1
|
Xu M, Neelands T, Powers AS, Liu Y, Miller SD, Pintilie GD, Bois JD, Dror RO, Chiu W, Maduke M. CryoEM structures of the human CLC-2 voltage-gated chloride channel reveal a ball-and-chain gating mechanism. eLife 2024; 12:RP90648. [PMID: 38345841 PMCID: PMC10942593 DOI: 10.7554/elife.90648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different tissues. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating among closely related homologs has been a long-standing mystery, in part because few CLC channel structures are available. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct conformations involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway. This peptide is highly conserved among species variants of CLC-2 but is not present in other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Torben Neelands
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Alexander S Powers
- Department of Chemistry, Stanford UniversityStanfordUnited States
- Department of Computer Science, Stanford UniversityStanfordUnited States
- Department of Structural Biology, Stanford UniversityStanfordUnited States
- Institute for Computational and Mathematical Engineering, Stanford UniversityStanfordUnited States
| | - Yan Liu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford UniversityStanfordUnited States
| | - Steven D Miller
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Grigore D Pintilie
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - J Du Bois
- Department of Chemistry, Stanford UniversityStanfordUnited States
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Department of Computer Science, Stanford UniversityStanfordUnited States
- Department of Structural Biology, Stanford UniversityStanfordUnited States
- Institute for Computational and Mathematical Engineering, Stanford UniversityStanfordUnited States
| | - Wah Chiu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford UniversityStanfordUnited States
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| |
Collapse
|
2
|
Stölting G, Scholl UI. Adrenal Anion Channels: New Roles in Zona Glomerulosa Physiology and in the Pathophysiology of Primary Aldosteronism. Handb Exp Pharmacol 2024; 283:59-79. [PMID: 37495852 DOI: 10.1007/164_2023_680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The mineralocorticoid aldosterone is produced in the zona glomerulosa of the adrenal cortex. Its synthesis is regulated by the serum concentrations of the peptide hormone angiotensin II and potassium. The primary role of aldosterone is to control blood volume and electrolytes. The autonomous production of aldosterone (primary aldosteronism, PA) is considered the most frequent cause of secondary hypertension. Aldosterone-producing adenomas and (micro-)nodules are frequent causes of PA and often carry somatic mutations in ion channels and transporters. Rare familial forms of PA are due to germline mutations. Both somatic and germline mutations in the chloride channel gene CLCN2, encoding ClC-2, have been identified in PA. Clinical findings and results from cell culture and animal models have advanced our knowledge about the role of anions in PA. The zona glomerulosa of the adrenal gland has now been firmly established as a tissue in which anions play a significant role for signaling. In this overview, we aim to summarize the current knowledge and highlight novel concepts as well as open questions.
Collapse
Affiliation(s)
- Gabriel Stölting
- Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ute I Scholl
- Center of Functional Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Xu M, Neelands T, Powers AS, Liu Y, Miller SD, Pintilie G, Bois JD, Dror RO, Chiu W, Maduke M. CryoEM structures of the human CLC-2 voltage gated chloride channel reveal a ball and chain gating mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553136. [PMID: 37645939 PMCID: PMC10462068 DOI: 10.1101/2023.08.13.553136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
CLC-2 is a voltage-gated chloride channel that contributes to electrical excitability and ion homeostasis in many different mammalian tissues and cell types. Among the nine mammalian CLC homologs, CLC-2 is uniquely activated by hyperpolarization, rather than depolarization, of the plasma membrane. The molecular basis for the divergence in polarity of voltage gating mechanisms among closely related CLC homologs has been a long-standing mystery, in part because few CLC channel structures are available, and those that exist exhibit high conformational similarity. Here, we report cryoEM structures of human CLC-2 at 2.46 - 2.76 Å, in the presence and absence of the potent and selective inhibitor AK-42. AK-42 binds within the extracellular entryway of the Cl--permeation pathway, occupying a pocket previously proposed through computational docking studies. In the apo structure, we observed two distinct apo conformations of CLC-2 involving rotation of one of the cytoplasmic C-terminal domains (CTDs). In the absence of CTD rotation, an intracellular N-terminal 15-residue hairpin peptide nestles against the TM domain to physically occlude the Cl--permeation pathway from the intracellular side. This peptide is highly conserved among species variants of CLC-2 but is not present in any other CLC homologs. Previous studies suggested that the N-terminal domain of CLC-2 influences channel properties via a "ball-and-chain" gating mechanism, but conflicting data cast doubt on such a mechanism, and thus the structure of the N-terminal domain and its interaction with the channel has been uncertain. Through electrophysiological studies of an N-terminal deletion mutant lacking the 15-residue hairpin peptide, we show that loss of this short sequence increases the magnitude and decreases the rectification of CLC-2 currents expressed in mammalian cells. Furthermore, we show that with repetitive hyperpolarization WT CLC-2 currents increase in resemblance to the hairpin-deleted CLC-2 currents. These functional results combined with our structural data support a model in which the N-terminal hairpin of CLC-2 stabilizes a closed state of the channel by blocking the cytoplasmic Cl--permeation pathway.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Torben Neelands
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Alexander S. Powers
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Computer Science, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305
| | - Yan Liu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park 94025
| | - Steven D. Miller
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Grigore Pintilie
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford University, Stanford, 94305
| | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Ron O. Dror
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
- Department of Computer Science, Stanford University, Stanford, CA 94305
- Department of Structural Biology, Stanford University, Stanford, CA 94305
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305
| | - Wah Chiu
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park 94025
- Department of Bioengineering and Department of Microbiology and Immunology, Stanford University, Stanford, 94305
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
4
|
Zhang B, Zhang S, Polovitskaya MM, Yi J, Ye B, Li R, Huang X, Yin J, Neuens S, Balfroid T, Soblet J, Vens D, Aeby A, Li X, Cai J, Song Y, Li Y, Tartaglia M, Li Y, Jentsch TJ, Yang M, Liu Z. Molecular basis of ClC-6 function and its impairment in human disease. SCIENCE ADVANCES 2023; 9:eadg4479. [PMID: 37831762 PMCID: PMC10575590 DOI: 10.1126/sciadv.adg4479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
