from primary rat islets. Exogenous ATP and zinc alone or together also induced insulin secretion in this model system. Most importantly, the presence of an extracellular ATP scavenger, a zinc chelator, and P2 receptor antagonists attenuated GSIS. Furthermore, mRNA and protein were expressed in immortalized beta-cells and primary islets for a unique subset of P2XR channel subtypes, P2X(2), P2X(3), P2X(4), and P2X(6), which are each gated by extracellular ATP and modulated positively by extracellular zinc. On the basis of these results, we propose that, within endocrine pancreatic islets, secreted ATP and zinc have profound autocrine regulatory influence on insulin secretion via ATP-gated and zinc-modulated P2XR channels.
Collapse
Affiliation(s)
- Clintoria Richards-Williams
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL, 35294-0005, USA
| | | | | | | |
Collapse
|
21
|
Pancreatic duct secretion: experimental methods, ion transport mechanisms and regulation. J Physiol Biochem 2008; 64:243-57. [PMID: 19244938 DOI: 10.1007/bf03178846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Novak I. Purinergic receptors in the endocrine and exocrine pancreas. Purinergic Signal 2007; 4:237-53. [PMID: 18368520 DOI: 10.1007/s11302-007-9087-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 11/06/2007] [Indexed: 11/28/2022] Open
Abstract
The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In beta cells, stimulation of P2Y(1) receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y(1) receptors, there is also evidence for other P2 and adenosine receptors in beta cells (P2Y(2), P2Y(4), P2Y(6), P2X subtypes and A(1) receptors) and in glucagon-secreting alpha cells (P2X(7), A(2) receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y(2), P2Y(4), P2Y(11), P2X(4) and P2X(7) receptors could regulate secretion, primarily by affecting Cl(-) and K(+) channels and intracellular Ca(2+) signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases.
Collapse
Affiliation(s)
- I Novak
- Department of Biosciences, University of Copenhagen, August Krogh Building, Universitetsparken 13, 2100, Copenhagen Ø, Denmark,
| |
Collapse
|