1
|
Bhatt M, Di Iacovo A, Romanazzi T, Roseti C, Cinquetti R, Bossi E. The "www" of Xenopus laevis Oocytes: The Why, When, What of Xenopus laevis Oocytes in Membrane Transporters Research. MEMBRANES 2022; 12:membranes12100927. [PMID: 36295686 PMCID: PMC9610376 DOI: 10.3390/membranes12100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 05/16/2023]
Abstract
After 50 years, the heterologous expression of proteins in Xenopus laevis oocytes is still essential in many research fields. New approaches and revised protocols, but also classical methods, such as the two-electrode voltage clamp, are applied in studying membrane transporters. New and old methods for investigating the activity and the expression of Solute Carriers (SLC) are reviewed, and the kinds of experiment that are still useful to perform with this kind of cell are reported. Xenopus laevis oocytes at the full-grown stage have a highly efficient biosynthetic apparatus that correctly targets functional proteins at the defined compartment. This small protein factory can produce, fold, and localize almost any kind of wild-type or recombinant protein; some tricks are required to obtain high expression and to verify the functionality. The methodologies examined here are mainly related to research in the field of membrane transporters. This work is certainly not exhaustive; it has been carried out to be helpful to researchers who want to quickly find suggestions and detailed indications when investigating the functionality and expression of the different members of the solute carrier families.
Collapse
Affiliation(s)
- Manan Bhatt
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Experimental and Translational Medicine, University of Insubria, Via Ottorino Rossi 9, 21100 Varese, Italy
| | - Angela Di Iacovo
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Experimental and Translational Medicine, University of Insubria, Via Ottorino Rossi 9, 21100 Varese, Italy
| | - Tiziana Romanazzi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Experimental and Translational Medicine, University of Insubria, Via Ottorino Rossi 9, 21100 Varese, Italy
| | - Cristina Roseti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Centre for Neuroscience—Via Manara 7, University of Insubria, 21052 Busto Arsizio, Italy
| | - Raffaella Cinquetti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Centre for Neuroscience—Via Manara 7, University of Insubria, 21052 Busto Arsizio, Italy
- Correspondence:
| |
Collapse
|
2
|
Vacca F, Gomes AS, Murashita K, Cinquetti R, Roseti C, Barca A, Rønnestad I, Verri T, Bossi E. Functional characterization of Atlantic salmon (Salmo salar L.) PepT2 transporters. J Physiol 2022; 600:2377-2400. [PMID: 35413133 PMCID: PMC9321897 DOI: 10.1113/jp282781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/16/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract The high‐affinity/low‐capacity system Slc15a2 (PepT2) is responsible for the reuptake of di/tripeptides from the renal proximal tubule, but it also operates in many other tissues and organs. Information regarding PepT2 in teleost fish is limited and, to date, functional data are available from the zebrafish (Danio rerio) only. Here, we report the identification of two slc15a2 genes in the Atlantic salmon (Salmo salar) genome, namely slc15a2a and slc15a2b. The two encoded PepT2 proteins share 87% identity and resemble both structurally and functionally the canonical vertebrate PepT2 system. The mRNA tissue distribution analyses reveal a widespread distribution of slc15a2a transcripts, being more abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and the distal part of the gastrointestinal tract. The function of the two transporters was investigated by heterologous expression in Xenopus laevis oocytes and two‐electrode voltage‐clamp recordings of transport and presteady‐state currents. Both PepT2a and PepT2b in the presence of Gly‐Gln elicit pH‐dependent and Na+ independent inward currents. The biophysical and kinetic analysis of the recorded currents defined the transport properties, confirming that the two Atlantic salmon PepT2 proteins behave as high‐affinity/low‐capacity transporters. The recent structures and the previous kinetic schemes of rat and human PepT2 qualitatively account for the characteristics of the two Atlantic salmon proteins. This study is the first to report on the functional expression of two PepT2‐type transporters that operate in the same vertebrate organism as a result of (a) gene duplication process(es). Key points Two slc15a2‐type genes, slc15a2a and slc15a2b coding for PepT2‐type peptide transporters were found in the Atlantic salmon. slc15a2a
transcripts, widely distributed in the fish tissues, are abundant in the brain and gills, while slc15a2b transcripts are mainly expressed in the kidney and distal gastrointestinal tract. Amino acids involved in vertebrate Slc15 transport function are conserved in PepT2a and PepT2b proteins. Detailed kinetic analysis indicates that both PepT2a and PepT2b operate as high‐affinity transporters. The kinetic schemes and structures proposed for the mammalian models of PepT2 are suitable to explain the function of the two Atlantic salmon transporters.