ClC-6 is a late endosomal voltage-gated chloride-proton exchanger that is predominantly expressed in the nervous system. Mutated forms of ClC-6 are associated with severe neurological disease. However, the mechanistic role of ClC-6 in normal and pathological states remains largely unknown. Here, we present cryo-EM structures of ClC-6 that guided subsequent functional studies. Previously unrecognized ATP binding to cytosolic ClC-6 domains enhanced ion transport activity. Guided by a disease-causing mutation (p.Y553C), we identified an interaction network formed by Y553/F317/T520 as potential hotspot for disease-causing mutations. This was validated by the identification of a patient with a de novo pathogenic variant p.T520A. Extending these findings, we found contacts between intramembrane helices and connecting loops that modulate the voltage dependence of ClC-6 gating and constitute additional candidate regions for disease-associated gain-of-function mutations. Besides providing insights into the structure, function, and regulation of ClC-6, our work correctly predicts hotspots for CLCN6 mutations in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bing Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Maya M. Polovitskaya
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
| | - Jingbo Yi
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Binglu Ye
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Ruochong Li
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Xueying Huang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Sebastian Neuens
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Tom Balfroid
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Genetics, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Daphné Vens
- Pediatric Intensive Care Unit, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alec Aeby
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xiaoling Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, 110016 Shenyang, China
| | - Jinjin Cai
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Yingcai Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| | - Yuanxi Li
- Institute for Cognitive Neurodynamics, School of Mathematics, East China University of Science and Technology, 200237 Shanghai, China
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Yang Li
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13125 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084 Beijing, China
- Cryo-EM Facility Center, Southern University of Science & Technology, 518055 Shenzhen, Guangdong, China
| | - Zhiqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, 201204 Shanghai, China
| |
Collapse
|
5
|
Yang Z, Zhang X, Ye S, Zheng J, Huang X, Yu F, Chen Z, Cai S, Zhang P. Molecular mechanism underlying regulation of Arabidopsis CLCa transporter by nucleotides and phospholipids. Nat Commun 2023; 14:4879. [PMID: 37573431 PMCID: PMC10423218 DOI: 10.1038/s41467-023-40624-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Chloride channels (CLCs) transport anion across membrane to regulate ion homeostasis and acidification of intracellular organelles, and are divided into anion channels and anion/proton antiporters. Arabidopsis thaliana CLCa (AtCLCa) transporter localizes to the tonoplast which imports NO3- and to a less extent Cl- from cytoplasm. The activity of AtCLCa and many other CLCs is regulated by nucleotides and phospholipids, however, the molecular mechanism remains unclear. Here we determine the cryo-EM structures of AtCLCa bound with NO3- and Cl-, respectively. Both structures are captured in ATP and PI(4,5)P2 bound conformation. Structural and electrophysiological analyses reveal a previously unidentified N-terminal β-hairpin that is stabilized by ATP binding to block the anion transport pathway, thereby inhibiting the AtCLCa activity. While AMP loses the inhibition capacity due to lack of the β/γ- phosphates required for β-hairpin stabilization. This well explains how AtCLCa senses the ATP/AMP status to regulate the physiological nitrogen-carbon balance. Our data further show that PI(4,5)P2 or PI(3,5)P2 binds to the AtCLCa dimer interface and occupies the proton-exit pathway, which may help to understand the inhibition of AtCLCa by phospholipids to facilitate guard cell vacuole acidification and stomatal closure. In a word, our work suggests the regulatory mechanism of AtCLCa by nucleotides and phospholipids under certain physiological scenarios and provides new insights for future study of CLCs.
Collapse
Affiliation(s)
- Zhao Yang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xue Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shiwei Ye
- University of Chinese Academy of Sciences, Beijing, 100039, China
- Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuronscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jingtao Zheng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaowei Huang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fang Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhenguo Chen
- The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Shiqing Cai
- Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuronscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
6
|
Ma T, Wang L, Chai A, Liu C, Cui W, Yuan S, Wing Ngor Au S, Sun L, Zhang X, Zhang Z, Lu J, Gao Y, Wang P, Li Z, Liang Y, Vogel H, Wang YT, Wang D, Yan K, Zhang H. Cryo-EM structures of ClC-2 chloride channel reveal the blocking mechanism of its specific inhibitor AK-42. Nat Commun 2023; 14:3424. [PMID: 37296152 PMCID: PMC10256776 DOI: 10.1038/s41467-023-39218-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
ClC-2 transports chloride ions across plasma membranes and plays critical roles in cellular homeostasis. Its dysfunction is involved in diseases including leukodystrophy and primary aldosteronism. AK-42 was recently reported as a specific inhibitor of ClC-2. However, experimental structures are still missing to decipher its inhibition mechanism. Here, we present cryo-EM structures of apo ClC-2 and its complex with AK-42, both at 3.5 Å resolution. Residues S162, E205 and Y553 are involved in chloride binding and contribute to the ion selectivity. The side-chain of the gating glutamate E205 occupies the putative central chloride-binding site, indicating that our structure represents a closed state. Structural analysis, molecular dynamics and electrophysiological recordings identify key residues to interact with AK-42. Several AK-42 interacting residues are present in ClC-2 but not in other ClCs, providing a possible explanation for AK-42 specificity. Taken together, our results experimentally reveal the potential inhibition mechanism of ClC-2 inhibitor AK-42.
Collapse
Grants
- National Natural Science Foundation of China (National Science Foundation of China)
- National Science and Technology Innovation 2030 Major Program (No. 2022ZD0211900)
- the Science and Technology Innovation Committee of Shenzhen(No. JCYJ20200109150700942), the Key-Area Research and Development Program of Guangdong Province (2019B030335001), the Shenzhen Fund for Guangdong Provincial High Level Clinical Key Specialties (No. SZGSP013), and the Shenzhen Key Medical Discipline Construction Fund (No. SZXK042)
- The Shenzhen Key Laboratory of Computer Aided Drug Discovery, Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China, Funding number: ZDSYS20201230165400001. The Chinese Academy of Science President’s International Fellowship Initiative (PIFI) (No. 2020FSB0003), Guangdong Retired Expert (granted by Guangdong Province), National Overseas High Level Talent Introduction Plan-Foreign Expert from Organization Department of the CPC Central Committee (1000 talent project), Shenzhen Pengcheng Scientist, NSFC-SNSF Funding (No. 32161133022), AlphaMol & SIAT Joint Laboratory, Shenzhen Government Top-talent Working Funding and Guangdong Province Academician Work Funding.
- NSFC-Guangdong Joint Fund-U20A6005, Shenzhen Key Laboratory of Translational Research for Brain Diseases (ZDSYS20200828154800001)
- Shenzhen Science and Technology Program (No. JCYJ20220530115214033 and No. KQTD20210811090115021)
Collapse
Affiliation(s)
- Tao Ma
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Lei Wang
- School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Anping Chai
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, Shenzhen, Guangdong, China
| | - Chao Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Wenqiang Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuguang Yuan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Shannon Wing Ngor Au
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liang Sun
- Shenzhen Shuli Tech Co., Ltd, 518126, Shenzhen, Guangdong, China
| | - Xiaokang Zhang
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, Shenzhen, Guangdong, China
- Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China
| | - Zhenzhen Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Jianping Lu
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Yuanzhu Gao
- Cryo-EM Facility Center, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Peiyi Wang
- Cryo-EM Facility Center, Southern University of Science and Technology, 518055, Shenzhen, Guangdong, China
| | - Zhifang Li
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Yu Tian Wang
- Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, Guangdong, China.
| | - Daping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 518000, Shenzhen, China.
| | - Kaige Yan
- School of Life Sciences, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Huawei Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
- Department of Biomedical Engineering, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
7
|
The mechanisms of chromogranin B-regulated Cl- homeostasis. Biochem Soc Trans 2022; 50:1659-1672. [PMID: 36511243 DOI: 10.1042/bst20220435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Chloride is the most abundant inorganic anions in almost all cells and in human circulation systems. Its homeostasis is therefore important for systems physiology and normal cellular activities. This topic has been extensively studied with chloride loaders and extruders expressed in both cell surfaces and intracellular membranes. With the newly discovered, large-conductance, highly selective Cl- channel formed by membrane-bound chromogranin B (CHGB), which differs from all other known anion channels of conventional transmembrane topology, and is distributed in plasma membranes, endomembrane systems, endosomal, and endolysosomal compartments in cells expressing it, we will discuss the potential physiological importance of the CHGB channels to Cl- homeostasis, cellular excitability and volume control, and cation uptake or release at the cellular and subcellular levels. These considerations and CHGB's association with human diseases make the CHGB channel a possible druggable target for future molecular therapeutics.
Collapse
|
8
|
Luo Y, Liu X, Li X, Zhong W, Lin J, Chen Q. Identification and validation of a signature involving voltage-gated chloride ion channel genes for prediction of prostate cancer recurrence. Front Endocrinol (Lausanne) 2022; 13:1001634. [PMID: 36246902 PMCID: PMC9561150 DOI: 10.3389/fendo.2022.1001634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
Voltage-gated chloride ion channels (CLCs) are transmembrane proteins that maintain chloride ion homeostasis in various cells. Accumulating studies indicated CLCs were related to cell growth, proliferation, and cell cycle. Nevertheless, the role of CLCs in prostate cancer (PCa) has not been systematically profiled. The purpose of this study was to investigate the expression profiles and biofunctions of CLCs genes, and construct a novel risk signature to predict biochemical recurrence (BCR) of PCa patients. We identified five differentially expressed CLCs genes in our cohort and then constructed a signature composed of CLCN2 and CLCN6 through Lasso-Cox regression analysis in the training cohort from the Cancer Genome Atlas (TCGA). The testing and entire cohorts from TCGA and the GSE21034 from the Gene Expression Omnibus (GEO) were used as internal and independent external validation datasets. This signature could divide PCa patients into the high and low risk groups with different prognoses, was apparently correlated with clinical features, and was an independent excellent prognostic indicator. Enrichment analysis indicated our signature was primarily concentrated in cellular process and metabolic process. The expression patterns of CLCN2 and CLCN6 were detected in our own cohort based immunohistochemistry staining, and we found CLCN2 and CLCN6 were highly expressed in PCa tissues compared with benign tissues and positively associated with higher Gleason score and shorter BCR-free time. Functional experiments revealed that CLCN2 and CLCN6 downregulation inhibited cell proliferation, colony formation, invasion, and migration, but prolonged cell cycle and promoted apoptosis. Furthermore, Seahorse assay showed that silencing CLCN2 or CLCN6 exerted potential inhibitory effects on energy metabolism in PCa. Collectively, our signature could provide a novel and robust strategy for the prognostic evaluation and improve treatment decision making for PCa patients.
