1
|
Ukachukwu CU, Jimenez-Vazquez EN, Jain A, Jones DK. hERG1 channel subunit composition mediates proton inhibition of rapid delayed rectifier potassium current (I Kr) in cardiomyocytes derived from hiPSCs. J Biol Chem 2023; 299:102778. [PMID: 36496073 PMCID: PMC9867984 DOI: 10.1016/j.jbc.2022.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
The voltage-gated channel, hERG1, conducts the rapid delayed rectifier potassium current (IKr) and is critical for human cardiac repolarization. Reduced IKr causes long QT syndrome and increases the risk for cardiac arrhythmia and sudden death. At least two subunits form functional hERG1 channels, hERG1a and hERG1b. Changes in hERG1a/1b abundance modulate IKr kinetics, magnitude, and drug sensitivity. Studies from native cardiac tissue suggest that hERG1 subunit abundance is dynamically regulated, but the impact of altered subunit abundance on IKr and its response to external stressors is not well understood. Here, we used a substrate-driven human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) maturation model to investigate how changes in relative hERG1a/1b subunit abundance impact the response of native IKr to extracellular acidosis, a known component of ischemic heart disease and sudden infant death syndrome. IKr recorded from immatured hiPSC-CMs displays a 2-fold greater inhibition by extracellular acidosis (pH 6.3) compared with matured hiPSC-CMs. Quantitative RT-PCR and immunocytochemistry demonstrated that hERG1a subunit mRNA and protein were upregulated and hERG1b subunit mRNA and protein were downregulated in matured hiPSC-CMs compared with immatured hiPSC-CMs. The shift in subunit abundance in matured hiPSC-CMs was accompanied by increased IKr. Silencing hERG1b's impact on native IKr kinetics by overexpressing a polypeptide identical to the hERG1a N-terminal Per-Arnt-Sim domain reduced the magnitude of IKr proton inhibition in immatured hiPSC-CMs to levels comparable to those observed in matured hiPSC-CMs. These data demonstrate that hERG1 subunit abundance is dynamically regulated and determines IKr proton sensitivity in hiPSC-CMs.
Collapse
Affiliation(s)
- Chiamaka U Ukachukwu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eric N Jimenez-Vazquez
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Abhilasha Jain
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David K Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Internal Medicine, University of Michigan Medical School.
| |
Collapse
|
2
|
Neuroblastoma SH-SY5Y Cell Differentiation to Mature Neuron by AM580 Treatment. Neurochem Res 2022; 47:3723-3732. [PMID: 36066699 DOI: 10.1007/s11064-022-03730-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
Neuroblastoma is a type of developmental childhood cancer that arises from the neural crest. It is the most common pediatric solid tumor in the world. AM580 is a powerful cyto-differentiating molecule on acute promyelocytic leukemia cells and induced pluripotent stem cells, but its effect on neuroblastoma is still unknown. In this study, the neuronal differentiation impact of AM580 was investigated using the human neuroblastoma cell line SH-SY5Y as a model. AM580 successfully stimulated the SH-SY5Y cells to develop into neuron-like cells. Functional enrichment analysis of RNAseq data revealed that differentially expressed genes (DEGs) were substantially enriched for GO keywords and KEGG pathways linked to neuron development. Some potassium ion channel genes associated with neuronal excitation, such as KCNT1, were shown to be upregulated. Through the MEA tests, we found the AM580-induced neurons possessed electrical spikes as mature neurons. AM580 also induced the neuronal marker β-tubulin III and mature neurons marker Neurofilament H. Our study proved that AM580 can promote the differentiation of neurons and has the potential to treat neuroblastoma, neurodevelopmental and neurodegenerative diseases.
