1
|
Beslika E, Leite-Moreira A, De Windt LJ, da Costa Martins PA. Large animal models of pressure overload-induced cardiac left ventricular hypertrophy to study remodelling of the human heart with aortic stenosis. Cardiovasc Res 2024; 120:461-475. [PMID: 38428029 PMCID: PMC11060489 DOI: 10.1093/cvr/cvae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/22/2023] [Accepted: 12/07/2023] [Indexed: 03/03/2024] Open
Abstract
Pathologic cardiac hypertrophy is a common consequence of many cardiovascular diseases, including aortic stenosis (AS). AS is known to increase the pressure load of the left ventricle, causing a compensative response of the cardiac muscle, which progressively will lead to dilation and heart failure. At a cellular level, this corresponds to a considerable increase in the size of cardiomyocytes, known as cardiomyocyte hypertrophy, while their proliferation capacity is attenuated upon the first developmental stages. Cardiomyocytes, in order to cope with the increased workload (overload), suffer alterations in their morphology, nuclear content, energy metabolism, intracellular homeostatic mechanisms, contractile activity, and cell death mechanisms. Moreover, modifications in the cardiomyocyte niche, involving inflammation, immune infiltration, fibrosis, and angiogenesis, contribute to the subsequent events of a pathologic hypertrophic response. Considering the emerging need for a better understanding of the condition and treatment improvement, as the only available treatment option of AS consists of surgical interventions at a late stage of the disease, when the cardiac muscle state is irreversible, large animal models have been developed to mimic the human condition, to the greatest extend. Smaller animal models lack physiological, cellular and molecular mechanisms that sufficiently resemblance humans and in vitro techniques yet fail to provide adequate complexity. Animals, such as the ferret (Mustello purtorius furo), lapine (rabbit, Oryctolagus cunigulus), feline (cat, Felis catus), canine (dog, Canis lupus familiaris), ovine (sheep, Ovis aries), and porcine (pig, Sus scrofa), have contributed to research by elucidating implicated cellular and molecular mechanisms of the condition. Essential discoveries of each model are reported and discussed briefly in this review. Results of large animal experimentation could further be interpreted aiming at prevention of the disease progress or, alternatively, at regression of the implicated pathologic mechanisms to a physiologic state. This review summarizes the important aspects of the pathophysiology of LV hypertrophy and the applied surgical large animal models that currently better mimic the condition.
Collapse
Affiliation(s)
- Evangelia Beslika
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Leon J De Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| | - Paula A da Costa Martins
- Cardiovascular R&D Centre—UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, Netherlands
| |
Collapse
|
2
|
Germain P, Delalande A, Pichon C. Role of Muscle LIM Protein in Mechanotransduction Process. Int J Mol Sci 2022; 23:ijms23179785. [PMID: 36077180 PMCID: PMC9456170 DOI: 10.3390/ijms23179785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
The induction of protein synthesis is crucial to counteract the deconditioning of neuromuscular system and its atrophy. In the past, hormones and cytokines acting as growth factors involved in the intracellular events of these processes have been identified, while the implications of signaling pathways associated with the anabolism/catabolism ratio in reference to the molecular mechanism of skeletal muscle hypertrophy have been recently identified. Among them, the mechanotransduction resulting from a mechanical stress applied to the cell appears increasingly interesting as a potential pathway for therapeutic intervention. At present, there is an open question regarding the type of stress to apply in order to induce anabolic events or the type of mechanical strain with respect to the possible mechanosensing and mechanotransduction processes involved in muscle cells protein synthesis. This review is focused on the muscle LIM protein (MLP), a structural and mechanosensing protein with a LIM domain, which is expressed in the sarcomere and costamere of striated muscle cells. It acts as a transcriptional cofactor during cell proliferation after its nuclear translocation during the anabolic process of differentiation and rebuilding. Moreover, we discuss the possible opportunity of stimulating this mechanotransduction process to counteract the muscle atrophy induced by anabolic versus catabolic disorders coming from the environment, aging or myopathies.
