1
|
Alveal M, Méndez A, García A, Henríquez M. Purinergic regulation of pulmonary vascular tone. Purinergic Signal 2024; 20:595-606. [PMID: 38713328 PMCID: PMC11554604 DOI: 10.1007/s11302-024-10010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Purinergic signaling is a crucial determinant in the regulation of pulmonary vascular physiology and presents a promising avenue for addressing lung diseases. This intricate signaling system encompasses two primary receptor classes: P1 and P2 receptors. P1 receptors selectively bind adenosine, while P2 receptors exhibit an affinity for ATP, ADP, UTP, and UDP. Functionally, P1 receptors are associated with vasodilation, while P2 receptors mediate vasoconstriction, particularly in basally relaxed vessels, through modulation of intracellular Ca2+ levels. The P2X subtype receptors facilitate extracellular Ca2+ influx, while the P2Y subtype receptors are linked to endoplasmic reticulum Ca2+ release. Notably, the primary receptor responsible for ATP-induced vasoconstriction is P2X1, with α,β-meATP and UDP being identified as potent vasoconstrictor agonists. Interestingly, ATP has been shown to induce endothelium-dependent vasodilation in pre-constricted vessels, associated with nitric oxide (NO) release. In the context of P1 receptors, adenosine stimulation of pulmonary vessels has been unequivocally demonstrated to induce vasodilation, with a clear dependency on the A2B receptor, as evidenced in studies involving guinea pigs and rats. Importantly, evidence strongly suggests that this vasodilation occurs independently of endothelium-mediated mechanisms. Furthermore, studies have revealed variations in the expression of purinergic receptors across different vessel sizes, with reports indicating notably higher expression of P2Y1, P2Y2, and P2Y4 receptors in small pulmonary arteries. While the existing evidence in this area is still emerging, it underscores the urgent need for a comprehensive examination of the specific characteristics of purinergic signaling in the regulation of pulmonary vascular tone, particularly focusing on the disparities observed across different intrapulmonary vessel sizes. Consequently, this review aims to meticulously explore the current evidence regarding the role of purinergic signaling in pulmonary vascular tone regulation, with a specific emphasis on the variations observed in intrapulmonary vessel sizes. This endeavor is critical, as purinergic signaling holds substantial promise in the modulation of vascular tone and in the proactive prevention and treatment of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Marco Alveal
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
| | - Andrea Méndez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
- Escuela de Kinesiología, Facultad de Salud y Ciencias Sociales, Campus Providencia, Sede Santiago, Universidad de Las Américas, Santiago, Chile
| | - Aline García
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
- Escuela de Graduados, Facultad de Ciencias Veterinarias,, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile.
| |
Collapse
|
2
|
Characterisation of P2Y receptor subtypes mediating vasodilation and vasoconstriction of rat pulmonary artery using selective antagonists. Purinergic Signal 2022; 18:515-528. [PMID: 36018534 PMCID: PMC9832182 DOI: 10.1007/s11302-022-09895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023] Open
Abstract
Pulmonary vascular tone is modulated by nucleotides, but which P2 receptors mediate these actions is largely unclear. The aim of this study, therefore, was to use subtype-selective antagonists to determine the roles of individual P2Y receptor subtypes in nucleotide-evoked pulmonary vasodilation and vasoconstriction. Isometric tension was recorded from rat intrapulmonary artery rings (i.d. 200-500 µm) mounted on a wire myograph. Nucleotides evoked concentration- and endothelium-dependent vasodilation of precontracted tissues, but the concentration-response curves were shallow and did not reach a plateau. The selective P2Y2 antagonist, AR-C118925XX, inhibited uridine 5'-triphosphate (UTP)- but not adenosine 5'-triphosphate (ATP)-evoked relaxation, whereas the P2Y6 receptor antagonist, MRS2578, had no effect on UTP but inhibited relaxation elicited by uridine 5'-diphosphate (UDP). ATP-evoked relaxations were unaffected by the P2Y1 receptor antagonist, MRS2179, which substantially inhibited responses to adenosine 5'-diphosphate (ADP), and by the P2Y12/13 receptor antagonist, cangrelor, which potentiated responses to ADP. Both agonists were unaffected by CGS1593, an adenosine receptor antagonist. Finally, AR-C118925XX had no effect on vasoconstriction elicited by UTP or ATP at resting tone, although P2Y2 receptor mRNA was extracted from endothelium-denuded tissues using reverse transcription polymerase chain reaction with specific oligonucleotide primers. In conclusion, UTP elicits pulmonary vasodilation via P2Y2 receptors, whereas UDP acts at P2Y6 and ADP at P2Y1 receptors, respectively. How ATP induces vasodilation is unclear, but it does not involve P2Y1, P2Y2, P2Y12, P2Y13, or adenosine receptors. UTP- and ATP-evoked vasoconstriction was not mediated by P2Y2 receptors. Thus, this study advances our understanding of how nucleotides modulate pulmonary vascular tone.
