• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4625217)   Today's Articles (2459)   Subscriber (49479)
For: Cui G, Song B, Turki HW, McCarty NA. Differential contribution of TM6 and TM12 to the pore of CFTR identified by three sulfonylurea-based blockers. Pflugers Arch 2011;463:405-18. [PMID: 22160394 DOI: 10.1007/s00424-011-1035-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 09/14/2011] [Accepted: 09/30/2011] [Indexed: 02/06/2023]
Number Cited by Other Article(s)
1
Chidrawar V, Alsuwayt B. Defining the role of CFTR channel blocker and ClC-2 activator in DNBS induced gastrointestinal inflammation. Saudi Pharm J 2021;29:291-304. [PMID: 33994824 PMCID: PMC8093574 DOI: 10.1016/j.jsps.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/22/2021] [Indexed: 11/27/2022]  Open
2
Linsdell P. On the relationship between anion binding and chloride conductance in the CFTR anion channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021;1863:183558. [PMID: 33444622 DOI: 10.1016/j.bbamem.2021.183558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022]
3
de Jonge HR, Ardelean MC, Bijvelds MJC, Vergani P. Strategies for cystic fibrosis transmembrane conductance regulator inhibition: from molecular mechanisms to treatment for secretory diarrhoeas. FEBS Lett 2020;594:4085-4108. [PMID: 33113586 PMCID: PMC7756540 DOI: 10.1002/1873-3468.13971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
4
Cui G, Hong J, Chung-Davidson YW, Infield D, Xu X, Li J, Simhaev L, Khazanov N, Stauffer B, Imhoff B, Cottrill K, Blalock JE, Li W, Senderowitz H, Sorscher E, McCarty NA, Gaggar A. An Ancient CFTR Ortholog Informs Molecular Evolution in ABC Transporters. Dev Cell 2019;51:421-430.e3. [PMID: 31679858 DOI: 10.1016/j.devcel.2019.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/30/2019] [Accepted: 09/24/2019] [Indexed: 01/13/2023]
5
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019;99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]  Open
6
Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol 2018;150:539-570. [PMID: 29581173 PMCID: PMC5881446 DOI: 10.1085/jgp.201711946] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/05/2018] [Indexed: 12/18/2022]  Open
7
Stauffer BB, Cui G, Cottrill KA, Infield DT, McCarty NA. Bacterial Sphingomyelinase is a State-Dependent Inhibitor of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Sci Rep 2017;7:2931. [PMID: 28592822 PMCID: PMC5462758 DOI: 10.1038/s41598-017-03103-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/24/2017] [Indexed: 02/07/2023]  Open
8
Callebaut I, Hoffmann B, Lehn P, Mornon JP. Molecular modelling and molecular dynamics of CFTR. Cell Mol Life Sci 2017;74:3-22. [PMID: 27717958 PMCID: PMC11107702 DOI: 10.1007/s00018-016-2385-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
9
Linsdell P. Architecture and functional properties of the CFTR channel pore. Cell Mol Life Sci 2017;74:67-83. [PMID: 27699452 PMCID: PMC11107662 DOI: 10.1007/s00018-016-2389-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/12/2022]
10
Cui G, Khazanov N, Stauffer BB, Infield DT, Imhoff BR, Senderowitz H, McCarty NA. Potentiators exert distinct effects on human, murine, and Xenopus CFTR. Am J Physiol Lung Cell Mol Physiol 2016;311:L192-207. [PMID: 27288484 DOI: 10.1152/ajplung.00056.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/03/2016] [Indexed: 01/14/2023]  Open
11
Zwick M, Esposito C, Hellstern M, Seelig A. How Phosphorylation and ATPase Activity Regulate Anion Flux though the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR). J Biol Chem 2016;291:14483-98. [PMID: 27226582 DOI: 10.1074/jbc.m116.721415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/25/2023]  Open
12
Qian F, Liu L, Liu Z, Lu C. The pore architecture of the cystic fibrosis transmembrane conductance regulator channel revealed by co-mutation in pore-forming transmembrane regions. Physiol Res 2016;65:505-15. [PMID: 27070741 DOI: 10.33549/physiolres.933143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]  Open
13
Chidrawar VR. Exploiting the role of various types of ion-channels against chemically induced inflammatory bowel disease in male Wistar rats. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(15)60992-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
14
Infield DT, Cui G, Kuang C, McCarty NA. Positioning of extracellular loop 1 affects pore gating of the cystic fibrosis transmembrane conductance regulator. Am J Physiol Lung Cell Mol Physiol 2015;310:L403-14. [PMID: 26684250 DOI: 10.1152/ajplung.00259.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023]  Open
15