Collapse
Affiliation(s)
- Philippe Germain
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Anthony Delalande
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
| | - Chantal Pichon
- UFR Sciences and Techniques, University of Orleans, 45067 Orleans, France
- Center for Molecular Biophysics, CNRS Orleans, 45071 Orleans, France
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris, France
- Correspondence:
| |
Collapse
|
3
|
|
4
|
Müller D, Donath S, Brückner EG, Biswanath Devadas S, Daniel F, Gentemann L, Zweigerdt R, Heisterkamp A, Kalies SMK. How Localized Z-Disc Damage Affects Force Generation and Gene Expression in Cardiomyocytes. Bioengineering (Basel) 2021; 8:bioengineering8120213. [PMID: 34940366 PMCID: PMC8698600 DOI: 10.3390/bioengineering8120213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 11/24/2022] Open
Abstract
The proper function of cardiomyocytes (CMs) is highly related to the Z-disc, which has a pivotal role in orchestrating the sarcomeric cytoskeletal function. To better understand Z-disc related cardiomyopathies, novel models of Z-disc damage have to be developed. Human pluripotent stem cell (hPSC)-derived CMs can serve as an in vitro model to better understand the sarcomeric cytoskeleton. A femtosecond laser system can be applied for localized and defined damage application within cells as single Z-discs can be removed. We have investigated the changes in force generation via traction force microscopy, and in gene expression after Z-disc manipulation in hPSC-derived CMs. We observed a significant weakening of force generation after removal of a Z-disc. However, no significant changes of the number of contractions after manipulation were detected. The stress related gene NF-kB was significantly upregulated. Additionally, α-actinin (ACTN2) and filamin-C (FLNc) were upregulated, pointing to remodeling of the Z-disc and the sarcomeric cytoskeleton. Ultimately, cardiac troponin I (TNNI3) and cardiac muscle troponin T (TNNT2) were significantly downregulated. Our results allow a better understanding of transcriptional coupling of Z-disc damage and the relation of damage to force generation and can therefore finally pave the way to novel therapies of sarcomeric disorders.
Collapse
Affiliation(s)
- Dominik Müller
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Sören Donath
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Emanuel Georg Brückner
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Santoshi Biswanath Devadas
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
| | - Fiene Daniel
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Robert Zweigerdt
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Stefan Michael Klaus Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany; (D.M.); (S.D.); (E.G.B.); (F.D.); (L.G.); (A.H.)
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; (S.B.D.); (R.Z.)
- Lower Saxony Centre for Biomedical Engineering and Implant Research and Development (NIFE), 30625 Hannover, Germany
- Correspondence:
| |
Collapse
|
5
|
Porto D, Matsunaga Y, Franke B, Williams RM, Qadota H, Mayans O, Benian GM, Lu H. Conformational changes in twitchin kinase in vivo revealed by FRET imaging of freely moving C. elegans. eLife 2021; 10:e66862. [PMID: 34569929 PMCID: PMC8523150 DOI: 10.7554/elife.66862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 09/24/2021] [Indexed: 02/07/2023] Open
Abstract
The force-induced unfolding and refolding of proteins is speculated to be a key mechanism in the sensing and transduction of mechanical signals in the living cell. Yet, little evidence has been gathered for its existence in vivo. Prominently, stretch-induced unfolding is postulated to be the activation mechanism of the twitchin/titin family of autoinhibited sarcomeric kinases linked to the mechanical stress response of muscle. To test the occurrence of mechanical kinase activation in living working muscle, we generated transgenic Caenorhabditis elegans expressing twitchin containing FRET moieties flanking the kinase domain and developed a quantitative technique for extracting FRET signals in freely moving C. elegans, using tracking and simultaneous imaging of animals in three channels (donor fluorescence, acceptor fluorescence, and transmitted light). Computer vision algorithms were used to extract fluorescence signals and muscle contraction states in each frame, in order to obtain fluorescence and body curvature measurements with spatial and temporal precision in vivo. The data revealed statistically significant periodic changes in FRET signals during muscle activity, consistent with a periodic change in the conformation of twitchin kinase. We conclude that stretch-unfolding of twitchin kinase occurs in the active muscle, whereby mechanical activity titrates the signaling pathway of this cytoskeletal kinase. We anticipate that the methods we have developed here could be applied to obtaining in vivo evidence for force-induced conformational changes or elastic behavior of other proteins not only in C. elegans but in other animals in which there is optical transparency (e.g., zebrafish).