Collapse
|
3
|
Henriquez M, Fonseca M, Perez-Zoghbi JF. Purinergic receptor stimulation induces calcium oscillations and smooth muscle contraction in small pulmonary veins. J Physiol 2018; 596:2491-2506. [PMID: 29790164 DOI: 10.1113/jp274731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS We investigated the excitation-contraction coupling mechanisms in small pulmonary veins (SPVs) in rat precision-cut lung slices. We found that SPVs contract strongly and reversibly in response to extracellular ATP and other vasoconstrictors, including angiotensin-II and endothelin-1. ATP-induced vasoconstriction in SPVs was associated with the stimulation of purinergic P2Y2 receptors in vascular smooth muscle cell, activation of phospholipase C-β and the generation of intracellular Ca2+ oscillations mediated by cyclic Ca2+ release events via the inositol 1,4,5-trisphosphate receptor. Active constriction of SPVs may play an important role in the development of pulmonary hypertension and pulmonary oedema. ABSTRACT The small pulmonary veins (SPVs) may play a role in the development of pulmonary hypertension and pulmonary oedema via active changes in SPV diameter, mediated by vascular smooth muscle cell (VSMC) contraction. However, the excitation-contraction coupling mechanisms during vasoconstrictor stimulation remain poorly understood in these veins. We used rat precision-cut lung slices and phase-contrast and confocal microscopy to investigate dynamic changes in SPV cross-sectional luminal area and intracellular Ca2+ signalling in their VSMCs. We found that the SPV (∼150 μm in diameter) contract strongly in response to extracellular ATP and other vasoconstrictors, including angiotensin-II and endothelin-1. ATP-induced SPV contraction was fast, concentration-dependent, completely reversible upon ATP washout, and inhibited by purinergic receptor antagonists suramin and AR-C118925 but not by MRS2179. Immunofluorescence showed purinergic P2Y2 receptors expressed in SPV VSMCs. ATP-induced SPV contraction was inhibited by phospholipase Cβ inhibitor U73122 and accompanied by intracellular Ca2+ oscillations in the VSMCs. These Ca2+ oscillations and SPV contraction were inhibited by the inositol 1,4,5-trisphosphate receptor inhibitor 2-APB but not by ryanodine. The results of the present study suggest that ATP-induced vasoconstriction in SPVs is associated with the activation of purinergic P2Y2 receptors in VSMCs and the generation of Ca2+ oscillations.