Collapse
|
3
|
Lubberding AF, Juhl CR, Skovhøj EZ, Kanters JK, Mandrup‐Poulsen T, Torekov SS. Celebrities in the heart, strangers in the pancreatic beta cell: Voltage-gated potassium channels K v 7.1 and K v 11.1 bridge long QT syndrome with hyperinsulinaemia as well as type 2 diabetes. Acta Physiol (Oxf) 2022; 234:e13781. [PMID: 34990074 PMCID: PMC9286829 DOI: 10.1111/apha.13781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Voltage‐gated potassium (Kv) channels play an important role in the repolarization of a variety of excitable tissues, including in the cardiomyocyte and the pancreatic beta cell. Recently, individuals carrying loss‐of‐function (LoF) mutations in KCNQ1, encoding Kv7.1, and KCNH2 (hERG), encoding Kv11.1, were found to exhibit post‐prandial hyperinsulinaemia and episodes of hypoglycaemia. These LoF mutations also cause the cardiac disorder long QT syndrome (LQTS), which can be aggravated by hypoglycaemia. Interestingly, patients with LQTS also have a higher burden of diabetes compared to the background population, an apparent paradox in relation to the hyperinsulinaemic phenotype, and KCNQ1 has been identified as a type 2 diabetes risk gene. This review article summarizes the involvement of delayed rectifier K+ channels in pancreatic beta cell function, with emphasis on Kv7.1 and Kv11.1, using the cardiomyocyte for context. The functional and clinical consequences of LoF mutations and polymorphisms in these channels on blood glucose homeostasis are explored using evidence from pre‐clinical, clinical and genome‐wide association studies, thereby evaluating the link between LQTS, hyperinsulinaemia and type 2 diabetes.
Collapse
Affiliation(s)
- Anniek F. Lubberding
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Christian R. Juhl
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Emil Z. Skovhøj
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Thomas Mandrup‐Poulsen
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Signe S. Torekov
- Department of Biomedical Sciences Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| |
Collapse
|
4
|
Rodat-Despoix L, Chamlali M, Ouadid-Ahidouch H. Ion channels as key partners of cytoskeleton in cancer disease. Biochim Biophys Acta Rev Cancer 2021; 1876:188627. [PMID: 34520803 DOI: 10.1016/j.bbcan.2021.188627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
Several processes occur during tumor development including changes in cell morphology, a reorganization of the expression and distribution of the cytoskeleton proteins as well as ion channels. If cytoskeleton proteins and ion channels have been widely investigated in understanding cancer mechanisms, the interaction between these two elements and the identification of the associated signaling pathways are only beginning to emerge. In this review, we summarize the work published over the past 15 years relating to the roles played by ion channels in these mechanisms of reorganization of the cellular morphology, essential to metastatic dissemination, both through the physical interactions with elements of the cytoskeleton and by intracellular signaling pathways involved.
Collapse
Affiliation(s)
- Lise Rodat-Despoix
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France.
| | - Mohamed Chamlali
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Halima Ouadid-Ahidouch
- Laboratoire de Physiologie Cellulaire et Moléculaire (UR 4667), Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| |
Collapse
|
5
|
Gq-Coupled Muscarinic Receptor Enhancement of KCNQ2/3 Channels and Activation of TRPC Channels in Multimodal Control of Excitability in Dentate Gyrus Granule Cells. J Neurosci 2018; 39:1566-1587. [PMID: 30593498 DOI: 10.1523/jneurosci.1781-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/21/2022] Open
Abstract
KCNQ (Kv7, "M-type") K+ channels and TRPC (transient receptor potential, "canonical") cation channels are coupled to neuronal discharge properties and are regulated via Gq/11-protein-mediated signals. Stimulation of Gq/11-coupled receptors both consumes phosphatidylinositol 4,5-bisphosphate (PIP2) via phosphalipase Cβ hydrolysis and stimulates PIP2 synthesis via rises in Ca2+ i and other signals. Using brain-slice electrophysiology and Ca2+ imaging from male and female mice, we characterized threshold K+ currents in dentate gyrus granule cells (DGGCs) and CA1 pyramidal cells, the effects of Gq/11-coupled muscarinic M1 acetylcholine (M1R) stimulation on M current and on neuronal discharge properties, and elucidated the intracellular signaling mechanisms involved. We observed disparate signaling cascades between DGGCs and CA1 neurons. DGGCs displayed M1R enhancement of M-current, rather than suppression, due to stimulation of PIP2 synthesis, which was paralleled by increased PIP2-gated G-protein coupled inwardly rectifying K+ currents as well. Deficiency of KCNQ2-containing M-channels ablated the M1R-induced enhancement of M-current in DGGCs. Simultaneously, M1R stimulation in DGGCs induced robust increases in [Ca2+]i, mostly due to TRPC currents, consistent with, and contributing to, neuronal depolarization and hyperexcitability. CA1 neurons did not display such multimodal signaling, but rather M current was suppressed by M1R stimulation in these cells, similar to the previously described actions of M1R stimulation on M-current in peripheral ganglia that mostly involves PIP2 depletion. Therefore, these results point to a pleiotropic network of cholinergic signals that direct cell-type-specific, precise control of hippocampal function with strong implications for hyperexcitability and epilepsy.SIGNIFICANCE STATEMENT At the neuronal membrane, protein signaling cascades consisting of ion channels and metabotropic receptors govern the electrical properties and neurotransmission of neuronal networks. Muscarinic acetylcholine receptors are G-protein-coupled metabotropic receptors that control the excitability of neurons through regulating ion channels, intracellular Ca2+ signals, and other second-messenger cascades. We have illuminated previously unknown actions of muscarinic stimulation on the excitability of hippocampal principal neurons that include M channels, TRPC (transient receptor potential, "canonical") cation channels, and powerful regulation of lipid metabolism. Our results show that these signaling pathways, and mechanisms of excitability, are starkly distinct between peripheral ganglia and brain, and even between different principal neurons in the hippocampus.