Collapse
Affiliation(s)
- Yong Luo
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Xiaopeng Liu
- Department of Science and Teaching, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Xiaoxiao Li
- Department of Nursing Administration, the Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
| | - Weide Zhong
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
- *Correspondence: Qingbiao Chen, ; Jingbo Lin, ; Weide Zhong,
| | - Jingbo Lin
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
- *Correspondence: Qingbiao Chen, ; Jingbo Lin, ; Weide Zhong,
| | - Qingbiao Chen
- Department of Urology, The Second People’s Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, China
- *Correspondence: Qingbiao Chen, ; Jingbo Lin, ; Weide Zhong,
| |
Collapse
|
9
|
De Jesús-Pérez JJ, Méndez-Maldonado GA, López-Romero AE, Esparza-Jasso D, González-Hernández IL, De la Rosa V, Gastélum-Garibaldi R, Sánchez-Rodríguez JE, Arreola J. Electro-steric opening of the CLC-2 chloride channel gate. Sci Rep 2021; 11:13127. [PMID: 34162897 PMCID: PMC8222222 DOI: 10.1038/s41598-021-92247-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/04/2021] [Indexed: 01/18/2023] Open
Abstract
The widely expressed two-pore homodimeric inward rectifier CLC-2 chloride channel regulates transepithelial chloride transport, extracellular chloride homeostasis, and neuronal excitability. Each pore is independently gated at hyperpolarized voltages by a conserved pore glutamate. Presumably, exiting chloride ions push glutamate outwardly while external protonation stabilizes it. To understand the mechanism of mouse CLC-2 opening we used homology modelling-guided structure-function analysis. Structural modelling suggests that glutamate E213 interacts with tyrosine Y561 to close a pore. Accordingly, Y561A and E213D mutants are activated at less hyperpolarized voltages, re-opened at depolarized voltages, and fast and common gating components are reduced. The double mutant cycle analysis showed that E213 and Y561 are energetically coupled to alter CLC-2 gating. In agreement, the anomalous mole fraction behaviour of the voltage dependence, measured by the voltage to induce half-open probability, was strongly altered in these mutants. Finally, cytosolic acidification or high extracellular chloride concentration, conditions that have little or no effect on WT CLC-2, induced reopening of Y561 mutants at positive voltages presumably by the inward opening of E213. We concluded that the CLC-2 gate is formed by Y561-E213 and that outward permeant anions open the gate by electrostatic and steric interactions.
Collapse
Affiliation(s)
- José J De Jesús-Pérez
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, 78290, San Luis Potosí, SLP, Mexico
| | - G Arlette Méndez-Maldonado
- Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. M. García Barragán #1421, 44430, Guadalajara, Jalisco, Mexico
| | - Ana E López-Romero
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, 78290, San Luis Potosí, SLP, Mexico
| | - David Esparza-Jasso
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, 78290, San Luis Potosí, SLP, Mexico
| | - Irma L González-Hernández
- Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. M. García Barragán #1421, 44430, Guadalajara, Jalisco, Mexico
| | - Víctor De la Rosa
- CONACYT, School of Medicine, Universidad Autónoma de San Luis Potosí, Ave. V. Carranza 2005, Los Filtros, 78290, San Luis Potosí, SLP, Mexico
| | - Roberto Gastélum-Garibaldi
- Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. M. García Barragán #1421, 44430, Guadalajara, Jalisco, Mexico
| | - Jorge E Sánchez-Rodríguez
- Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. M. García Barragán #1421, 44430, Guadalajara, Jalisco, Mexico
| | - Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, Ave. Dr. Manuel Nava #6, 78290, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
10
|
Park C, Sakurai Y, Sato H, Kanda S, Iino Y, Kunitomo H. Roles of the ClC chloride channel CLH-1 in food-associated salt chemotaxis behavior of C. elegans. eLife 2021; 10:e55701. [PMID: 33492228 PMCID: PMC7834019 DOI: 10.7554/elife.55701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 01/04/2021] [Indexed: 01/19/2023] Open
Abstract
The ability of animals to process dynamic sensory information facilitates foraging in an ever-changing environment. However, molecular and neural mechanisms underlying such ability remain elusive. The ClC anion channels/transporters play a pivotal role in cellular ion homeostasis across all phyla. Here, we find a ClC chloride channel is involved in salt concentration chemotaxis of Caenorhabditis elegans. Genetic screening identified two altered-function mutations of clh-1 that disrupt experience-dependent salt chemotaxis. Using genetically encoded fluorescent sensors, we demonstrate that CLH-1 contributes to regulation of intracellular anion and calcium dynamics of salt-sensing neuron, ASER. The mutant CLH-1 reduced responsiveness of ASER to salt stimuli in terms of both temporal resolution and intensity, which disrupted navigation strategies for approaching preferred salt concentrations. Furthermore, other ClC genes appeared to act redundantly in salt chemotaxis. These findings provide insights into the regulatory mechanism of neuronal responsivity by ClCs that contribute to modulation of navigation behavior.
Collapse
Affiliation(s)
- Chanhyun Park
- Department of Biological Sciences, School of Science, The University of TokyoTokyoJapan
| | - Yuki Sakurai
- Department of Biological Sciences, School of Science, The University of TokyoTokyoJapan
| | - Hirofumi Sato
- Department of Biological Sciences, School of Science, The University of TokyoTokyoJapan
| | - Shinji Kanda
- Department of Biological Sciences, School of Science, The University of TokyoTokyoJapan
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of TokyoChibaJapan
| | - Yuichi Iino
- Department of Biological Sciences, School of Science, The University of TokyoTokyoJapan
| | - Hirofumi Kunitomo
- Department of Biological Sciences, School of Science, The University of TokyoTokyoJapan
| |
Collapse
|
11
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
12
|
Martínez-Rojas VA, Jiménez-Garduño AM, Michelatti D, Tosatto L, Marchioretto M, Arosio D, Basso M, Pennuto M, Musio C. ClC-2-like Chloride Current Alterations in a Cell Model of Spinal and Bulbar Muscular Atrophy, a Polyglutamine Disease. J Mol Neurosci 2020; 71:662-674. [PMID: 32856205 DOI: 10.1007/s12031-020-01687-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by expansions of a polyglutamine (polyQ) tract in the androgen receptor (AR) gene. SBMA is associated with the progressive loss of lower motor neurons, together with muscle weakness and atrophy. PolyQ-AR is converted to a toxic species upon binding to its natural ligands, testosterone, and dihydrotestosterone (DHT). Our previous patch-clamp studies on a motor neuron-derived cell model of SBMA showed alterations in voltage-gated ion currents. Here, we identified and characterized chloride currents most likely belonging to the chloride channel-2 (ClC-2) subfamily, which showed significantly increased amplitudes in the SBMA cells. The treatment with the pituitary adenylyl cyclase-activating polypeptide (PACAP), a neuropeptide with a proven protective effect in a mouse model of SBMA, recovered chloride channel current alterations in SBMA cells. These observations suggest that the CIC-2 currents are affected in SBMA, an alteration that may contribute and potentially determine the pathophysiology of the disease.