Collapse
Affiliation(s)
- Daniel Porto
- Interdisciplinary Bioengineering Program, Georgia Institute of TechnologyAtlantaUnited States
| | - Yohei Matsunaga
- Department of Pathology, Emory UniversityAtlantaUnited States
| | - Barbara Franke
- Department of Biology, University of KonstanzKonstanzGermany
| | - Rhys M Williams
- Department of Biology, University of KonstanzKonstanzGermany
| | - Hiroshi Qadota
- Department of Pathology, Emory UniversityAtlantaUnited States
| | - Olga Mayans
- Department of Biology, University of KonstanzKonstanzGermany
| | - Guy M Benian
- Department of Pathology, Emory UniversityAtlantaUnited States
| | - Hang Lu
- Interdisciplinary Bioengineering Program, Georgia Institute of TechnologyAtlantaUnited States
- School of Chemical & Biomolecular Engineering, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
6
|
Cardiac Biomarkers and Autoantibodies in Endurance Athletes: Potential Similarities with Arrhythmogenic Cardiomyopathy Pathogenic Mechanisms. Int J Mol Sci 2021; 22:ijms22126500. [PMID: 34204386 PMCID: PMC8235133 DOI: 10.3390/ijms22126500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
The “Extreme Exercise Hypothesis” states that when individuals perform training beyond the ideal exercise dose, a decline in the beneficial effects of physical activity occurs. This is due to significant changes in myocardial structure and function, such as hemodynamic alterations, cardiac chamber enlargement and hypertrophy, myocardial inflammation, oxidative stress, fibrosis, and conduction changes. In addition, an increased amount of circulating biomarkers of exercise-induced damage has been reported. Although these changes are often reversible, long-lasting cardiac damage may develop after years of intense physical exercise. Since several features of the athlete’s heart overlap with arrhythmogenic cardiomyopathy (ACM), the syndrome of “exercise-induced ACM” has been postulated. Thus, the distinction between ACM and the athlete’s heart may be challenging. Recently, an autoimmune mechanism has been discovered in ACM patients linked to their characteristic junctional impairment. Since cardiac junctions are similarly impaired by intense physical activity due to the strong myocardial stretching, we propose in the present work the novel hypothesis of an autoimmune response in endurance athletes. This investigation may deepen the knowledge about the pathological remodeling and relative activated mechanisms induced by intense endurance exercise, potentially improving the early recognition of whom is actually at risk.
Collapse
|
7
|
Integrated proteomic and transcriptomic profiling identifies aberrant gene and protein expression in the sarcomere, mitochondrial complex I, and the extracellular matrix in Warmblood horses with myofibrillar myopathy. BMC Genomics 2021; 22:438. [PMID: 34112090 PMCID: PMC8194174 DOI: 10.1186/s12864-021-07758-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background Myofibrillar myopathy in humans causes protein aggregation, degeneration, and weakness of skeletal muscle. In horses, myofibrillar myopathy is a late-onset disease of unknown origin characterized by poor performance, atrophy, myofibrillar disarray, and desmin aggregation in skeletal muscle. This study evaluated molecular and ultrastructural signatures of myofibrillar myopathy in Warmblood horses through gluteal muscle tandem-mass-tag quantitative proteomics (5 affected, 4 control), mRNA-sequencing (8 affected, 8 control), amalgamated gene ontology analyses, and immunofluorescent and electron microscopy. Results We identified 93/1533 proteins and 47/27,690 genes that were significantly differentially expressed. The top significantly differentially expressed protein CSRP3 and three other differentially expressed proteins, including, PDLIM3, SYNPO2, and SYNPOL2, are integrally involved in Z-disc signaling, gene transcription and subsequently sarcomere integrity. Through immunofluorescent staining, both desmin aggregates and CSRP3 were localized to type 2A fibers. The highest differentially expressed gene CHAC1, whose protein product degrades glutathione, is associated with oxidative stress and apoptosis. Amalgamated transcriptomic and proteomic gene ontology analyses identified 3 enriched cellular locations; the sarcomere (Z-disc & I-band), mitochondrial complex I and the extracellular matrix which corresponded to ultrastructural Z-disc disruption and mitochondrial cristae alterations found with electron microscopy. Conclusions A combined proteomic and transcriptomic analysis highlighted three enriched cellular locations that correspond with MFM ultrastructural pathology in Warmblood horses. Aberrant Z-disc mechano-signaling, impaired Z-disc stability, decreased mitochondrial complex I expression, and a pro-oxidative cellular environment are hypothesized to contribute to the development of myofibrillar myopathy in Warmblood horses. These molecular signatures may provide further insight into diagnostic biomarkers, treatments, and the underlying pathophysiology of MFM. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07758-0.
Collapse
|
8
|
Müller D, Klamt T, Gentemann L, Heisterkamp A, Kalies SMK. Evaluation of laser induced sarcomere micro-damage: Role of damage extent and location in cardiomyocytes. PLoS One 2021; 16:e0252346. [PMID: 34086732 PMCID: PMC8177425 DOI: 10.1371/journal.pone.0252346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/12/2021] [Indexed: 11/18/2022] Open
Abstract
Whereas it is evident that a well aligned and regular sarcomeric structure in cardiomyocytes is vital for heart function, considerably less is known about the contribution of individual elements to the mechanics of the entire cell. For instance, it is unclear whether altered Z-disc elements are the reason or the outcome of related cardiomyopathies. Therefore, it is crucial to gain more insight into this cellular organization. This study utilizes femtosecond laser-based nanosurgery to better understand sarcomeres and their repair upon damage. We investigated the influence of the extent and the location of the Z-disc damage. A single, three, five or ten Z-disc ablations were performed in neonatal rat cardiomyocytes. We employed image-based analysis using a self-written software together with different already published algorithms. We observed that cardiomyocyte survival associated with the damage extent, but not with the cell area or the total number of Z-discs per cell. The cell survival is independent of the damage position and can be compensated. However, the sarcomere alignment/orientation is changing over time after ablation. The contraction time is also independent of the extent of damage for the tested parameters. Additionally, we observed shortening rates between 6–7% of the initial sarcomere length in laser treated cardiomyocytes. This rate is an important indicator for force generation in myocytes. In conclusion, femtosecond laser-based nanosurgery together with image-based sarcomere tracking is a powerful tool to better understand the Z-disc complex and its force propagation function and role in cellular mechanisms.
Collapse
Affiliation(s)
- Dominik Müller
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
- * E-mail:
| | - Thorben Klamt
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Stefan Michael Klaus Kalies
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover, Germany
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
9
|
Yashirogi S, Nagao T, Nishida Y, Takahashi Y, Qaqorh T, Yazawa I, Katayama T, Kioka H, Matsui TS, Saito S, Masumura Y, Tsukamoto O, Kato H, Ueda H, Yamaguchi O, Yashiro K, Yamazaki S, Takashima S, Shintani Y. AMPK regulates cell shape of cardiomyocytes by modulating turnover of microtubules through CLIP-170. EMBO Rep 2021; 22:e50949. [PMID: 33251722 PMCID: PMC7788454 DOI: 10.15252/embr.202050949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/12/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a multifunctional kinase that regulates microtubule (MT) dynamic instability through CLIP-170 phosphorylation; however, its physiological relevance in vivo remains to be elucidated. In this study, we identified an active form of AMPK localized at the intercalated disks in the heart, a specific cell-cell junction present between cardiomyocytes. A contractile inhibitor, MYK-461, prevented the localization of AMPK at the intercalated disks, and the effect was reversed by the removal of MYK-461, suggesting that the localization of AMPK is regulated by mechanical stress. Time-lapse imaging analysis revealed that the inhibition of CLIP-170 Ser-311 phosphorylation by AMPK leads to the accumulation of MTs at the intercalated disks. Interestingly, MYK-461 increased the individual cell area of cardiomyocytes in CLIP-170 phosphorylation-dependent manner. Moreover, heart-specific CLIP-170 S311A transgenic mice demonstrated elongation of cardiomyocytes along with accumulated MTs, leading to progressive decline in cardiac contraction. In conclusion, these findings suggest that AMPK regulates the cell shape and aspect ratio of cardiomyocytes by modulating the turnover of MTs through homeostatic phosphorylation of CLIP-170 at the intercalated disks.