Collapse
|
6
|
Gong Q, Stump MR, Zhou Z. Regulation of Kv11.1 potassium channel C-terminal isoform expression by the RNA-binding proteins HuR and HuD. J Biol Chem 2018; 293:19624-19632. [PMID: 30377250 DOI: 10.1074/jbc.ra118.003720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
The potassium voltage-gated channel subfamily H member 2 (KCNH2) gene encodes the Kv11.1 potassium channel, which conducts the rapidly activating delayed rectifier current in the heart. KCNH2 pre-mRNA undergoes alternative polyadenylation and forms a functional, full-length Kv11.1a isoform if exon 15 is polyadenylated or a nonfunctional, C-terminally truncated Kv11.1a-USO isoform if intron 9 is polyadenylated. The molecular mechanisms that regulate Kv11.1 isoform expression are poorly understood. In this study, using HEK293 cells and reporter gene expression, pulldown assays, and RNase protection assays, we identified the RNA-binding proteins Hu antigen R (HuR) and Hu antigen D (HuD) as regulators of Kv11.1 isoform expression. We show that HuR and HuD inhibit activity at the intron 9 polyadenylation site. When co-expressed with the KCNH2 gene, HuR and HuD increased levels of the Kv11.1a isoform and decreased the Kv11.1a-USO isoform in the RNase protection assays and immunoblot analyses. In patch clamp experiments, HuR and HuD significantly increased the Kv11.1 current. siRNA-mediated knockdown of HuR protein decreased levels of the Kv11.1a isoform and increased those of the Kv11.1a-USO isoform. Our findings suggest that the relative expression levels of Kv11.1 C-terminal isoforms are regulated by the RNA-binding HuR and HuD proteins.
Collapse
Affiliation(s)
- Qiuming Gong
- From the Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon 97239 and
| | - Matthew R Stump
- Department of Biology, George Fox University, Newberg, Oregon 97132
| | - Zhengfeng Zhou
- From the Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon 97239 and
| |
Collapse
|
7
|
Gong Q, Stump MR, Zhou Z. Upregulation of functional Kv11.1a isoform expression by modified U1 small nuclear RNA. Gene 2017; 641:220-225. [PMID: 29066300 DOI: 10.1016/j.gene.2017.10.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/04/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023]
Abstract
The KCNH2 or human ether-a go-go-related gene (hERG) encodes the Kv11.1 potassium channel that conducts the rapidly activating delayed rectifier potassium current in the heart. The expression of Kv11.1 C-terminal isoforms is directed by the alternative splicing and polyadenylation of intron 9. Splicing of intron 9 leads to the formation of a functional, full-length Kv11.1a isoform and polyadenylation of intron 9 results in the production of a non-functional, C-terminally truncated Kv11.1a-USO isoform. The relative expression of Kv11.1a and Kv11.1a-USO plays an important role in regulating Kv11.1 channel function. In the heart, only one-third of KCNH2 pre-mRNA is processed to Kv11.1a due to the weak 5' splice site of intron 9. We previously showed that the weak 5' splice site is caused by sequence deviation from the consensus, and that mutations toward the consensus sequence increased the efficiency of intron 9 splicing. It is well established that 5' splice sites are recognized by complementary base-paring with U1 small nuclear RNA (U1 snRNA). In this study, we modified the sequence of U1 snRNA to increase its complementarity to the 5' splice site of KCNH2 intron 9 and observed a significant increase in the efficiency of intron 9 splicing. RNase protection assay and western blot analysis showed that modified U1 snRNA increased the expression of the functional Kv11.1a isoform and concomitantly decreased the expression of the non-functional Kv11.1a-USO isoform. In patch-clamp experiments, modified U1 snRNA significantly increased Kv11.1 current. Our findings suggest that relative expression of Kv11.1 C-terminal isoforms can be regulated by modified U1 snRNA.