Collapse
Affiliation(s)
- Vladimir A Martínez-Rojas
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy
| | - Aura M Jiménez-Garduño
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy.,Departamento de Ciencias de la Salud, Escuela de Ciencias, Universidad de las Américas Puebla (UDLAP), San Andrés Cholula, Puebla, Mexico
| | - Daniela Michelatti
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy.,CIBIO Department, Laboratory of Chromatin Biology and Epigenetics, University of Trento, Trento, Italy
| | - Laura Tosatto
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy
| | - Marta Marchioretto
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy
| | - Daniele Arosio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy
| | - Manuela Basso
- CIBIO Department, Laboratory of Transcriptional Neurobiology, University of Trento, Trento, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) & LabSSAH, Bruno Kessler Foundation (FBK), Trento, Italy.
| |
Collapse
|
13
|
Kolen B, Kortzak D, Franzen A, Fahlke C. An amino-terminal point mutation increases EAAT2 anion currents without affecting glutamate transport rates. J Biol Chem 2020; 295:14936-14947. [PMID: 32820048 DOI: 10.1074/jbc.ra120.013704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.
Collapse
Affiliation(s)
- Bettina Kolen
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Arne Franzen
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
14
|
Schrecker M, Korobenko J, Hite RK. Cryo-EM structure of the lysosomal chloride-proton exchanger CLC-7 in complex with OSTM1. eLife 2020; 9:e59555. [PMID: 32749217 PMCID: PMC7440919 DOI: 10.7554/elife.59555] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
The chloride-proton exchanger CLC-7 plays critical roles in lysosomal homeostasis and bone regeneration and its mutation can lead to osteopetrosis, lysosomal storage disease and neurological disorders. In lysosomes and the ruffled border of osteoclasts, CLC-7 requires a β-subunit, OSTM1, for stability and activity. Here, we present electron cryomicroscopy structures of CLC-7 in occluded states by itself and in complex with OSTM1, determined at resolutions up to 2.8 Å. In the complex, the luminal surface of CLC-7 is entirely covered by a dimer of the heavily glycosylated and disulfide-bonded OSTM1, which serves to protect CLC-7 from the degradative environment of the lysosomal lumen. OSTM1 binding does not induce large-scale rearrangements of CLC-7, but does have minor effects on the conformation of the ion-conduction pathway, potentially contributing to its regulatory role. These studies provide insights into the role of OSTM1 and serve as a foundation for understanding the mechanisms of CLC-7 regulation.
Collapse
Affiliation(s)
- Marina Schrecker
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Julia Korobenko
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
15
|
Grieschat M, Guzman RE, Langschwager K, Fahlke C, Alekov AK. Metabolic energy sensing by mammalian CLC anion/proton exchangers. EMBO Rep 2020; 21:e47872. [PMID: 32390228 PMCID: PMC7271328 DOI: 10.15252/embr.201947872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
CLC anion/proton exchangers control the pH and [Cl- ] of the endolysosomal system that is essential for cellular nutrient uptake. Here, we use heterologous expression and whole-cell electrophysiology to investigate the regulation of the CLC isoforms ClC-3, ClC-4, and ClC-5 by the adenylic system components ATP, ADP, and AMP. Our results show that cytosolic ATP and ADP but not AMP and Mg2+ -free ADP enhance CLC ion transport. Biophysical analysis reveals that adenine nucleotides alter the ratio between CLC ion transport and CLC gating charge and shift the CLC voltage-dependent activation. The latter effect is suppressed by blocking the intracellular entrance of the proton transport pathway. We suggest, therefore, that adenine nucleotides regulate the internal proton delivery into the CLC transporter machinery and alter the probability of CLC transporters to undergo silent non-transporting cycles. Our findings suggest that the CBS domains in mammalian CLC transporters serve as energy sensors that regulate vesicular Cl- /H+ exchange by detecting changes in the cytosolic ATP/ADP/AMP equilibrium. Such sensing mechanism links the endolysosomal activity to the cellular metabolic state.
Collapse
Affiliation(s)
| | - Raul E Guzman
- Institute of Complex SystemsZelluläre Biophysik (ICS‐4), Forschungszentrum JülichJülichGermany
| | | | - Christoph Fahlke
- Institute of Complex SystemsZelluläre Biophysik (ICS‐4), Forschungszentrum JülichJülichGermany
| | - Alexi K Alekov
- Institute of NeurophysiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
16
|
Pathogenesis of Familial Hyperaldosteronism Type II: New Concepts Involving Anion Channels. Curr Hypertens Rep 2019; 21:31. [PMID: 30949771 DOI: 10.1007/s11906-019-0934-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW The application of advanced genetic techniques has recently begun to unravel the genetic basis for familial primary aldosteronism type 2 (FH-II). RECENT FINDINGS Whole-exome sequencing in a large family with FH-II revealed a shared rare damaging heterozygous variant in CLCN2 (chr.3: g.184075850C>T, p.Arg172Gln) in three severely affected members. The gene encodes a chloride channel, ClC-2. A cohort of 80 unrelated individuals diagnosed with early-onset primary aldosteronism was also examined for CLCN2 mutations finding three further occurrences of p.Arg172Gln mutations and four single cases of other potentially damaging heterozygous mutations for an overall prevalence of 9.9%. A concurrent report also found a different CLCN2 mutation (p.Gly24Asp) in a single severely affected patient from a cohort of 12 with early-onset PA for a prevalence of 8.3%. Cases of primary aldosteronism associated with CLCN2 mutations appear to be bilateral and respond well to medical treatment. In the adrenal, ClC-2 has been demonstrated to localize predominantly to the zona glomerulosa (ZG), and functional analysis suggests that mutations in ClC-2 predispose ZG cells to depolarization, thus leading to calcium influx via activation of voltage-gated calcium channels and increased aldosterone production. Germline CLCN2 mutations appear to account for a substantial proportion of early-onset primary aldosteronism cases, and genetic testing for mutations in this gene should be considered in appropriate cases.