Wei S, Roessler BC, Icyuz M, Chauvet S, Tao B, Hartman JL, Kirk KL. Long-range coupling between the extracellular gates and the intracellular ATP binding domains of multidrug resistance protein pumps and cystic fibrosis transmembrane conductance regulator channels. FASEB J 2015;30:1247-62. [PMID: 26606940 DOI: 10.1096/fj.15-278382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022]
16
Cui G, McCarty NA. Murine and human CFTR exhibit different sensitivities to CFTR potentiators. Am J Physiol Lung Cell Mol Physiol 2015. [PMID: 26209275 DOI: 10.1152/ajplung.00181.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]  Open
17
Zhang J, Hwang TC. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway. Biochemistry 2015;54:3839-50. [PMID: 26024338 DOI: 10.1021/acs.biochem.5b00427] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
18
Mornon JP, Hoffmann B, Jonic S, Lehn P, Callebaut I. Full-open and closed CFTR channels, with lateral tunnels from the cytoplasm and an alternative position of the F508 region, as revealed by molecular dynamics. Cell Mol Life Sci 2015;72:1377-403. [PMID: 25287046 PMCID: PMC11113974 DOI: 10.1007/s00018-014-1749-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
19
Al-Zahrani A, Cant N, Kargas V, Rimington T, Aleksandrov L, R. Riordan J, C. Ford R. Structure of the cystic fibrosis transmembrane conductance regulator in the inward-facing conformation revealed by single particle electron microscopy. AIMS BIOPHYSICS 2015. [DOI: 10.3934/biophy.2015.2.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
20
Qian F, Li T, Yang F, Liu L. Stoichiometry and novel gating mechanism within the cystic fibrosis transmembrane conductance regulator channel. Exp Physiol 2014;99:1611-23. [DOI: 10.1113/expphysiol.2014.081034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
21
Ju M, Scott-Ward TS, Liu J, Khuituan P, Li H, Cai Z, Husbands SM, Sheppard DN. Loop diuretics are open-channel blockers of the cystic fibrosis transmembrane conductance regulator with distinct kinetics. Br J Pharmacol 2014;171:265-78. [PMID: 24117047 DOI: 10.1111/bph.12458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/21/2013] [Accepted: 09/26/2013] [Indexed: 12/26/2022]  Open
22
Cui G, Rahman KS, Infield DT, Kuang C, Prince CZ, McCarty NA. Three charged amino acids in extracellular loop 1 are involved in maintaining the outer pore architecture of CFTR. ACTA ACUST UNITED AC 2014;144:159-79. [PMID: 25024266 PMCID: PMC4113900 DOI: 10.1085/jgp.201311122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
23
Linsdell P. Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance. World J Biol Chem 2014;5:26-39. [PMID: 24600512 PMCID: PMC3942540 DOI: 10.4331/wjbc.v5.i1.26] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/15/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023]  Open
24
Linsdell P. Functional architecture of the CFTR chloride channel. Mol Membr Biol 2013;31:1-16. [PMID: 24341413 DOI: 10.3109/09687688.2013.868055] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
25
Cai Z, Li H, Chen JH, Sheppard DN. Acute inhibition of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel by thyroid hormones involves multiple mechanisms. Am J Physiol Cell Physiol 2013;305:C817-28. [PMID: 23784545 PMCID: PMC3798681 DOI: 10.1152/ajpcell.00052.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 06/17/2013] [Indexed: 11/22/2022]
26
Rahman KS, Cui G, Harvey SC, McCarty NA. Modeling the conformational changes underlying channel opening in CFTR. PLoS One 2013;8:e74574. [PMID: 24086355 PMCID: PMC3785483 DOI: 10.1371/journal.pone.0074574] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 08/05/2013] [Indexed: 12/22/2022]  Open
27
Loo TW, Bartlett MC, Clarke DM. Corrector VX-809 stabilizes the first transmembrane domain of CFTR. Biochem Pharmacol 2013;86:612-9. [DOI: 10.1016/j.bcp.2013.06.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022]
28
Wang W, El Hiani Y, Rubaiy HN, Linsdell P. Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflugers Arch 2013;466:477-90. [PMID: 23955087 DOI: 10.1007/s00424-013-1317-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 12/16/2022]
29
Cui G, Freeman CS, Knotts T, Prince CZ, Kuang C, McCarty NA. Two salt bridges differentially contribute to the maintenance of cystic fibrosis transmembrane conductance regulator (CFTR) channel function. J Biol Chem 2013;288:20758-67. [PMID: 23709221 DOI: 10.1074/jbc.m113.476226] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]  Open
30
Norimatsu Y, Ivetac A, Alexander C, O'Donnell N, Frye L, Sansom MSP, Dawson DC. Locating a plausible binding site for an open-channel blocker, GlyH-101, in the pore of the cystic fibrosis transmembrane conductance regulator. Mol Pharmacol 2012;82:1042-55. [PMID: 22923500 DOI: 10.1124/mol.112.080267] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA