1
|
Li Y, Karim MR, Wang B, Peng J. Effects of Green Tea (-)-Epigallocatechin-3-Gallate (EGCG) on Cardiac Function - A Review of the Therapeutic Mechanism and Potentials. Mini Rev Med Chem 2022; 22:2371-2382. [PMID: 35345998 DOI: 10.2174/1389557522666220328161826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Heart disease, the leading cause of death globally, refers to various illnesses that affect heart structure and function. Specific abnormalities affecting cardiac muscle contractility and remodeling and common factors including oxidative stress, inflammation, and apoptosis underlie the pathogenesis of heart diseases. Epidemiology studies have associated green tea consumption with lower morbidity and mortality of cardiovascular diseases, including heart and blood vessel dysfunction. Among the various compounds found in green tea, catechins are believed to play a significant role in producing benefits to cardiovascular health. Comprehensive literature reviews have been published to summarize the tea catechins' antioxidative, anti-inflammatory, and anti-apoptosis effects in the context of various diseases, such as cardiovascular diseases, cancers, and metabolic diseases. However, recent studies on tea catechins, especially the most abundant (-)-Epigallocatechin-3-Gallate (EGCG), revealed their capabilities in regulating cardiac muscle contraction by directly altering myofilament Ca2+ sensitivity on force development and Ca2+ ion handling in cardiomyocytes under both physiological and pathological conditions. In vitro and in vivo data also demonstrated that green tea extract or EGCG protected or rescued cardiac function, independent of their well-known effects against oxidative stress and inflammation. This minireview will focus on the specific effects of tea catechins on heart muscle contractility at the molecular and cellular level, revisit their effects on oxidative stress and inflammation in a variety of heart diseases, and discuss EGCG's potential as one of the lead compounds for new drug discovery for heart diseases.
Collapse
Affiliation(s)
- Yuejin Li
- Department of Biology, Morgan State University, Baltimore
| | | | - Buheng Wang
- Department of Biology, Morgan State University, Baltimore
| | - Jiangnan Peng
- Department of Biology, Morgan State University, Baltimore
- Department of Chemistry, Morgan State University, Baltimore
| |
Collapse
|
2
|
Ashwin K, Pattanaik AK, Howarth GS. Polyphenolic bioactives as an emerging group of nutraceuticals for promotion of gut health: A review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
3
|
Faheem NM, Ali TM. The counteracting effects of (-)-Epigallocatechin-3-Gallate on the immobilization stress-induced adverse reactions in rat pancreas. Cell Stress Chaperones 2021; 26:159-172. [PMID: 33000400 PMCID: PMC7736449 DOI: 10.1007/s12192-020-01165-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
Many studies suggest that Epigallocatechin-3-Gallate (EGCG) has many protective effects. But little is known about its protective effects against chronic restraint stress-induced damage in rats. The aim was to demonstrate the potential protective effects of EGCG against harmful pancreatic damage to the immobilization stress in the rat model. Forty rats, 2 months old, were divided into four groups (n = 10): control group; EGCG group, rats received EGCG by gavage (100 mg/kg /day) for 30 days; stressed group, rats exposed to immobilization stress; and stressed with EGCG group, rats exposed to immobilization stress and received EGCG for 30 days. Glycemic status parameters, corticosterone, and inflammatory markers were investigated on the first day, 15th day, and the 30th day of the experiment. Pancreatic oxidative stress markers and cytokines were evaluated. Histological, immunohistological, and statistical studies were performed. On the 15th day, fasting blood glucose (FBG), fasting plasma insulin (FPI), homeostatic model assessment for insulin resistance (HOMA-IR), and fasting plasma corticosterone were significantly higher in the stressed group when compared with first and 30th day in the same group as well as when compared with control and stressed with EGCG groups. The stressed group revealed significantly higher pancreatic IL-1β, IL-6, TNF-α, MDA, and NO, serum amylase and serum lipase, and significantly lower GSH, SOD, and CAT when compared to control and stressed with EGCG groups. EGCG treatment attenuated the pancreatic stress-induced cellular degeneration, leucocytic infiltration, and cytoplasmic vacuolations; significantly decreased area percentage of collagen fibers; and significantly increased mean area percentage of insulin immunopositive cell as compared with stressed group. EGCG is a protective agent against immobilization stress because of its anti-diabetic, anti-inflammatory, and and anti-oxidative stress properties, as confirmed by biochemical and histological alterations.