Collapse
|
17
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
18
|
CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 2018; 50:349-354. [PMID: 29403011 PMCID: PMC5862758 DOI: 10.1038/s41588-018-0048-5] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022]
Abstract
Primary aldosteronism, a common cause of severe hypertension1, features constitutive production of the adrenal steroid aldosterone. We analyzed a multiplex family with familial hyperaldosteronism type II (FH-II)2 and 80 additional probands with unsolved early-onset primary aldosteronism. Eight probands had novel heterozygous variants in CLCN2, including two de novo mutations and four independent occurrences of the identical p.Arg172Gln mutation; all relatives with early-onset primary aldosteronism carried the CLCN2 variant found in probands. CLCN2 encodes a voltage-gated chloride channel expressed in adrenal glomerulosa that opens at hyperpolarized membrane potentials. Channel opening depolarizes glomerulosa cells and induces expression of aldosterone synthase, the rate-limiting enzyme for aldosterone biosynthesis. Mutant channels cause gain of function, with higher open probabilities at the glomerulosa resting potential. These findings for the first time demonstrate a role of anion channels in glomerulosa membrane potential determination, aldosterone production and hypertension. They establish the cause of a substantial fraction of early-onset primary aldosteronism.
Collapse
|
19
|
Wang H, Xu M, Kong Q, Sun P, Yan F, Tian W, Wang X. Research and progress on ClC‑2 (Review). Mol Med Rep 2017; 16:11-22. [PMID: 28534947 PMCID: PMC5482133 DOI: 10.3892/mmr.2017.6600] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/13/2017] [Indexed: 12/22/2022] Open
Abstract
Chloride channel 2 (ClC-2) is one of the nine mammalian members of the ClC family. The present review discusses the molecular properties of ClC‑2, including CLCN2, ClC‑2 promoter and the structural properties of ClC‑2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of ClC‑2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of ClC‑2. The review then discusses the diseases associated with ClC‑2, including degeneration of the retina, Sjögren's syndrome, age‑related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of ClC‑2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of ClC‑2 to treat diseases associated with ClC‑2. The determination of CLCN2 is required to prevent and treat several diseases associated with ClC‑2.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Ophthalmology, People's Hospital of Jingjiang, Jingjiang, Jiangsu 214500, P.R. China
| | - Minghui Xu
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Qingjie Kong
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Peng Sun
- Department of Ophthalmology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154000, P.R. China
| | - Fengyun Yan
- Assets Division, Harbin University of Science and Technology, Harbin, Heilongjiang 150080, P.R. China
| | - Wenying Tian
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xin Wang
- Library, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
20
|
Tan H, Bungert-Plümke S, Fahlke C, Stölting G. Reduced Membrane Insertion of CLC-K by V33L Barttin Results in Loss of Hearing, but Leaves Kidney Function Intact. Front Physiol 2017; 8:269. [PMID: 28555110 PMCID: PMC5430073 DOI: 10.3389/fphys.2017.00269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
In the mammalian ear, transduction of sound stimuli is initiated by K+ entry through mechano-sensitive channels into inner hair cells. K+ entry is driven by a positive endocochlear potential that is maintained by the marginal cell layer of the stria vascularis. This process requires basolateral K+ import by NKCC1 Na+−2Cl−−K+ co-transporters as well as Cl− efflux through ClC-Ka/barttin or ClC-Kb/barttin channels. Multiple mutations in the gene encoding the obligatory CLC-K subunit barttin, BSND, have been identified in patients with Bartter syndrome type IV. These mutations reduce the endocochlear potential and cause deafness. As CLC-K/barttin channels are also expressed in the kidney, patients with Bartter syndrome IV typically also suffer from salt-wasting hyperuria and electrolyte imbalances. However, there was a single report on a BSND mutation that resulted only in deafness, but not kidney disease. We herein studied the functional consequences of another recently discovered BSND mutation that predicts exchange of valine at position 33 by leucine. We combined whole-cell patch clamp, confocal microscopy and protein biochemistry to analyze how V33L affects distinct functions of barttin. We found that V33L reduced membrane insertion of CLC-K/barttin complexes without altering unitary CLC-K channel function. Our findings support the hypothesis of a common pathophysiology for the selective loss of hearing due to an attenuation of the total chloride conductance in the stria vascularis while providing enough residual function to maintain normal kidney function.
Collapse
Affiliation(s)
- Hua Tan
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Gabriel Stölting
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| |
Collapse
|
21
|
Poroca DR, Pelis RM, Chappe VM. ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies. Front Pharmacol 2017; 8:151. [PMID: 28386229 PMCID: PMC5362633 DOI: 10.3389/fphar.2017.00151] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/09/2017] [Indexed: 02/04/2023] Open
Abstract
The discovery of ClC proteins at the beginning of the 1990s was important for the development of the Cl- transport research field. ClCs form a large family of proteins that mediate voltage-dependent transport of Cl- ions across cell membranes. They are expressed in both plasma and intracellular membranes of cells from almost all living organisms. ClC proteins form transmembrane dimers, in which each monomer displays independent ion conductance. Eukaryotic members also possess a large cytoplasmic domain containing two CBS domains, which are involved in transport modulation. ClC proteins function as either Cl- channels or Cl-/H+ exchangers, although all ClC proteins share the same basic architecture. ClC channels have two gating mechanisms: a relatively well-studied fast gating mechanism, and a slow gating mechanism, which is poorly defined. ClCs are involved in a wide range of physiological processes, including regulation of resting membrane potential in skeletal muscle, facilitation of transepithelial Cl- reabsorption in kidneys, and control of pH and Cl- concentration in intracellular compartments through coupled Cl-/H+ exchange mechanisms. Several inherited diseases result from C1C gene mutations, including myotonia congenita, Bartter's syndrome (types 3 and 4), Dent's disease, osteopetrosis, retinal degeneration, and lysosomal storage diseases. This review summarizes general features, known or suspected, of ClC structure, gating and physiological functions. We also discuss biophysical properties of mammalian ClCs that are directly involved in the pathophysiology of several human inherited disorders, or that induce interesting phenotypes in animal models.