Collapse
Affiliation(s)
- Mauricio Henriquez
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Marcelo Fonseca
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago, Chile
| | - Jose F Perez-Zoghbi
- Department of Anesthesiology, College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Kylhammar D, Rådegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf) 2017; 219:728-756. [PMID: 27381367 DOI: 10.1111/apha.12749] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) serves to optimize ventilation-perfusion matching in focal hypoxia and thereby enhances pulmonary gas exchange. During global hypoxia, however, HPV induces general pulmonary vasoconstriction, which may lead to pulmonary hypertension (PH), impaired exercise capacity, right-heart failure and pulmonary oedema at high altitude. In chronic hypoxia, generalized HPV together with hypoxic pulmonary arterial remodelling, contribute to the development of PH. The present article reviews the principal pathways in the in vivo modulation of HPV, hypoxic pulmonary arterial remodelling and PH with primary focus on the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways. In summary, endothelin-1 and thromboxane A2 may enhance, whereas nitric oxide and prostacyclin may moderate, HPV as well as hypoxic pulmonary arterial remodelling and PH. The production of prostacyclin seems to be coupled primarily to cyclooxygenase-1 in acute hypoxia, but to cyclooxygenase-2 in chronic hypoxia. The potential role of adenine nucleotides in modulating HPV is unclear, but warrants further study. Additional modulators of the pulmonary vascular responses to hypoxia may include angiotensin II, histamine, serotonin/5-hydroxytryptamine, leukotrienes and epoxyeicosatrienoic acids. Drugs targeting these pathways may reduce acute and/or chronic hypoxic PH. Endothelin receptor antagonists and phosphodiesterase-5 inhibitors may additionally improve exercise capacity in hypoxia. Importantly, the modulation of the pulmonary vascular responses to hypoxia varies between species and individuals, with hypoxic duration and age. The review also define how drugs targeting the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways may improve pulmonary haemodynamics, but also impair pulmonary gas exchange by interference with HPV in chronic lung diseases.
Collapse
Affiliation(s)
- D. Kylhammar
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| | - G. Rådegran
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| |
Collapse
|
5
|
Yoo HY, Park SJ, Kim HJ, Kim WK, Kim SJ. Integrative understanding of hypoxic pulmonary vasoconstriction using in vitro models: from ventilated/perfused lung to single arterial myocyte. Integr Med Res 2014; 3:180-188. [PMID: 28664095 PMCID: PMC5481745 DOI: 10.1016/j.imr.2014.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 10/25/2022] Open
Abstract
Contractile response of a pulmonary artery (PA) to hypoxia (hypoxic pulmonary vasoconstriction; HPV) is a unique physiological reaction. HPV is beneficial for the optimal distribution of blood flow to differentially ventilated alveolar regions in the lung, thereby preventing systemic hypoxemia. Numerous in vitro studies have been conducted to elucidate the mechanisms underlying HPV. These studies indicate that PA smooth muscle cells (PASMCs) sense lowers the oxygen partial pressure (PO2) and contract under hypoxia. As for the PO2-sensing molecules, a variety of ion channels in PASMCs had been suggested. Nonetheless, the modulator(s) of the ion channels alone cannot mimic HPV in the experiments using PA segments and/or isolated organs. We compared the hypoxic responses of PASMCs, PAs, lung slices, and total lungs using a variety of methods (e.g., patch-clamp technique, isometric contraction measurement, video analysis of precision-cut lung slices, and PA pressure measurement in ventilated/perfused lungs). In this review, the relevant results are compared to provide a comprehensive understanding of HPV. Integration of the influences from surrounding tissues including blood cells as well as the hypoxic regulation of ion channels in PASMCs are indispensable for insights into HPV and other related clinical conditions.