Collapse
Affiliation(s)
- Nermeen Mohammed Faheem
- Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
- Department of Physical Therapy, Faculty of Applied Medical Sciences, Taif University, Taif, 21944, Kingdom of Saudi Arabia.
| | - Tarek Mohamed Ali
- Department of Medical Physiology, Faculty of Medicine, Taif University, P. O. Box 11099, Taif, 21944, Saudi Arabia
- Department of Medical Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
4
|
Wu Y, Xia ZY, Zhao B, Leng Y, Dou J, Meng QT, Lei SQ, Chen ZZ, Zhu J. (-)-Epigallocatechin-3-gallate attenuates myocardial injury induced by ischemia/reperfusion in diabetic rats and in H9c2 cells under hyperglycemic conditions. Int J Mol Med 2017; 40:389-399. [PMID: 28714516 PMCID: PMC5504977 DOI: 10.3892/ijmm.2017.3014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 05/23/2017] [Indexed: 11/27/2022] Open
Abstract
(−)-Epigallocatechin gallate (EGCG) exerts multiple beneficial effects on cardiovascular performance. In this study, we aimed to examine the effects of EGCG on diabetic cardiomyopathy during myocardial ischemia/reperfusion (I/R) injury. EGCG (100 mg/kg/day) was administered at week 6 for 2 weeks to diabetic rats following the induction of type 1 diabetes by streptozotocin (STZ). At the end of week 8, the animals were subjected to myocardial I/R injury. The EGCG-elicited structural and functional effects were analyzed. Additionally, EGCG (20 μM) was administered for 24 h to cultured cardiac H9c2 cells under hyperglycemic conditions (30 mM glucose) prior to hypoxia/reoxygenation (H/R) challenge, and its effects on oxidative stress were compared to H9c2 cells transfecteed with silent information regulator 1 (SIRT1) small interfering RNA (siRNA). In rats with STZ-induced diabetes, EGCG treatment ameliorated post-ischemic cardiac dysfunction, decreased the myocardial infarct size, apoptosis and cardiac fibrosis, and reduced the elevated lactate dehydrogenase (LDH) and malonaldehyde (MDA) levels, and attenuated oxidative stress. Furthermore, EGCG significantly reduced H/R injury in cardiac H9c2 cells exposed to high glucose as evidenced by reduced apoptotic cell death and oxidative stress. The protein expression levels of SIRT1 and manganese superoxide dismutase (MnSOD) were reduced in the diabetic rats and the H9c2 cells under hyperglycemic conditions, compared with the control rats following I/R injury and H9c2 cells under normal glucose conditions. EGCG pre-treatment significantly upregulated the levels of htese proteins in vitro and in vivo. However, treatment with EX527 and SIRT1 siRNA blocked the EGCG-mediated cardioprotective effects. Taken together, our data indicate that SIRT1 plays a critical role in the EGCG-mediated amelioration of I/R injury in diabetic rats, which suggests that EGCG may be a promising dietary supplement for the prevention of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yang Wu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Juan Dou
- Department of Cardiac Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Tao Meng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Ze Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Zhu
- Department of Clinical Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
5
|
Othman AI, Elkomy MM, El-Missiry M, Dardor M. Epigallocatechin-3-gallate prevents cardiac apoptosis by modulating the intrinsic apoptotic pathway in isoproterenol-induced myocardial infarction. Eur J Pharmacol 2017; 794:27-36. [DOI: 10.1016/j.ejphar.2016.11.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 01/07/2023]
|
6
|