Collapse
Affiliation(s)
- Shohei Yashirogi
- Department of Medical BiochemistryOsaka University Graduate School of Frontier Biological ScienceSuita, OsakaJapan
| | - Takemasa Nagao
- Department of Medical BiochemistryOsaka University Graduate School of Frontier Biological ScienceSuita, OsakaJapan
- Department of Molecular PharmacologyNational Cerebral and Cardiovascular CenterSuita, OsakaJapan
| | - Yuya Nishida
- Department of Medical BiochemistryOsaka University Graduate School of Frontier Biological ScienceSuita, OsakaJapan
- Department of Molecular PharmacologyNational Cerebral and Cardiovascular CenterSuita, OsakaJapan
| | - Yusuke Takahashi
- Department of Molecular PharmacologyNational Cerebral and Cardiovascular CenterSuita, OsakaJapan
| | - Tasneem Qaqorh
- Department of Medical BiochemistryOsaka University Graduate School of Frontier Biological ScienceSuita, OsakaJapan
- Department of Molecular PharmacologyNational Cerebral and Cardiovascular CenterSuita, OsakaJapan
| | - Issei Yazawa
- Department of Medical BiochemistryOsaka University Graduate School of Frontier Biological ScienceSuita, OsakaJapan
- Department of Molecular PharmacologyNational Cerebral and Cardiovascular CenterSuita, OsakaJapan
| | - Toru Katayama
- Department of Medical BiochemistryOsaka University Graduate School of Frontier Biological ScienceSuita, OsakaJapan
| | - Hidetaka Kioka
- Department of Cardiovascular MedicineOsaka University Graduate School of MedicineSuita, OsakaJapan
| | - Tsubasa S Matsui
- Division of BioengineeringGraduate School of Engineering ScienceOsaka UniversityToyonakaJapan
| | - Shigeyoshi Saito
- Department of Biomedical ImagingNational Cardiovascular and Cerebral Research CenterSuita, OsakaJapan
- Department of Medical Physics and EngineeringDivision of Health SciencesOsaka University Graduate School of MedicineSuita, OsakaJapan
| | - Yuki Masumura
- Department of Cardiovascular MedicineOsaka University Graduate School of MedicineSuita, OsakaJapan
| | - Osamu Tsukamoto
- Department of Medical BiochemistryOsaka University Graduate School of Frontier Biological ScienceSuita, OsakaJapan
| | - Hisakazu Kato
- Department of Medical BiochemistryOsaka University Graduate School of Frontier Biological ScienceSuita, OsakaJapan
| | - Hiromichi Ueda
- Department of Cardiovascular MedicineOsaka University Graduate School of MedicineSuita, OsakaJapan
| | - Osamu Yamaguchi
- Department of Cardiovascular MedicineOsaka University Graduate School of MedicineSuita, OsakaJapan
- Department of Cardiology, Pulmonology, Hypertension and NephrologyEhime University Graduate School of MedicineShitsukawa, EhimeJapan
| | - Kenta Yashiro
- Division of Anatomy and Developmental BiologyDepartment of AnatomyKyoto Prefectural University of MedicineKyotoJapan
| | - Satoru Yamazaki
- Department of Molecular PharmacologyNational Cerebral and Cardiovascular CenterSuita, OsakaJapan
| | - Seiji Takashima
- Department of Medical BiochemistryOsaka University Graduate School of Frontier Biological ScienceSuita, OsakaJapan
- Japan Science and Technology Agency‐Core Research for Evolutional Science and Technology (CREST)KawaguchiJapan
| | - Yasunori Shintani
- Department of Medical BiochemistryOsaka University Graduate School of Frontier Biological ScienceSuita, OsakaJapan
- Department of Molecular PharmacologyNational Cerebral and Cardiovascular CenterSuita, OsakaJapan
| |
Collapse
|
10
|
Optimizing mechanical stretching protocols for hypertrophic and anti-apoptotic responses in cardiomyocyte-like H9C2 cells. Mol Biol Rep 2021; 48:645-655. [PMID: 33394230 DOI: 10.1007/s11033-020-06112-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/18/2020] [Indexed: 01/07/2023]
Abstract