Collapse
Affiliation(s)
- Qiuming Gong
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Matthew R Stump
- Department of Biology, George Fox University, Newberg, OR, United States
| | - Zhengfeng Zhou
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
8
|
The KCNH2 -IVS9-28A/G mutation causes aberrant isoform expression and hERG trafficking defect in cardiomyocytes derived from patients affected by Long QT Syndrome type 2. Int J Cardiol 2017; 240:367-371. [DOI: 10.1016/j.ijcard.2017.04.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 11/22/2022]
|
9
|
Kanters JK, Skibsbye L, Hedley PL, Dembic M, Liang B, Hagen CM, Eschen O, Grunnet M, Christiansen M, Jespersen T. Combined gating and trafficking defect in Kv11.1 manifests as a malignant long QT syndrome phenotype in a large Danish p.F29L founder family. Scandinavian Journal of Clinical and Laboratory Investigation 2015; 75:699-709. [PMID: 26403377 DOI: 10.3109/00365513.2015.1091090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Congenital long QT syndrome (LQTS) is a hereditary cardiac channelopathy characterized by delayed ventricular repolarization, syncope, torsades de pointes and sudden cardiac death. Thirty-three members of five apparently 'unrelated' Danish families carry the KCNH2:c.87C> A; p.F29L founder mutation. METHODS AND RESULTS Linkage disequilibrium mapping with microsatellites around KCNH2 enabled us to estimate the age of the founder mutation to be approximately 22 generations, corresponding to around 550 years. Neighbouring-Joining analysis disclosed one early and three later nodes. The median QTc time of the carriers was 490 ms (range: 415-589 ms) and no difference was seen between the different branches of the family. The mutation is malignant with a penetrance of 73%. Ten F29L carriers received implantable defibrillators (ICDs) (median age at implant 20 years), and of those four individuals experienced eight appropriate shocks. Patch-clamp analysis in HEK 293 cells, performed at 34°C disclosed a loss-of-function phenotype with fast deactivation, reduced steady-state inactivation current density and a positive voltage shift in inactivation. Western blotting of HEK 293 cells transfected with KCNH2:WT and KCNH2:c.87C> A revealed a reduced fraction of fully glycosylated hERG:p.F29L suggesting that this mutation results in defective trafficking. CONCLUSION The altered channel gating kinetics in combination with defective trafficking of mutated channels is expected to result in reduced repolarizing current density and, thus, a LQTS phenotype.