Collapse
Affiliation(s)
- Hae Young Yoo
- Red Cross College of Nursing, Chung-Ang University, Seoul, Korea
| | - Su Jung Park
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Hae Jin Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Woo Kyung Kim
- Department of Internal Medicine and Channelopathy Research Institute (CRC), College of Medicine, Dongguk University, Goyang, Korea
| | - Sung Joon Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea.,Ischemic/Hypoxic Disease Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
7
|
Yoo HY, Zeifman A, Ko EA, Smith KA, Chen J, Machado RF, Zhao YY, Minshall RD, Yuan JXJ. Optimization of isolated perfused/ventilated mouse lung to study hypoxic pulmonary vasoconstriction. Pulm Circ 2013; 3:396-405. [PMID: 24015341 PMCID: PMC3757835 DOI: 10.4103/2045-8932.114776] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a compensatory physiological mechanism in the lung that optimizes the matching of ventilation to perfusion and thereby maximizes gas exchange. Historically, HPV has been primarily studied in isolated perfused/ventilated lungs; however, the results of these studies have varied greatly due to different experimental conditions and species. Therefore, in the present study, we utilized the mouse isolated perfused/ventilated lung model for investigation of the role of extracellular Ca2+ and caveolin-1 and endothelial nitric oxide synthase expression on HPV. We also compared HPV using different perfusate solutions: Physiological salt solution (PSS) with albumin, Ficoll, rat blood, fetal bovine serum (FBS), or Dulbecco's Modified Eagle Medium (DMEM). After stabilization of the pulmonary arterial pressure (PAP), hypoxic (1% O2) and normoxic (21% O2) gases were applied via a ventilator in five-minute intervals to measure HPV. The addition of albumin or Ficoll with PSS did not induce persistent and strong HPV with or without a pretone agent. DMEM with the inclusion of FBS in the perfusate induced strong HPV in the first hypoxic challenge, but the HPV was neither persistent nor repetitive. PSS with rat blood only induced a small increase in HPV amplitude. Persistent and repetitive HPV occurred with PSS with 20% FBS as perfusate. HPV was significantly decreased by the removal of extracellular Ca2+ along with addition of 1 mM EGTA to chelate residual Ca2+ and voltage-dependent Ca2+ channel blocker (nifedipine 1 μM). PAP was also reactive to contractile stimulation by high K+ depolarization and U46619 (a stable analogue of thromboxane A2). In summary, optimal conditions for measuring HPV were established in the isolated perfused/ventilated mouse lung. Using this method, we further confirmed that HPV is dependent on Ca2+ influx.
Collapse
Affiliation(s)
- Hae Young Yoo
- Department of Medicine, Section of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Endogenous nucleotides have widespread actions in the cardiovascular system, but it is only recently that the P2X and P2Y receptor subtypes, at which they act, have been identified and subtype-selective agonists and antagonists developed. These advances have greatly increased our understanding of the physiological and pathophysiological functions of P2X and P2Y receptors, but investigation of the clinical usefulness of selective ligands is at an early stage. Nonetheless, the evidence considered in this review demonstrates clearly that various cardiovascular disorders, including vasospasm, hypertension, congestive heart failure and cardiac damage during ischemic episodes, may be viable targets. With further development of novel, selective agonists and antagonists, our understanding will continue to improve and further therapeutic applications are likely to be discovered.
Collapse
|
9
|
Mitchell C, Syed NIH, Tengah A, Gurney AM, Kennedy C. Identification of Contractile P2Y1, P2Y6, and P2Y12Receptors in Rat Intrapulmonary Artery Using Selective Ligands. J Pharmacol Exp Ther 2012; 343:755-62. [DOI: 10.1124/jpet.112.198051] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
10
|
Burnstock G, Brouns I, Adriaensen D, Timmermans JP. Purinergic signaling in the airways. Pharmacol Rev 2012; 64:834-68. [PMID: 22885703 DOI: 10.1124/pr.111.005389] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Evidence for a significant role and impact of purinergic signaling in normal and diseased airways is now beyond dispute. The present review intends to provide the current state of knowledge of the involvement of purinergic pathways in the upper and lower airways and lungs, thereby differentiating the involvement of different tissues, such as the epithelial lining, immune cells, airway smooth muscle, vasculature, peripheral and central innervation, and neuroendocrine system. In addition to the vast number of well illustrated functions for purinergic signaling in the healthy respiratory tract, increasing data pointing to enhanced levels of ATP and/or adenosine in airway secretions of patients with airway damage and respiratory diseases corroborates the emerging view that purines act as clinically important mediators resulting in either proinflammatory or protective responses. Purinergic signaling has been implicated in lung injury and in the pathogenesis of a wide range of respiratory disorders and diseases, including asthma, chronic obstructive pulmonary disease, inflammation, cystic fibrosis, lung cancer, and pulmonary hypertension. These ostensibly enigmatic actions are based on widely different mechanisms, which are influenced by the cellular microenvironment, but especially the subtypes of purine receptors involved and the activity of distinct members of the ectonucleotidase family, the latter being potential protein targets for therapeutic implementation.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, London, UK.
| | | | | | | |
Collapse
|
11
|
Mitchell C, Syed NIH, Gurney AM, Kennedy C. A Ca²⁺-dependent chloride current and Ca²⁺ influx via Ca(v)1.2 ion channels play major roles in P2Y receptor-mediated pulmonary vasoconstriction. Br J Pharmacol 2012; 166:1503-12. [PMID: 22320222 PMCID: PMC3417463 DOI: 10.1111/j.1476-5381.2012.01892.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/19/2011] [Accepted: 01/31/2012] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE ATP, UTP and UDP act at smooth muscle P2X and P2Y receptors to constrict rat intrapulmonary arteries, but the underlying signalling pathways are poorly understood. Here, we determined the roles of the Ca²⁺ -dependent chloride ion current (I(Cl,Ca)), Ca(v)1.2 ion channels and Ca²⁺ influx. EXPERIMENTAL APPROACH Isometric tension was recorded from endothelium-denuded rat intrapulmonary artery rings (i.d. 200-500 µm) mounted on a wire myograph. KEY RESULTS The I(Cl,Ca) blockers, niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid and the Ca(v)1.2 channel blocker, nifedipine, reduced peak amplitude of contractions evoked by UTP and UDP by ∼45-50% and in a non-additive manner. Ca²⁺-free buffer inhibited responses by ∼70%. Niflumic acid and nifedipine similarly depressed contractions to ATP, but Ca²⁺-free buffer almost abolished the response. After peaking, contractions to UTP and UDP decayed slowly by 50-70% to a sustained plateau, which was rapidly inhibited by niflumic acid and nifedipine. Contractions to ATP, however, reversed rapidly and fully. Tannic acid contracted tissues per se and potentiated nucleotide-evoked contractions. CONCLUSIONS AND IMPLICATIONS I (Cl,Ca) and Ca²⁺ influx via Ca(v)1.2 ion channels contribute substantially and equally to contractions of rat intrapulmonary arteries evoked by UTP and UDP, via P2Y receptors. ATP also activates these mechanisms via P2Y receptors, but the greater dependence on extracellular Ca²⁺ most likely reflects additional influx through the P2X1 receptor pore. The lack of a sustained response to ATP is probably due to it acting at P2 receptor subtypes that desensitize rapidly. Thus multiple signalling mechanisms contribute to pulmonary artery vasoconstriction mediated by P2 receptors.