Lustosa BB, Polegato B, Minicucci M, Rafacho B, Santos PP, Fernandes AA, Okoshi K, Batista D, Modesto P, Gonçalves A, Pereira EJ, Pires V, Paiva S, Zornoff L, Azevedo PS. Green tea (Cammellia sinensis) attenuates ventricular remodeling after experimental myocardial infarction. Int J Cardiol 2016; 225:147-153. [PMID: 27723532 DOI: 10.1016/j.ijcard.2016.09.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Considering the high morbidity and mortality after myocardial infarction (MI), the study of compounds with potential benefits for cardiac remodeling is reasonable. Green tea (GT) (Cammellia sinensis) is the most consumed beverage in the world. The potential action mechanisms of GT include anti-inflammatory, anti-apoptotic, antioxidant, and lipid-lowering properties. OBJECTIVE This study analyzed the effects of GT on cardiac remodeling following coronary occlusion in rats. METHODS Male Wistar rats were divided into four groups: control (C), control green tea (GT), myocardial infarction (MI), and myocardial infarction and green tea (MI-GT). GT and MI-GT were fed with standard chow with 0.25% Polyphenon 60 (Sigma-Aldrich Canada, Oakville, ON, Canada). After 3months of observation, echocardiographic and isolated heart study, oxidative stress, energy metabolism, serum lipids, extracellular matrix, and apoptosis were evaluated. RESULTS GT reduced cardiac hypertrophy and improved systolic and diastolic dysfunction. Concerning oxidative stress, GT reduced protein carbonyl, increased Nrf-2, and restored antioxidant enzyme activity to the control pattern. Energy metabolism was affected by MI that presented with lower fatty acid oxidation and accumulation of triacylglycerol, increased serum lipids, impairment of the citric acid cycle, and oxidative phosphorylation. GT stimulated the glucose pathway and mitochondrial function after MI by increasing pyruvate dehydrogenase, Complex I, ATP synthase, and glycogen storage. In addition, MI changed the extracellular matrix including MMP-2 and TIMP-1 activity and increased apoptosis by 3-caspase, all of which were attenuated by GT. CONCLUSION GT attenuated cardiac remodeling after MI, associated with improvement in systolic and diastolic dysfunction. Oxidative stress, energy metabolism, apoptosis, and extracellular matrix alterations are all potential mechanisms by which GT may take part.
Collapse
Affiliation(s)
- Beatriz B Lustosa
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Bertha Polegato
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Marcos Minicucci
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Bruna Rafacho
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Priscila P Santos
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Ana Angélica Fernandes
- Chemistry and Biochemistry Department, Institute of Bioscience, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Katashi Okoshi
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Diego Batista
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Pamela Modesto
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Andrea Gonçalves
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Elenize J Pereira
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Vanessa Pires
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Sergio Paiva
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Leonardo Zornoff
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Paula S Azevedo
- Internal Medicine Department, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil.
| |
Collapse
|
7
|
Caveolin-1/-3: therapeutic targets for myocardial ischemia/reperfusion injury. Basic Res Cardiol 2016; 111:45. [PMID: 27282376 DOI: 10.1007/s00395-016-0561-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 01/20/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a major cause of morbidity and mortality worldwide. Caveolae, caveolin-1 (Cav-1), and caveolin-3 (Cav-3) are essential for the protective effects of conditioning against myocardial I/R injury. Caveolins are membrane-bound scaffolding proteins that compartmentalize and modulate signal transduction. In this review, we introduce caveolae and caveolins and briefly describe the interactions of caveolins in the cardiovascular diseases. We also review the roles of Cav-1/-3 in protection against myocardial ischemia and I/R injury, and in conditioning. Finally, we suggest several potential research avenues that may be of interest to clinicians and basic scientists. The information included, herein, is potentially useful for the design of future studies and should advance the investigation of caveolins as therapeutic targets.