Cardiomyocytes possess the ability to respond to mechanical stimuli by reprogramming their gene expression. This study investigated the effects of different loading protocols on signaling and expression responses of myogenic, anabolic, inflammatory, atrophy and pro-apoptotic genes in cardiomyocyte-like H9C2 cells. Differentiated H9C2 cells underwent various stretching protocols by altering their elongation, frequency and duration, utilizing an in vitro cell tension system. The loading-induced expression changes of MyoD, Myogenin, MRF4, IGF-1 isoforms, Atrogin-1, Foxo1, Fuca and IL-6 were measured by Real Time-PCR. The stretching-induced activation of Akt and Erk 1/2 was also evaluated by Western blot analysis. Low strain (2.7% elongation), low frequency (0.25 Hz) and intermediate duration (12 h) stretching protocol was overall the most effective in inducing beneficial responses, i.e., protein synthesis along with the suppression of apoptosis, inflammation and atrophy, in the differentiated cardiomyocytes. These findings demonstrated that varying the characteristics of mechanical loading applied on H9C2 cells in vitro can regulate their anabolic/survival program.
Collapse
|
11
|
Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When Stiffness Matters: Mechanosensing in Heart Development and Disease. Front Cell Dev Biol 2020; 8:334. [PMID: 32671058 PMCID: PMC7326078 DOI: 10.3389/fcell.2020.00334] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| | - Eric Adriano Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino," IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, "Umberto I" Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Hannezo E, Heisenberg CP. Mechanochemical Feedback Loops in Development and Disease. Cell 2020; 178:12-25. [PMID: 31251912 DOI: 10.1016/j.cell.2019.05.052] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that both mechanical and biochemical signals play important roles in development and disease. The development of complex organisms, in particular, has been proposed to rely on the feedback between mechanical and biochemical patterning events. This feedback occurs at the molecular level via mechanosensation but can also arise as an emergent property of the system at the cellular and tissue level. In recent years, dynamic changes in tissue geometry, flow, rheology, and cell fate specification have emerged as key platforms of mechanochemical feedback loops in multiple processes. Here, we review recent experimental and theoretical advances in understanding how these feedbacks function in development and disease.
Collapse
Affiliation(s)
- Edouard Hannezo
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| | | |
Collapse
|
13
|
Cell shape determines gene expression: cardiomyocyte morphotypic transcriptomes. Basic Res Cardiol 2019; 115:7. [PMID: 31872302 PMCID: PMC6928094 DOI: 10.1007/s00395-019-0765-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/03/2019] [Indexed: 12/19/2022]
Abstract
Cardiomyocytes undergo considerable changes in cell shape. These can be due to hemodynamic constraints, including changes in preload and afterload conditions, or to mutations in genes important for cardiac function. These changes instigate significant changes in cellular architecture and lead to the addition of sarcomeres, at the same time or at a later stage. However, it is currently unknown whether changes in cell shape on their own affect gene expression and the aim of this study was to fill that gap in our knowledge. We developed a single-cell morphotyping strategy, followed by single-cell RNA sequencing, to determine the effects of altered cell shape in gene expression. This enabled us to profile the transcriptomes of individual cardiomyocytes of defined geometrical morphotypes and characterize them as either normal or pathological conditions. We observed that deviations from normal cell shapes were associated with significant downregulation of gene expression and deactivation of specific pathways, like oxidative phosphorylation, protein kinase A, and cardiac beta-adrenergic signaling pathways. In addition, we observed that genes involved in apoptosis of cardiomyocytes and necrosis were upregulated in square-like pathological shapes. Mechano-sensory pathways, including integrin and Src kinase mediated signaling, appear to be involved in the regulation of shape-dependent gene expression. Our study demonstrates that cell shape per se affects the regulation of the transcriptome in cardiac myocytes, an effect with possible implications for cardiovascular disease.