Collapse
Affiliation(s)
- Francesca Vacca
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Po. Box 7803, Bergen, NO-5020, Norway
| | - Koji Murashita
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Minami-ise, Mie, 516-0193, Japan
| | - Raffella Cinquetti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| | - Cristina Roseti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| | - Amilcare Barca
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, Lecce, I-73100, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Po. Box 7803, Bergen, NO-5020, Norway
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, Lecce, I-73100, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, via Dunant 3, Varese, I-21100, Italy
| |
Collapse
|
3
|
Vacca F, Barca A, Gomes AS, Mazzei A, Piccinni B, Cinquetti R, Del Vecchio G, Romano A, Rønnestad I, Bossi E, Verri T. The peptide transporter 1a of the zebrafish Danio rerio, an emerging model in nutrigenomics and nutrition research: molecular characterization, functional properties, and expression analysis. GENES AND NUTRITION 2019; 14:33. [PMID: 31890051 PMCID: PMC6923934 DOI: 10.1186/s12263-019-0657-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
Background Peptide transporter 1 (PepT1, alias Slc15a1) mediates the uptake of dietary di/tripeptides in all vertebrates. However, in teleost fish, more than one PepT1-type transporter might function, due to specific whole genome duplication event(s) that occurred during their evolution leading to a more complex paralogue gene repertoire than in higher vertebrates (tetrapods). Results Here, we describe a novel di/tripeptide transporter in the zebrafish (Danio rerio), i.e., the zebrafish peptide transporter 1a (PepT1a; also known as Solute carrier family 15 member a1, Slc15a1a), which is a paralogue (78% similarity, 62% identity at the amino acid level) of the previously described zebrafish peptide transporter 1b (PepT1b, alias PepT1; also known as Solute carrier family 15 member 1b, Slc15a1b). Also, we report a basic analysis of the pept1a (slc15a1a) mRNA expression levels in zebrafish adult tissues/organs and embryonic/early larval developmental stages. As assessed by expression in Xenopus laevis oocytes and two-electrode voltage clamp measurements, zebrafish PepT1a, as PepT1b, is electrogenic, Na+-independent, and pH-dependent and functions as a low-affinity system, with K0.5 values for Gly-Gln at − 60 mV of 6.92 mmol/L at pH 7.6 and 0.24 mmol/L at pH 6.5 and at − 120 mV of 3.61 mmol/L at pH 7.6 and 0.45 mmol/L at pH 6.5. Zebrafish pept1a mRNA is highly expressed in the intestine and ovary of the adult fish, while its expression in early development undergoes a complex trend over time, with pept1a mRNA being detected 1 and 2 days post-fertilization (dpf), possibly due to its occurrence in the RNA maternal pool, decreasing at 3 dpf (~ 0.5-fold) and increasing above the 1–2 dpf levels at 4 to 7 dpf, with a peak (~ 7-fold) at 6 dpf. Conclusions We show that the zebrafish PepT1a-type transporter is functional and co-expressed with pept1b (slc15a1b) in the adult fish intestine. Its expression is also confirmed during the early phases of development when the yolk syncytial layer is present and yolk protein resorption processes are active. While completing the missing information on PepT1-type transporters function in the zebrafish, these results open to future investigations on the similar/differential role(s) of PepT1a/PepT1b in zebrafish and teleost fish physiology.