Collapse
|
8
|
Pang J, Zhang Z, Zheng TZ, Bassig BA, Mao C, Liu X, Zhu Y, Shi K, Ge J, Yang YJ, Dejia-Huang, Bai M, Peng Y. Green tea consumption and risk of cardiovascular and ischemic related diseases: A meta-analysis. Int J Cardiol 2016; 202:967-74. [DOI: 10.1016/j.ijcard.2014.12.176] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/16/2014] [Accepted: 12/31/2014] [Indexed: 12/31/2022]
|
9
|
Chakraborty M, Kamath JV, Bhattacharjee A. Potential interaction of green tea extract with hydrochlorothiazide against doxorubicin-induced myocardial damage. J Ayurveda Integr Med 2015; 6:187-93. [PMID: 26604554 PMCID: PMC4630693 DOI: 10.4103/0975-9476.146555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/30/2014] [Accepted: 11/10/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Treatment of ischemic hypertensive patients with hydrochlorothiazide can precipitate cardiac arrhythmias. Green tea, by virtue of its antioxidant potential, is responsible for cardio-protective activity. OBJECTIVE The present study was under taken to evaluate the pharmacodynamic interaction of green tea extract with hydrochlorothiazide (HCTZ) against doxorubicin (DOX)-induced myocardial toxicity. MATERIALS AND METHODS Rats were treated with high (500 mg/kg, p.o.) and low (100 mg/kg, p.o.) dose of green tea extract in alone and interactive groups for 28 days. Standard, high and low dose of interactive groups received hydrochlorothiazide (10 mg/kg, p.o.) for the last 7 days. Apart from normal controls, all other groups were subjected to DOX (3 mg/kg, i.p.) toxicity on Days 1, 7, 14, 21 and 28, and the effect of different treatments was evaluated by changes in electrocardiographic parameters, serum biomarkers and tissue antioxidant levels. Apart from that, lipid profile and histological studies were also carried out. RESULTS Compared with the DOX control group, both high and low dose of green tea exhibited a significant decrease in serum biomarkers and increase in tissue antioxidant levels. Green tea treatment was also responsible for significant improvement in ECG parameter, lipid profile and histological score. Incorporation of high and low dose of green tea with HCTZ exhibited significant protection compared with the HCTZ alone treated group. CONCLUSION The present findings clearly suggest that the green tea extract dose-dependently reduces DOX-induced myocardial toxicity. Green tea when combined with HCTZ can reduce the associated side-effects and exhibits myocardial protection.
Collapse
Affiliation(s)
| | - Jagadish V. Kamath
- Department of Pharmacology, Shree Devi College of Pharmacy, Mangalore, Karnataka, India
| | - Ananya Bhattacharjee
- Department of Pharmacology, Shree Devi College of Pharmacy, Mangalore, Karnataka, India
| |
Collapse
|
10
|
Hsieh SR, Cheng WC, Su YM, Chiu CH, Liou YM. Molecular targets for anti-oxidative protection of green tea polyphenols against myocardial ischemic injury. Biomedicine (Taipei) 2014; 4:23. [PMID: 25520936 PMCID: PMC4264984 DOI: 10.7603/s40681-014-0023-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022] Open
Abstract
Ischemic heart disease is the leading cause of death worldwide. An improved understanding of the mechanisms involved in myocardial injury would allow intervention downstream in the pathway where certain drugs including natural products could be efficiently applied to target the end effectors of the cell death pathway. Green tea polyphenols (GTPs) have potent anti-oxidative capabilities, which may account for their beneficial effects in preventing oxidative stress associated with ischemia injury. Although studies have provided convincing evidence to support the protective effects of GTPs in cardiovascular system, the potential end effectors that mediate cardiac protection are only beginning to be addressed. Proteomics analyses widely used to identify the protein targets for many cardiovascular diseases have advanced the discovery of the signaling mechanism for GTPs-mediated cardio-protection. This review focuses on putative triggers, mediators, and end effectors for the GTPs-mediated cardio-protection signaling pathways engaged in myocardial ischemia crisis, allowing a promising natural product to be used for ameliorating oxidative stress associated with ischemic heart diseases.