Collapse
Affiliation(s)
- Jørgen K Kanters
- a Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences , University of Copenhagen , Denmark.,b Department of Cardiology , Herlev and Gentofte Hospitals , Denmark
| | - Lasse Skibsbye
- a Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences , University of Copenhagen , Denmark
| | - Paula L Hedley
- c Department for Congenital Disorders , Statens Serum Institut , Denmark.,d MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University , Aarhus , Denmark
| | - Maja Dembic
- a Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences , University of Copenhagen , Denmark.,c Department for Congenital Disorders , Statens Serum Institut , Denmark
| | - Bo Liang
- a Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences , University of Copenhagen , Denmark
| | - Christian M Hagen
- a Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences , University of Copenhagen , Denmark.,c Department for Congenital Disorders , Statens Serum Institut , Denmark
| | - Ole Eschen
- e Department of Cardiology , Center for Cardiovascular Research, Aalborg Sygehus, Aarhus University Hospital , Aarhus , Denmark
| | - Morten Grunnet
- a Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences , University of Copenhagen , Denmark
| | - Michael Christiansen
- a Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences , University of Copenhagen , Denmark.,c Department for Congenital Disorders , Statens Serum Institut , Denmark
| | - Thomas Jespersen
- a Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences , University of Copenhagen , Denmark
| |
Collapse
|
10
|
Pedersen PJ, Thomsen KB, Olander ER, Hauser F, Tejada MDLA, Poulsen KL, Grubb S, Buhl R, Calloe K, Klaerke DA. Molecular Cloning and Functional Expression of the Equine K+ Channel KV11.1 (Ether à Go-Go-Related/KCNH2 Gene) and the Regulatory Subunit KCNE2 from Equine Myocardium. PLoS One 2015; 10:e0138320. [PMID: 26376488 PMCID: PMC4574097 DOI: 10.1371/journal.pone.0138320] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/28/2015] [Indexed: 11/18/2022] Open
Abstract
The KCNH2 and KCNE2 genes encode the cardiac voltage-gated K+ channel KV11.1 and its auxiliary β subunit KCNE2. KV11.1 is critical for repolarization of the cardiac action potential. In humans, mutations or drug therapy affecting the KV11.1 channel are associated with prolongation of the QT intervals on the ECG and increased risk of ventricular tachyarrhythmia and sudden cardiac death—conditions known as congenital or acquired Long QT syndrome (LQTS), respectively. In horses, sudden, unexplained deaths are a well-known problem. We sequenced the cDNA of the KCNH2 and KCNE2 genes using RACE and conventional PCR on mRNA purified from equine myocardial tissue. Equine KV11.1 and KCNE2 cDNA had a high homology to human genes (93 and 88%, respectively). Equine and human KV11.1 and KV11.1/KCNE2 were expressed in Xenopus laevis oocytes and investigated by two-electrode voltage-clamp. Equine KV11.1 currents were larger compared to human KV11.1, and the voltage dependence of activation was shifted to more negative values with V1/2 = -14.2±1.1 mV and -17.3±0.7, respectively. The onset of inactivation was slower for equine KV11.1 compared to the human homolog. These differences in kinetics may account for the larger amplitude of the equine current. Furthermore, the equine KV11.1 channel was susceptible to pharmacological block with terfenadine. The physiological importance of KV11.1 was investigated in equine right ventricular wedge preparations. Terfenadine prolonged action potential duration and the effect was most pronounced at slow pacing. In conclusion, these findings indicate that horses could be disposed to both congenital and acquired LQTS.
Collapse
Affiliation(s)
- Philip Juul Pedersen
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kirsten Brolin Thomsen
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Emma Rie Olander
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Frank Hauser
- Center for Functional and Comparative Insect Genomics, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maria de los Angeles Tejada
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kristian Lundgaard Poulsen
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Soren Grubb
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rikke Buhl
- Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kirstine Calloe
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| | - Dan Arne Klaerke
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
11
|
Abstract
SIGNIFICANCE Voltage-gated K+ channels are a large family of K+-selective ion channel protein complexes that open on membrane depolarization. These K+ channels are expressed in diverse tissues and their function is vital for numerous physiological processes, in particular of neurons and muscle cells. Potentially reversible oxidative regulation of voltage-gated K+ channels by reactive species such as reactive oxygen species (ROS) represents a contributing mechanism of normal cellular plasticity and may play important roles in diverse pathologies including neurodegenerative diseases. RECENT ADVANCES Studies using various protocols of oxidative modification, site-directed mutagenesis, and structural and kinetic modeling provide a broader phenomenology and emerging mechanistic insights. CRITICAL ISSUES Physicochemical mechanisms of the functional consequences of oxidative modifications of voltage-gated K+ channels are only beginning to be revealed. In vivo documentation of oxidative modifications of specific amino-acid residues of various voltage-gated K+ channel proteins, including the target specificity issue, is largely absent. FUTURE DIRECTIONS High-resolution chemical and proteomic analysis of ion channel proteins with respect to oxidative modification combined with ongoing studies on channel structure and function will provide a better understanding of how the function of voltage-gated K+ channels is tuned by ROS and the corresponding reducing enzymes to meet cellular needs.