Collapse
Affiliation(s)
- Francesca Vacca
- 1Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Amilcare Barca
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Ana S Gomes
- 3Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Aurora Mazzei
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Barbara Piccinni
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy.,Present address: Physiopathology of Reproduction and IVF Unit, Nardò Hospital, Nardò Health and Social Care District, Lecce Local Health Agency, I-73048 Nardò, Lecce Italy
| | - Raffaella Cinquetti
- 1Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Gianmarco Del Vecchio
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| | - Alessandro Romano
- 5Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, I-20132 Milan, Italy
| | - Ivar Rønnestad
- 3Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Elena Bossi
- 1Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy
| | - Tiziano Verri
- 2Department of Biological and Environmental Sciences and Technologies, University of Salento, via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy
| |
Collapse
|
4
|
|
5
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
6
|
Margheritis E, Imperiali FG, Cinquetti R, Vollero A, Terova G, Rimoldi S, Girardello R, Bossi E. Amino acid transporter B(0)AT1 (slc6a19) and ancillary protein: impact on function. Pflugers Arch 2016; 468:1363-74. [PMID: 27255547 DOI: 10.1007/s00424-016-1842-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/04/2016] [Accepted: 05/29/2016] [Indexed: 12/16/2022]
Abstract
Amino acids play an important role in the metabolism of all organisms. Their epithelial re-absorption is due to specific transport proteins, such as B(0)AT1, a Na(+)-coupled neutral amino acid symporter belonging to the solute carrier 6 family. Here, a recently cloned fish orthologue, from the intestine of Salmo salar, was electrophysiologically characterized with the two-electrode voltage clamp technique, in Xenopus laevis oocytes heterologously expressing the transporter. Substrate specificity, apparent affinities and the ionic dependence of the transport mechanism were determined in the presence of specific collectrin. Results demonstrated that like the human, but differently from sea bass (Dicentrarchus labrax) orthologue, salmon B(0)AT1 needs to be associated with partner proteins to be correctly expressed at the oocyte plasma membrane. Cloning of sea bass collectrin and comparison of membrane expression and functionality of the B(0)AT1 orthologue transporters allowed a deeper investigation on the role of their interactions. The parameters acquired by electrophysiological and immunolocalization experiments in the mammalian and fish transporters contributed to highlight the dynamic of relations and impacts on transport function of the ancillary proteins. The comparative characterization of the physiological parameters of amino acid transporters with auxiliary proteins can help the comprehension of the regulatory mechanism of essential nutrient absorption.
Collapse
Affiliation(s)
- Eleonora Margheritis
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Francesca Guia Imperiali
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Alessandra Vollero
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Genciana Terova
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
- Interuniversity Center "The Protein Factory", Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Via Mancinelli 7, I-20131, Milan, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Rossana Girardello
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Science, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy.
- Interuniversity Center "The Protein Factory", Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Via Mancinelli 7, I-20131, Milan, Italy.
| |
Collapse
|
7
|
Romano A, Barca A, Storelli C, Verri T. Teleost fish models in membrane transport research: the PEPT1(SLC15A1) H+-oligopeptide transporter as a case study. J Physiol 2013; 592:881-97. [PMID: 23981715 DOI: 10.1113/jphysiol.2013.259622] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human genes for passive, ion-coupled transporters and exchangers are included in the so-called solute carrier (SLC) gene series, to date consisting of 52 families and 398 genes. Teleost fish genes for SLC proteins have also been described in the last two decades, and catalogued in preliminary SLC-like form in 50 families and at least 338 genes after systematic GenBank database mining (December 2010-March 2011). When the kinetic properties of the expressed proteins are studied in detail, teleost fish SLC transporters always reveal extraordinary 'molecular diversity' with respect to the mammalian counterparts, which reflects peculiar adaptation of the protein to the physiology of the species and/or to the environment where the species lives. In the case of the H+ -oligopeptide transporter PEPT1(SLC15A1), comparative analysis of diverse teleost fish orthologs has shown that the protein may exhibit very eccentric properties in terms of pH dependence (e.g., the adaptation of zebrafish PEPT1 to alkaline pH), temperature dependence (e.g., the adaptation of icefish PEPT1 to sub-zero temperatures) and/or substrate specificity (e.g., the species-specificity of PEPT1 for the uptake of l-lysine-containing peptides). The revelation of such peculiarities is providing new contributions to the discussion on PEPT1 in both basic (e.g., molecular structure-function analyses) and applied research (e.g., optimizing diets to enhance growth of commercially valuable fish).