Collapse
Affiliation(s)
- Callum Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | |
Collapse
|
12
|
Ishida K, Matsumoto T, Taguchi K, Kamata K, Kobayashi T. Mechanisms underlying altered extracellular nucleotide-induced contractions in mesenteric arteries from rats in later-stage type 2 diabetes: effect of ANG II type 1 receptor antagonism. Am J Physiol Heart Circ Physiol 2011; 301:H1850-61. [PMID: 21856926 DOI: 10.1152/ajpheart.00502.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the vascular contractile responsiveness to, and signaling pathways for, extracellular nucleotides in the chronic stage of type 2 diabetes or whether the ANG II type 1 receptor blocker losartan might alter such responses. We hypothesized that nucleotide-induced arterial contractions are augmented in diabetic Goto-Kakizaki (GK) rats and that treatment with losartan would normalize the contractions. Here, we investigated the vasoconstrictor effects of ATP/UTP in superior mesenteric arteries isolated from GK rats (37-42 wk old) that had or had not received 2 wk of losartan (25 mg·kg(-1)·day(-1)). In arteries from GK rats (vs. those from Wistar rats), 1) ATP- and UTP-induced contractions, which were blocked by the nonselective P2 antagonist suramin, were enhanced, and these enhancements were suppressed by endothelial denudation, by cyclooxygenase (COX) inhibitors, or by a cytosolic phospholipase A(2) (cPLA(2)) inhibitor; 2) both nucleotides induced increased release of PGE(2) and PGF(2α); 3) nucleotide-stimulated cPLA(2) phosphorylations were increased; 4) COX-1 and COX-2 expressions were increased; and 5) neither P2Y2 nor P2Y6 receptor expression differed, but P2Y4 receptor expression was decreased. Mesenteric arteries from GK rats treated with losartan exhibited (vs. untreated GK) 1) reduced nucleotide-induced contractions, 2) suppressed UTP-induced release of PGE(2) and PGF(2α), 3) suppressed UTP-stimulated cPLA(2) phosphorylation, 4) normalized expressions of COX-2 and P2Y4 receptors, and 5) reduced superoxide generation. Our data suggest that the diabetes-related enhancement of ATP-mediated vasoconstriction was due to P2Y receptor-mediated activation of the cPLA(2)/COX pathway and, moreover, that losartan normalizes such contractions by a suppressing action within this pathway.
Collapse
Affiliation(s)
- Keiko Ishida
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
13
|
Characterisation of P2X receptors expressed in rat pulmonary arteries. Eur J Pharmacol 2010; 649:342-8. [DOI: 10.1016/j.ejphar.2010.09.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/27/2010] [Accepted: 09/07/2010] [Indexed: 12/31/2022]
|
14
|
Yoo HY, Park SJ, Bahk JH, Kim SJ. Inhibition of hypoxic pulmonary vasoconstriction of rats by carbon monoxide. J Korean Med Sci 2010; 25:1411-7. [PMID: 20890419 PMCID: PMC2946648 DOI: 10.3346/jkms.2010.25.10.1411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 03/23/2010] [Indexed: 11/20/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV), a unique response of pulmonary circulation, is critical to prevent hypoxemia under local hypoventilation. Hypoxic inhibition of K(+) channel is known as an important O(2)-sensing mechanism in HPV. Carbon monoxide (CO) is suggested as a positive regulator of Ca(2+)-activated K(+) channel (BK(Ca)), a stimulator of guanylate cyclase, and an O(2)-mimetic agent in heme moiety-dependent O(2) sensing mechanisms. Here we compared the effects of CO on the HPV (P(O(2)), 3%) in isolated pulmonary artery (HPV(PA)) and in blood-perfused/ventilated lungs (HPV(lung)) of rats. A pretreatment with CO (3%) abolished the HPV(PA) in a reversible manner. The inhibition of HPV(PA) was completely reversed by 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), a guanylate cyclase inhibitor. In contrast, the HPV(lung) was only partly decreased by CO. Moreover, the partial inhibition of HPV(lung) by CO was affected neither by the pretreatment with ODQ nor by NO synthase inhibitor (L-NAME). The CO-induced inhibitions of HPV(PA) and HPV(lung) were commonly unaffected by tetraethylammonium (TEA, 2 mM), a blocker of BK(Ca). As a whole, CO inhibits HPV(PA) via activating guanylate cyclase. The inconsistent effects of ODQ on HPV(PA) and HPV(lung) suggest that ODQ may lose its sGC inhibitory action when applied to the blood-containing perfusate.
Collapse
Affiliation(s)
- Hae Young Yoo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Su Jung Park
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Hyon Bahk
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|