Collapse
|
14
|
Müller D, Hagenah D, Biswanath S, Coffee M, Kampmann A, Zweigerdt R, Heisterkamp A, Kalies SMK. Femtosecond laser-based nanosurgery reveals the endogenous regeneration of single Z-discs including physiological consequences for cardiomyocytes. Sci Rep 2019; 9:3625. [PMID: 30842507 PMCID: PMC6403391 DOI: 10.1038/s41598-019-40308-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/13/2019] [Indexed: 11/24/2022] Open
Abstract
A highly organized cytoskeleton architecture is the basis for continuous and controlled contraction in cardiomyocytes (CMs). Abnormalities in cytoskeletal elements, like the Z-disc, are linked to several diseases. It is challenging to reveal the mechanisms of CM failure, endogenous repair, or mechanical homeostasis on the scale of single cytoskeletal elements. Here, we used a femtosecond (fs) laser to ablate single Z-discs in human pluripotent stem cells (hPSC) -derived CMs (hPSC-CM) and neonatal rat CMs. We show, that CM viability was unaffected by the loss of a single Z-disc. Furthermore, more than 40% of neonatal rat and 68% of hPSC-CMs recovered the Z-disc loss within 24 h. Significant differences to control cells, after the Z-disc loss, in terms of cell perimeter, x- and y-expansion and calcium homeostasis were not found. Only 14 days in vitro old hPSC-CMs reacted with a significant decrease in cell area, x- and y-expansion 24 h past nanosurgery. This demonstrates that CMs can compensate the loss of a single Z-disc and recover a regular sarcomeric pattern during spontaneous contraction. It also highlights the significant potential of fs laser-based nanosurgery to physically micro manipulate CMs to investigate cytoskeletal functions and organization of single elements.
Collapse
Affiliation(s)
- Dominik Müller
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany. .,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany. .,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.
| | - Dorian Hagenah
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Santoshi Biswanath
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical, School, Hannover, Germany
| | - Michelle Coffee
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical, School, Hannover, Germany
| | - Andreas Kampmann
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany.,Clinic for Cranio-Maxillo-Facial Surgery, Hannover Medical School, Hannover, Germany
| | - Robert Zweigerdt
- REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical, School, Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Stefan M K Kalies
- Institute of Quantum Optics, Leibniz University Hannover, Hannover, Germany.,REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
15
|
Lookin O, Protsenko Y. The lack of slow force response in failing rat myocardium: role of stretch-induced modulation of Ca-TnC kinetics. J Physiol Sci 2019; 69:345-357. [PMID: 30560346 PMCID: PMC10717443 DOI: 10.1007/s12576-018-0651-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
The slow force response (SFR) to stretch is an important adaptive mechanism of the heart. The SFR may result in ~ 20-30% extra force but it is substantially attenuated in heart failure. We investigated the relation of SFR magnitude with Ca2+ transient decay in healthy (CONT) and monocrotaline-treated rats with heart failure (MCT). Right ventricular trabeculae were stretched from 85 to 95% of optimal length and held stretched for 10 min at 30 °C and 1 Hz. Isometric twitches and Ca2+ transients were collected on 2, 4, 6, 8, 10 min after stretch. The changes in peak tension and Ca2+ transient decay characteristics during SFR were evaluated as a percentage of the value measured immediately after stretch. The amount of Ca2+ utilized by TnC was indirectly evaluated using the methods of Ca2+ transient "bump" and "difference curve." The muscles of CONT rats produced positive SFR and they showed prominent functional relation between SFR magnitude and the magnitude (amplitude, integral intensity) of Ca2+ transient "bump" and "difference curve." The myocardium of MCT rats showed negative SFR to stretch (force decreased in time) which was not correlated well with the characteristics of Ca2+ transient decay, evaluated by the methods of "bump" and "difference curve." We conclude that the intracellular mechanisms of Ca2+ balancing during stretch-induced slow adaptation of myocardial contractility are disrupted in failing rat myocardium. The potential significance of our findings is that the deficiency of slow force response in diseased myocardium may be diminished under augmented kinetics of Ca-TnC interaction.