Collapse
Affiliation(s)
- Nirakar Sahoo
- 1 Department of Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena and Jena University Hospital , Jena, Germany
| | | | | |
Collapse
|
12
|
Gong Q, Stump MR, Deng V, Zhang L, Zhou Z. Identification of Kv11.1 isoform switch as a novel pathogenic mechanism of long-QT syndrome. ACTA ACUST UNITED AC 2014; 7:482-90. [PMID: 25028483 DOI: 10.1161/circgenetics.114.000586] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The KCNH2 gene encodes the Kv11.1 potassium channel that conducts the rapidly activating delayed rectifier current in the heart. The relative expression of the full-length Kv11.1a isoform and the C-terminally truncated Kv11.1a-USO isoform plays an important role in regulation of channel function. The formation of C-terminal isoforms is determined by competition between the splicing and alternative polyadenylation of KCNH2 intron 9. It is not known whether changes in the relative expression of Kv11.1a and Kv11.1a-USO can cause long-QT syndrome. METHODS AND RESULTS We identified a novel KCNH2 splice site mutation in a large family. The mutation, IVS9-2delA, is a deletion of the A in the AG dinucleotide of the 3' acceptor site of intron 9. We designed an intron-containing full-length KCNH2 gene construct to study the effects of the mutation on the relative expression of Kv11.1a and Kv11.1a-USO at the mRNA, protein, and functional levels. We found that this mutation disrupted normal splicing and resulted in exclusive polyadenylation of intron 9, leading to a switch from the functional Kv11.1a to the nonfunctional Kv11.1a-USO isoform in HEK293 cells and HL-1 cardiomyocytes. We also showed that IVS9-2delA caused isoform switch in the mutant allele of mRNA isolated from patient lymphocytes. CONCLUSIONS Our findings indicate that the IVS9-2delA mutation causes a switch in the expression of the functional Kv11.1a isoform to the nonfunctional Kv11.1a-USO isoform. Kv11.1 isoform switch represents a novel mechanism in the pathogenesis of long-QT syndrome.
Collapse
Affiliation(s)
- Qiuming Gong
- From the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR (Q.G., M.R.S., V.D., Z.Z.); and Lankenau Institute for Medical Research and Lankenau Medical Center, Jefferson Medical College, Philadelphia, PA (L.Z.)
| | - Matthew R Stump
- From the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR (Q.G., M.R.S., V.D., Z.Z.); and Lankenau Institute for Medical Research and Lankenau Medical Center, Jefferson Medical College, Philadelphia, PA (L.Z.)
| | - Vivianne Deng
- From the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR (Q.G., M.R.S., V.D., Z.Z.); and Lankenau Institute for Medical Research and Lankenau Medical Center, Jefferson Medical College, Philadelphia, PA (L.Z.)
| | - Li Zhang
- From the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR (Q.G., M.R.S., V.D., Z.Z.); and Lankenau Institute for Medical Research and Lankenau Medical Center, Jefferson Medical College, Philadelphia, PA (L.Z.)
| | - Zhengfeng Zhou
- From the Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR (Q.G., M.R.S., V.D., Z.Z.); and Lankenau Institute for Medical Research and Lankenau Medical Center, Jefferson Medical College, Philadelphia, PA (L.Z.).
| |
Collapse
|
13
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
14
|
He FZ, McLeod HL, Zhang W. Current pharmacogenomic studies on hERG potassium channels. Trends Mol Med 2013; 19:227-38. [PMID: 23369369 DOI: 10.1016/j.molmed.2012.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/18/2012] [Accepted: 12/27/2012] [Indexed: 11/25/2022]
Abstract
Genetic polymorphisms in human ether-a-go-go-related gene (hERG) potassium channels are associated with many complex diseases and sensitivity to channel-related drugs. Genotypes may underlie different sensitivities to the same drug, and different drugs selectively repair the functional deficits caused by individual mutations. In fact, not all drugs that block hERG function have adverse effects as previously thought. This suggests that the severe adverse reactions observed clinically may only occur in subjects with a particular genotype, but to others may be safe. Similarly, a drug that is ineffective in one population may be both safe and effective in another. Therefore, detecting polymorphisms in KCNH2 encoding hERG1 is of great significance in guiding the prevention and treatment of related diseases, re-evaluating drug safety, and individualizing treatment. This article reviews current pharmacogenomic studies on hERG potassium channels to provide a reference for developing individualized treatments and evaluating their safety.