Collapse
Affiliation(s)
- Diogo R Poroca
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| | - Ryan M Pelis
- Department of Pharmacology, Dalhousie University, Halifax NS, Canada
| | - Valérie M Chappe
- Department of Physiology and Biophysics, Dalhousie University, Halifax NS, Canada
| |
Collapse
|
22
|
Stölting G, Bungert-Plümke S, Franzen A, Fahlke C. Carboxyl-terminal Truncations of ClC-Kb Abolish Channel Activation by Barttin Via Modified Common Gating and Trafficking. J Biol Chem 2015; 290:30406-16. [PMID: 26453302 DOI: 10.1074/jbc.m115.675827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/21/2022] Open
Abstract
ClC-K chloride channels are crucial for auditory transduction and urine concentration. Mutations in CLCNKB, the gene encoding the renal chloride channel hClC-Kb, cause Bartter syndrome type III, a human genetic condition characterized by polyuria, hypokalemia, and alkalosis. In recent years, several Bartter syndrome-associated mutations have been described that result in truncations of the intracellular carboxyl terminus of hClC-Kb. We here used a combination of whole-cell patch clamp, confocal imaging, co-immunoprecipitation, and surface biotinylation to study the functional consequences of a frequent CLCNKB mutation that creates a premature stop codon at Trp-610. We found that W610X leaves the association of hClC-Kb and the accessory subunit barttin unaffected, but impairs its regulation by barttin. W610X attenuates hClC-Kb surface membrane insertion. Moreover, W610X results in hClC-Kb channel opening in the absence of barttin and prevents further barttin-mediated activation. To describe how the carboxyl terminus modifies the regulation by barttin we used V166E rClC-K1. V166E rClC-K1 is active without barttin and exhibits prominent, barttin-regulated voltage-dependent gating. Electrophysiological characterization of truncated V166E rClC-K1 demonstrated that the distal carboxyl terminus is necessary for slow cooperative gating. Since barttin modifies this particular gating process, channels lacking the distal carboxyl-terminal domain are no longer regulated by the accessory subunit. Our results demonstrate that the carboxyl terminus of hClC-Kb is not part of the binding site for barttin, but functionally modifies the interplay with barttin. The loss-of-activation of truncated hClC-Kb channels in heterologous expression systems fully explains the reduced basolateral chloride conductance in affected kidneys and the clinical symptoms of Bartter syndrome patients.
Collapse
Affiliation(s)
- Gabriel Stölting
- From the Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich
| | - Stefanie Bungert-Plümke
- From the Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich
| | - Arne Franzen
- From the Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich
| | - Christoph Fahlke
- From the Institute of Complex Systems 4 (ICS-4), Zelluläre Biophysik, Forschungszentrum Jülich, 52425 Jülich
| |
Collapse
|
23
|
Wojciechowski D, Fischer M, Fahlke C. Tryptophan Scanning Mutagenesis Identifies the Molecular Determinants of Distinct Barttin Functions. J Biol Chem 2015; 290:18732-43. [PMID: 26063802 DOI: 10.1074/jbc.m114.625376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 01/05/2023] Open
Abstract
CLC-K chloride channels are expressed in the kidney and in the inner ear and require the accessory subunit barttin for proper function and membrane insertion. Barttin exerts multiple functions on CLC-proteins: it modifies protein stability and intracellular trafficking as well as channel activity, ion conduction, and gating. So far, the molecular determinants of these distinct barttin functions have remained elusive. Here we performed serial perturbation mutagenesis to identify the sequence determinants of barttin function. Barttin consists of two transmembrane helices followed by a long intracellular carboxyl terminus, and earlier work demonstrated that the transmembrane core of barttin suffices for most effects on the α-subunit. We individually substituted every amino acid of the predicted transmembrane core (amino acids 9-26 and 35-55) with tryptophan, co-expressed mutant barttin with hClC-Ka or V166E rClC-K1, and characterized CLC-K/barttin channels by patch clamp techniques, biochemistry, and confocal microscopy. The majority of mutations left the chaperone function of barttin, i.e. the effects on endoplasmic reticulum exit and surface membrane insertion, unaffected. In contrast, tryptophan insertion at multiple positions resulted in impaired activity of hClC-Ka/barttin and changes in gating of V166E rClC-K1/barttin. These results demonstrate that mutations in a cluster of hydrophobic residues within transmembrane domain 1 affect barttin-CLC-K interaction and impair gating modification by the accessory subunit. Whereas tight interaction is necessary for functional modification, even impaired association of barttin and CLC-K suffices for normal intracellular trafficking. Our findings allow definition of a likely interaction surface and clarify the mechanisms underlying CLC-K channel modification by barttin.
Collapse
Affiliation(s)
- Daniel Wojciechowski
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany and
| | - Martin Fischer
- From the Institut für Neurophysiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany and
| | - Christoph Fahlke
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52428 Jülich Germany
| |
Collapse
|
24
|
ATP binding to synaspsin IIa regulates usage and clustering of vesicles in terminals of hippocampal neurons. J Neurosci 2015; 35:985-98. [PMID: 25609616 DOI: 10.1523/jneurosci.0944-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produced a mutation (K270Q) in synapsin IIa that prevents ATP binding and reintroduced the mutant into cultured mouse hippocampal neurons devoid of all synapsins. Remarkably, staining for synaptic vesicle markers was enhanced in these neurons compared with neurons expressing wild-type synapsin IIa, suggesting overly efficient clustering of vesicles. In contrast, the mutation completely disrupted the capability of synapsin IIa to slow synaptic depression during sustained 10 Hz stimulation, indicating that it interfered with synapsin-dependent vesicle recruitment. Finally, we found that the K270Q mutation attenuated the phosphorylation of synapsin IIa on a distant PKA/CaMKI consensus site known to be essential for vesicle recruitment. We conclude that ATP binding to synapsin IIa plays a key role in modulating its function and in defining its contribution to hippocampal short-term synaptic plasticity.
Collapse
|
25
|
Stölting G, Fischer M, Fahlke C. CLC channel function and dysfunction in health and disease. Front Physiol 2014; 5:378. [PMID: 25339907 PMCID: PMC4188032 DOI: 10.3389/fphys.2014.00378] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka, and ClC-Kb, and five CLC transporters, ClC-3 through −7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of ClC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels impairs NaCl resorption in the limb of Henle and causes hyponatriaemia, hypovolemia and hypotension in patients suffering from Bartter syndrome. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological, and genetic studies.