Collapse
Affiliation(s)
- Alessandro Romano
- Laboratory of General Physiology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, I-73100 Lecce, Italy.
| | | | | | | |
Collapse
|
8
|
Conferring electrogenicity to the electroneutral phosphate cotransporter NaPi-IIc (SLC34A3) reveals an internal cation release step. Pflugers Arch 2013; 465:1261-79. [PMID: 23515872 DOI: 10.1007/s00424-013-1261-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/14/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
The SLC34 family of Na(+)-dependent inorganic phosphate cotransporters comprises two electrogenic isoforms (NaPi-IIa, NaPi-IIb) and an electroneutral isoform (NaPi-IIc). Both fulfill essential physiological roles in mammalian phosphate homeostasis. By substitution of three conserved amino acids, found in all electrogenic isoforms, at corresponding sites in NaPi-IIc, electrogenicity was re-established and the Na(+)/P i stoichiometry increased from 2:1 to 3:1. However, this engineered electrogenic construct (AAD-IIc) had a reduced apparent P i affinity and different presteady-state kinetics from the wild-type NaPi-IIa/b. We investigated AAD-IIc using electrophysiology and voltage clamp fluorometry to elucidate the compromised behavior. The activation energy for cotransport was threefold higher than for NaPi-IIc and 1.5-fold higher than for NaPi-IIa and the temperature dependence of presteady-state charge displacements suggested that the large activation energy was associated with the empty carrier reorientation. AAD-IIc shows a weak interaction of external Na(+) ions with the electric field, and thus retains the electroneutral cooperative interaction of two Na(+) ions preceding external P i binding of NaPi-IIc. Most of the presteady-state charge movement was accounted for by the empty carrier (in the absence of external P i ), and the cytosolic release of one Na(+) ion (in the presence of P i ). Simulations using a kinetic model recapitulated the presteady-state and steady-state behavior and allowed identification of two critical partial reactions: the final release of Na(+) to the cytosol and external P i binding. Fluorometric recordings from AAD-IIc mutants with Cys substituted at functionally important sites established that AAD-IIc undergoes substrate- and voltage-dependent conformational changes that correlated qualitatively with its presteady-state kinetics.
Collapse
|
9
|
Characterization of the transport of lysine-containing dipeptides by PepT1 orthologs expressed in Xenopus laevis oocytes. Comp Biochem Physiol A Mol Integr Physiol 2012; 164:520-8. [PMID: 23268205 DOI: 10.1016/j.cbpa.2012.12.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 11/23/2022]
Abstract
During digestion, dietary proteins cleaved in di and tri-peptides are translocated from the intestinal lumen into the enterocytes via PepT1 (SLC15A1) using an inwardly directed proton electrochemical gradient. The kinetic properties in various PepT1 orthologs (Dicentrarchus labrax, Oryctolagus cuniculus, Danio rerio) have been explored to determine the transport efficiency of different combinations of lysine, methionine, and glycine. Species-specific differences were observed. Lys-Met resulted the best substrate at all tested potentials in sea bass and rabbit PepT1, whereas in the zebrafish transporter all tested dipeptides (except Gly-Lys) elicited similar currents independently on the charge position or amino acid composition. For the sea bass and rabbit PepT1, kinetic parameters, K(0.5) and I(max) and their ratio, show the importance of the position of the charged lysine in the peptide. The PepT1 transporter of these species has very low affinity for Lys-Lys and Gly-Lys; this reduces the transport efficiency which is instead higher for Lys-Met and Lys-Gly. PepT1 from zebrafish showed relatively high affinity and excellent transport efficiency for Met-Lys and Lys-Met. These data led us to speculate about the structural determinants involved in substrate interaction according to the model proposed for this transporter.
Collapse
|
10
|
An inverse relationship links temperature and substrate apparent affinity in the ion-coupled cotransporters rGAT1 and KAAT1. Int J Mol Sci 2012; 13:15565-74. [PMID: 23443081 PMCID: PMC3546649 DOI: 10.3390/ijms131215565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 01/20/2023] Open
Abstract
The effects of temperature on the operation of two ion-coupled cotransporters of the SLC6A family, namely rat GAT1 (SLC6A1) and KAAT1 (SLC6A19) from Manduca sexta, have been studied by electrophysiological means in Xenopus laevis oocytes expressing these proteins. The maximal transport-associated current (Imax) and the apparent substrate affinity (K05) were measured. In addition to the expected increase in transport rate (Q10 = 3–6), both transporters showed greater K05 values (i.e., a decrease in apparent affinity) at higher temperatures. The transport efficiency, estimated as Imax/K05, increased at negative potentials in both transporters, but did not show statistically significant differences with temperature. The observation that the apparent substrate affinity is inversely related to the transport rate suggests a kinetic regulation of this parameter. Furthermore, the present results indicate that the affinities estimated at room temperature for mammalian cotransporters may not be simply extrapolated to their physiological operating conditions.
Collapse
|