Collapse
Affiliation(s)
- Fa-Zhong He
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, PR China
| | | | | |
Collapse
|
15
|
Cheng H, Zhang Y, Du C, Dempsey CE, Hancox JC. High potency inhibition of hERG potassium channels by the sodium-calcium exchange inhibitor KB-R7943. Br J Pharmacol 2012; 165:2260-73. [PMID: 21950687 DOI: 10.1111/j.1476-5381.2011.01688.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE KB-R7943 is an isothiourea derivative that is used widely as a pharmacological inhibitor of sodium-calcium exchange (NCX) in experiments on cardiac and other tissue types. This study investigated KB-R7943 inhibition of hERG (human ether-à-go-go-related gene) K(+) channels that underpin the cardiac rapid delayed rectifier potassium current, I(Kr) . EXPERIMENTAL APPROACH Whole-cell patch-clamp measurements were made of hERG current (I(hERG) ) carried by wild-type or mutant hERG channels and of native rabbit ventricular I(Kr) . Docking simulations utilized a hERG homology model built on a MthK-based template. KEY RESULTS KB-R7943 inhibited both I(hERG) and native I(Kr) rapidly on membrane depolarization with IC(50) values of ∼89 and ∼120 nM, respectively, for current tails at -40 mV following depolarizing voltage commands to +20 mV. Marked I(hERG) inhibition also occurred under ventricular action potential voltage clamp. I(hERG) inhibition by KB-R7943 exhibited both time- and voltage-dependence but showed no preference for inactivated over activated channels. Results of alanine mutagenesis and docking simulations indicate that KB-R7943 can bind to a pocket formed of the side chains of aromatic residues Y652 and F656, with the compound's nitrobenzyl group orientated towards the cytoplasmic side of the channel pore. The structurally related NCX inhibitor SN-6 also inhibited I(hERG) , but with a markedly reduced potency. CONCLUSIONS AND IMPLICATIONS KB-R7943 inhibits I(hERG) /I(Kr) with a potency that exceeds that reported previously for acute cardiac NCX inhibition. Our results also support the feasibility of benzyloxyphenyl-containing NCX inhibitors with reduced potential, in comparison with KB-R7943, to inhibit hERG.
Collapse
|
16
|
Du C, El Harchi A, McPate M, Orchard C, Hancox J. Enhanced inhibitory effect of acidosis on hERG potassium channels that incorporate the hERG1b isoform. Biochem Biophys Res Commun 2011; 405:222-7. [DOI: 10.1016/j.bbrc.2011.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
17
|
Gong Q, Stump MR, Dunn AR, Deng V, Zhou Z. Alternative splicing and polyadenylation contribute to the generation of hERG1 C-terminal isoforms. J Biol Chem 2010; 285:32233-41. [PMID: 20693282 DOI: 10.1074/jbc.m109.095695] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit of the rapidly activating delayed rectifier potassium channel. Several hERG1 isoforms with different N- and C-terminal ends have been identified. The hERG1a, hERG1b, and hERG1-3.1 isoforms contain the full-length C terminus, whereas the hERG1(USO) isoforms, hERG1a(USO) and hERG1b(USO), lack most of the C-terminal domain and contain a unique C-terminal end. The mechanisms underlying the generation of hERG1(USO) isoforms are not understood. We show that hERG1 isoforms with different C-terminal ends are generated by alternative splicing and polyadenylation of hERG1 pre-mRNA. We identified an intrinsically weak, noncanonical poly(A) signal, AGUAAA, within intron 9 of hERG1 that modulates the expression of hERG1a and hERG1a(USO). Replacing AGUAAA with the strong, canonical poly(A) signal AAUAAA resulted in the predominant production of hERG1a(USO) and a marked decrease in hERG1 current. In contrast, eliminating the intron 9 poly(A) signal or increasing the strength of 5' splice site led to the predominant production of hERG1a and a significant increase in hERG1 current. We found significant variation in the relative abundance of hERG1 C-terminal isoforms in different human tissues. Taken together, these findings suggest that post-transcriptional regulation of hERG1 pre-mRNA may represent a novel mechanism to modulate the expression and function of hERG1 channels.
Collapse
Affiliation(s)
- Qiuming Gong
- Division of Cardiovascular Medicine, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|