Collapse
Affiliation(s)
- Shih-Rong Hsieh
- Department of Cardiovascular Surgery, Taichung Veterans General Hospital, 407 Taichung, Taiwan
| | - Wei-Chen Cheng
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, 300 Hsinchu, Taiwan
| | - Yi-Min Su
- Department of Life Sciences, National Chung-Hsing University, 402 No. 250, Kuokang Road, Taichung, Taiwan
| | - Chun-Hwei Chiu
- Department of Life Sciences, National Chung-Hsing University, 402 No. 250, Kuokang Road, Taichung, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, 402 No. 250, Kuokang Road, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, 402 Taichung, Taiwan
| |
Collapse
|
11
|
Chen WC, Hsieh SR, Chiu CH, Hsu BD, Liou YM. Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts. J Biomed Sci 2014; 21:56. [PMID: 24913014 PMCID: PMC4070642 DOI: 10.1186/1423-0127-21-56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/03/2014] [Indexed: 11/10/2022] Open
Abstract
Background Epigallocatechin-3-gallate (EGCG) has been documented for its beneficial effects protecting oxidative stress to cardiac cells. Previously, we have shown the EGCG-mediated cardiac protection by attenuating reactive oxygen species and cytosolic Ca2+ in cardiac cells during oxidative stress and myocardial ischemia. Here, we aimed to seek a deeper elucidation of the molecular anti-oxidative capabilities of EGCG in an H2O2-induced oxidative stress model of myocardial ischemia injury using H9c2 rat cardiomyoblasts. Results Proteomics analysis was used to determine the differential expression of proteins in H9c2 cells cultured in the conditions of control, 400 μM H2O2 exposure for 30 min with and/or without 10 to 20 μM EGCG pre-treatment. In this model, eight proteins associated with energy metabolism, mitochondrial electron transfer, redox regulation, signal transduction, and RNA binding were identified to take part in EGCG-ameliorating H2O2-induced injury in H9c2 cells. H2O2 exposure increased oxidative stress evidenced by increases in reactive oxygen species and cytosolic Ca2+ overload, increases in glycolytic protein, α-enolase, decreases in antioxidant protein, peroxiredoxin-4, as well as decreases in mitochondrial proteins, including aldehyde dehydrogenase-2, ornithine aminotransferase, and succinate dehydrogenase ubiquinone flavoprotein subunit. All of these effects were reversed by EGCG pre-treatment. In addition, EGCG attenuated the H2O2-induced increases of Type II inositol 3, 4-bisphosphate 4-phosphatase and relieved its subsequent inhibition of the downstream signalling for Akt and glycogen synthase kinase-3β (GSK-3β)/cyclin D1 in H9c2 cells. Pre-treatment with EGCG or GSK-3β inhibitor (SB 216763) significantly improved the H2O2-induced suppression on cell viability, phosphorylation of pAkt (S473) and pGSK-3β (S9), and level of cyclin D1 in cells. Conclusions Collectively, these findings suggest that EGCG blunts the H2O2-induced oxidative effect on the Akt activity through the modulation of PIP3 synthesis leading to the subsequent inactivation of GSK-3β mediated cardiac cell injury.
Collapse
Affiliation(s)
| | | | | | - Ban-Dar Hsu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | |
Collapse
|
12
|
Hsieh SR, Hsu CS, Lu CH, Chen WC, Chiu CH, Liou YM. Epigallocatechin-3-gallate-mediated cardioprotection by Akt/GSK-3β/caveolin signalling in H9c2 rat cardiomyoblasts. J Biomed Sci 2013; 20:86. [PMID: 24251870 PMCID: PMC3871020 DOI: 10.1186/1423-0127-20-86] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/18/2013] [Indexed: 12/30/2022] Open
Abstract
Background Epigallocatechin-3-gallate (EGCg) with its potent anti-oxidative capabilities is known for its beneficial effects ameliorating oxidative injury to cardiac cells. Although studies have provided convincing evidence to support the cardioprotective effects of EGCg, it remains unclear whether EGCg affect trans-membrane signalling in cardiac cells. Here, we have demonstrated the potential mechanism for cardioprotection of EGCg against H2O2-induced oxidative stress in H9c2 cardiomyoblasts. Results Exposing H9c2 cells to H2O2 suppressed cell viability and altered the expression of adherens and gap junction proteins with increased levels of intracellular reactive oxygen species and cytosolic Ca2+. These detrimental effects were attenuated by pre-treating cells with EGCg for 30 min. EGCg also attenuated H2O2-mediated cell cycle arrest at the G1-S phase through the glycogen synthase kinase-3β (GSK-3β)/β-catenin/cyclin D1 signalling pathway. To determine how EGCg targets H9c2 cells, enhanced green fluorescence protein (EGFP) was ectopically expressed in these cells. EGFP-emission fluorescence spectroscopy revealed that EGCg induced dose-dependent fluorescence changes in EGFP expressing cells, suggesting that EGCg signalling events might trigger proximity changes of EGFP expressed in these cells. Proteomics studies showed that EGFP formed complexes with the 67 kD laminin receptor, caveolin-1 and -3, β-actin, myosin 9, vimentin in EGFP expressing cells. Using in vitro oxidative stress and in vivo myocardial ischemia models, we also demonstrated the involvement of caveolin in EGCg-mediated cardioprotection. In addition, EGCg-mediated caveolin-1 activation was found to be modulated by Akt/GSK-3β signalling in H2O2-induced H9c2 cell injury. Conclusions Our data suggest that caveolin serves as a membrane raft that may help mediate cardioprotective EGCg transmembrane signalling.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
13
|
Zhang S, Myracle A, Xiao K, Yan P, Ye T, Janle E, Raftery D. Metabolic Profiling of Green Tea Treatments in Zucker Diabetic Rats Using 1H NMR. ACTA ACUST UNITED AC 2013; 3. [PMID: 28989811 DOI: 10.4172/2155-9600.1000239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study has investigated the metabolic effects of catechin-rich green tea (GT) and its formulation with ascorbic acid (AA) on the Zucker rat model of type 2 diabetes. AA is used to protect the GT catechins during digestion and increase bioavailability. Thirty two Zucker diabetic fatty (ZDF) rats were randomly divided into four groups (n=8 in each group) and treated with water, GT, AA and GT+AA respectively for five weeks. Urinary metabolic profiles were determined using 1H NMR spectroscopy. Fourteen metabolites were identified and their 24-hr excretions were quantified. Changes in the 14 metabolites demonstrated differential treatment effects on the metabolism of ZDF rats. GT and AA were found to be able to independently reduce urinary excretions of most metabolites that were over-excreted in the control diabetic rats, such as oxidative stress marker metabolites and TCA cycle metabolites. GT showed a great potential in controlling metabolic acidosis by suppressing the excretion of lactic acid and acetic acid from diabetic rats and GT+AA showed a remarkably stronger suppression than GT while AA was unable to suppress these two acids. Further investigation is needed to better understand the role of GT and/or formulated GT in altering the metabolic pathways in the diabetic animal model as well as in humans.
Collapse
Affiliation(s)
- Shucha Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA 02115, USA
| | - Angela Myracle
- Food Science and Human Nutrition, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA
| | - Ke Xiao
- Department of Statistics, University of California at Riverside, 900 University Ave, Riverside, CA 92521, USA
| | - Ping Yan
- Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Tao Ye
- Translational medicine, Biogen Idec Inc, 14 Cambridge Center, Cambridge, MA 02142, USA
| | - Elsa Janle
- Food and Nutrition, Purdue University, 700 West State Street, West Lafayette, IN 47907, USA
| | - Daniel Raftery
- Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center (MMC), University of Washington, 850 Republican Street, Seattle, Washington 98109, USA
| |
Collapse
|
14
|
Ding YF, Peng YR, Li J, Shen H, Shen MQ, Fang TH. Gualou Xiebai Decoction prevents myocardial fibrosis by blocking TGF-beta/Smad signalling. ACTA ACUST UNITED AC 2013; 65:1373-81. [PMID: 23927476 DOI: 10.1111/jphp.12102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/29/2013] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The present study is aimed to investigate the effect of Gualou Xiebai Decoction (GXD) ethanol extract on myocardial fibrosis and clarify the possible mechanism. METHODS Rats with ligated left anterior descending coronary artery were treated with GXD ethanol extract (1.14 g/kg, 2.27 g/kg, 4.53 g/kg) daily via gavage for 4 weeks. Histopathological changes and collagen distribution were evaluated by haematoxylin and eosin and Masson staining. The mRNA levels of Collagen I and Collagen III were detected by real-time PCR. The expressions of TGF-β1, TGFβ receptor (TGFβR)I, TGFβRII, P-Smad2/3 and Smad7 were determined by Western blot. RESULTS GXD treatment was significantly reduced the heart weight/body weight ratio (P < 0.05) as well as the left ventricle weight/body weight ratio (P < 0.05). It also significantly alleviated the degree of inflammation, decreased myocardial collagen volume fraction (P < 0.05 ∼ 0.01), together with markedly prevented the upregulations of Collagen I and Collagen III (P < 0.05 ∼ 0.01). Moreover, GXD downregulated expressions of TGF-β1, TGFβRI, TGFβRII, Smad2/3 whereas improved Smad7 expression in the myocardial fibrosis rats. CONCLUSIONS GXD ameliorates myocardial fibrosis induced by cardiac infarction with ligated left anterior descending coronary artery, the mechanism maybe involve in inhibiting the TGF-β1 signalling pathway.
Collapse
Affiliation(s)
- Yong-fang Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | | | | | |
Collapse
|
15
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
16
|
Liou YM, Hsieh SR, Wu TJ, Chen JY. Green tea extract given before regional myocardial ischemia-reperfusion in rats improves myocardial contractility by attenuating calcium overload. Pflugers Arch 2010; 460:1003-14. [PMID: 20922441 DOI: 10.1007/s00424-010-0881-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/06/2010] [Accepted: 09/09/2010] [Indexed: 01/03/2023]
Abstract
There is evidence for a negative correlation between green tea consumption and cardiovascular diseases. The aim of the present study was to examine whether green tea extract (GTE) given before regional myocardial ischemia could improve depression of myocardial contractility by preventing cytosolic Ca(2+) overload. Regional ischemia-reperfusion (IR) was induced in rats by ligating the left anterior descending branch for 20 min, then releasing the ligature. Ligation induced ventricular arrhythmias in rats without GTE pretreatment, but decreased arrhythmogenesis was seen in rats pretreated 30 min earlier with GTE (400 mg/kg). During reperfusion, arrhythmias only occurred during the initial 5 min, and GTE pretreatment had no effect. After overnight recovery, serum cTnI levels were greatly increased in control post-IR rats but only slightly elevated in GTE-pretreated post-IR rats. Myocardial contractility measured by echocardiography was still depressed after 3 days in control post-IR rats, but not in GTE-pretreated post-IR rats. No myocardial ischemic injury was seen in post-IR rats with or without GTE pretreatment. Using freshly isolated single heart myocytes, GTE was found to attenuate the post-IR injury-associated cytosolic Ca(2+) overload and modulate changes in the levels and distribution of myofibril, adherens junction, and gap junction proteins. In summary, GTE pretreatment protects cardiomyocytes from IR injury by preventing cytosolic Ca(2+) overload, myofibril disruption, and alterations in adherens and gap junction protein expression and distribution.
Collapse
Affiliation(s)
- Ying-Ming Liou
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan.
| | | | | | | |
Collapse
|
17
|
Qin B, Polansky MM, Harry D, Anderson RA. Green tea polyphenols improve cardiac muscle mRNA and protein levels of signal pathways related to insulin and lipid metabolism and inflammation in insulin-resistant rats. Mol Nutr Food Res 2010; 54 Suppl 1:S14-23. [PMID: 20112301 DOI: 10.1002/mnfr.200900306] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidemiological studies indicate that the consumption of green tea polyphenols (GTP) may reduce the risk of coronary artery disease. To explore the underlying mechanisms of action at the molecular level, we examined the effects of GTP on the cardiac mRNA and protein levels of genes involved in insulin and lipid metabolism and inflammation. In rats fed a high-fructose diet, supplementation with GTP (200 mg/kg BW daily dissolved in distilled water) for 6 wk, reduced systemic blood glucose, plasma insulin, retinol-binding protein 4, soluble CD36, cholesterol, triglycerides, free fatty acids and LDL-C levels, as well as the pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and IL-6. GTP did not affect food intake, bodyweight and heart weight. In the myocardium, GTP also increased the insulin receptor (Ir), insulin receptor substrate 1 and 2 (Irs1 and Irs2), phosphoinositide-3-kinase (Pi3k), v-akt murine thymoma viral oncogene homolog 1 (Akt1), glucose transporter 1 and 4 (Glut1 and Glut4) and glycogen synthase 1 (Gys1) expression but inhibited phosphatase and tensin homolog deleted on chromosome ten (Pten) expression and decreased glycogen synthase kinase 3beta (Gsk3beta) mRNA expression. The sterol regulatory element-binding protein-1c (Srebp1c) mRNA, microsomal triglyceride transfer protein (Mttp) mRNA and protein, Cd36 mRNA and cluster of differentiation 36 protein levels were decreased and peroxisome proliferator-activated receptor (Ppar)gamma mRNA levels were increased. GTP also decreased the inflammatory factors: Tnf, Il1b and Il6 mRNA levels, and enhanced the anti-inflammatory protein, zinc-finger protein, protein and mRNA expression. In summary, consumption of GTP ameliorated the detrimental effects of high-fructose diet on insulin signaling, lipid metabolism and inflammation in the cardiac muscle of rats.
Collapse
Affiliation(s)
- Bolin Qin
- Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705, USA
| | | | | | | |
Collapse
|