Collapse
Affiliation(s)
- Gabriel Stölting
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich Jülich, Germany
| | - Martin Fischer
- Institut für Neurophysiologie, Medizinische Hochschule Hannover Hannover, Germany
| | - Christoph Fahlke
- Institute of Complex Systems-Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich Jülich, Germany
| |
Collapse
|
26
|
Akita T, Okada Y. Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience 2014; 275:211-31. [DOI: 10.1016/j.neuroscience.2014.06.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/06/2014] [Accepted: 06/07/2014] [Indexed: 01/05/2023]
|
27
|
Reid CA, Mullen S, Kim TH, Petrou S. Epilepsy, energy deficiency and new therapeutic approaches including diet. Pharmacol Ther 2014; 144:192-201. [PMID: 24924701 DOI: 10.1016/j.pharmthera.2014.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 02/08/2023]
Abstract
Metabolic dysfunction leading to epilepsy is well recognised. Dietary therapy, in particular the ketogenic diet, is now considered an effective option. Recent genetic studies have highlighted the central role that metabolism can play in setting seizure susceptibility. Here we discuss various metabolic disorders implicated in epilepsy focusing on energy deficiency due to genetic and environmental causes. We argue that low, uncompensated brain glucose levels can precipitate seizures. We will also explore mechanisms of disease and therapy in an attempt to identify common metabolic pathways involved in modulating seizure susceptibility. Finally, newer therapeutic approaches based on diet manipulation in the context of energy deficiency are discussed.
Collapse
Affiliation(s)
- Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| | - Saul Mullen
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Tae Hwan Kim
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia; Centre for Neural Engineering, The University of Melbourne, Parkville, Melbourne, Australia; Department of Electrical Engineering, The University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
28
|
ClC-1 and ClC-2 form hetero-dimeric channels with novel protopore functions. Pflugers Arch 2014; 466:2191-204. [DOI: 10.1007/s00424-014-1490-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/19/2014] [Indexed: 10/25/2022]
|
29
|
Bi MM, Hong S, Zhou HY, Wang HW, Wang LN, Zheng YJ. Chloride channelopathies of ClC-2. Int J Mol Sci 2013; 15:218-49. [PMID: 24378849 PMCID: PMC3907807 DOI: 10.3390/ijms15010218] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/14/2013] [Accepted: 12/16/2013] [Indexed: 12/15/2022] Open
Abstract
Chloride channels (ClCs) have gained worldwide interest because of their molecular diversity, widespread distribution in mammalian tissues and organs, and their link to various human diseases. Nine different ClCs have been molecularly identified and functionally characterized in mammals. ClC-2 is one of nine mammalian members of the ClC family. It possesses unique biophysical characteristics, pharmacological properties, and molecular features that distinguish it from other ClC family members. ClC-2 has wide organ/tissue distribution and is ubiquitously expressed. Published studies consistently point to a high degree of conservation of ClC-2 function and regulation across various species from nematodes to humans over vast evolutionary time spans. ClC-2 has been intensively and extensively studied over the past two decades, leading to the accumulation of a plethora of information to advance our understanding of its pathophysiological functions; however, many controversies still exist. It is necessary to analyze the research findings, and integrate different views to have a better understanding of ClC-2. This review focuses on ClC-2 only, providing an analytical overview of the available literature. Nearly every aspect of ClC-2 is discussed in the review: molecular features, biophysical characteristics, pharmacological properties, cellular function, regulation of expression and function, and channelopathies.
Collapse
Affiliation(s)
- Miao Miao Bi
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Sen Hong
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Hong Yan Zhou
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Hong Wei Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Li Na Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| | - Ya Juan Zheng
- Department of Ophthalmology, the Second Hospital of Jilin University, Jilin University, Changchun 130041, Jilin, China.
| |
Collapse
|
30
|
Georgi MI, Rosendahl J, Ernst F, Günzel D, Aschenbach JR, Martens H, Stumpff F. Epithelia of the ovine and bovine forestomach express basolateral maxi-anion channels permeable to the anions of short-chain fatty acids. Pflugers Arch 2013; 466:1689-712. [PMID: 24240698 DOI: 10.1007/s00424-013-1386-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/13/2013] [Accepted: 10/14/2013] [Indexed: 01/05/2023]
Abstract
It has long been established that the absorption of short-chain fatty acids (SCFA) across epithelia stimulates sodium proton exchange. The apically released protons are not available as countercations for the basolateral efflux of SCFA anions and a suitable transport model is lacking. Patch clamp and microelectrode techniques were used to characterize an anion conductance expressed by cultured cells of the sheep and bovine rumen and the sheep omasum and to localize the conductance in the intact tissue. Cells were filled with a Na-gluconate solution and superfused with sodium salts of acetate, propionate, butyrate, or lactate. Reversal potential rose and whole cell current at +100 mV decreased with the size of the anion. Anion-induced currents could be blocked by diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS), NPPB (200 μmol l(-1)), or pCMB (1 mmol l(-1)). In patches of bovine ruminal cells, single channels were observed with a conductance for chloride (327 ± 11 pS), acetate (115 ± 8 pS), propionate (102 ± 10 pS), butyrate (81 ± 2 pS), and gluconate (44 ± 3 pS). Channels expressed by sheep rumen and omasum were similar. Microelectrode experiments suggest basolateral localization. In conclusion, forestomach epithelia express basolateral maxi-anion channels with a permeability sequence of chloride > acetate > propionate > butyrate. SCFA absorption may resemble functionally coupled transport of NaCl, with the Na(+)/K(+)-ATPase driving the basolateral efflux of the anion through a channel. Since protons are apically extruded, the model accurately predicts that influx of buffers with saliva is essential for the pH homeostasis of the ruminant forestomach.
Collapse
Affiliation(s)
- Maria I Georgi
- Institute of Veterinary Physiology, Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|