Collapse
Affiliation(s)
- Oleg Lookin
- Laboratory of Biological Motility, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya St., Yekaterinburg, 620049, Russian Federation.
- Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russian Federation.
| | - Yuri Protsenko
- Laboratory of Biological Motility, Institute of Immunology and Physiology, Ural Branch of Russian Academy of Sciences, 106 Pervomayskaya St., Yekaterinburg, 620049, Russian Federation
| |
Collapse
|
16
|
Maruyama K, Nemoto E, Yamada S. Mechanical regulation of macrophage function - cyclic tensile force inhibits NLRP3 inflammasome-dependent IL-1β secretion in murine macrophages. Inflamm Regen 2019; 39:3. [PMID: 30774738 PMCID: PMC6367847 DOI: 10.1186/s41232-019-0092-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023] Open
Abstract
Mechanical stress maintains tissue homeostasis by regulating many cellular functions including cell proliferation, differentiation, and inflammation and immune responses. In inflammatory microenvironments, macrophages in mechanosensitive tissues receive mechanical signals that regulate various cellular functions and inflammatory responses. Macrophage function is affected by several types of mechanical stress, but the mechanisms by which mechanical signals influence macrophage function in inflammation, such as the regulation of interleukin-1β by inflammasomes, remain unclear. In this review, we describe the role of mechanical stress in macrophage and monocyte cell function.
Collapse
Affiliation(s)
- Kentaro Maruyama
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoru Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
17
|
McCutcheon K, Manga P. Left ventricular remodelling in chronic primary mitral regurgitation: implications for medical therapy. Cardiovasc J Afr 2019; 29:51-65. [PMID: 29582880 PMCID: PMC6002796 DOI: 10.5830/cvja-2017-009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 01/12/2017] [Indexed: 01/07/2023] Open
Abstract
Surgical repair or replacement of the mitral valve is currently the only recommended therapy for severe primary mitral regurgitation. The chronic elevation of wall stress caused by the resulting volume overload leads to structural remodelling of the muscular, vascular and extracellular matrix components of the myocardium. These changes are initially compensatory but in the long term have detrimental effects, which ultimately result in heart failure. Understanding the changes that occur in the myocardium due to volume overload at the molecular and cellular level may lead to medical interventions, which potentially could delay or prevent the adverse left ventricular remodelling associated with primary mitral regurgitation. The pathophysiological changes involved in left ventricular remodelling in response to chronic primary mitral regurgitation and the evidence for potential medical therapy, in particular beta-adrenergic blockers, are the focus of this review.
Collapse
Affiliation(s)
- Keir McCutcheon
- Division of Cardiology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg, South Africa.
| | - Pravin Manga
- Division of Cardiology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
18
|
Mechanobiology of mice cervix: expression profile of mechano-related molecules during pregnancy. Cell Tissue Res 2019; 376:443-456. [PMID: 30671632 DOI: 10.1007/s00441-018-02983-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/11/2018] [Indexed: 01/10/2023]
Abstract
There is a known reciprocation between the chronic exertion of force on tissue and both increased tissue density (e.g., bone) and hypertrophy (e.g., heart). This can also be seen in cervical tissue where the excessive gravitational forces associated with multiple fetal pregnancies promote preterm births. While there is a well-known regulation of cervical remodeling (CR) by sex steroid hormones and growth factors, the role of mechanical force is less appreciated. Using proteome-wide technology, we previously provided evidence for the presence of and alteration in mechano-related signaling molecules in the mouse cervix during pregnancy. Here, we profile the expression of select cytoskeletal factors (filamin-A, gelsolin, vimentin, actinin-1, caveolin-1, transgelin, keratin-8, profilin-1) and their associated signaling molecules [focal adhesion kinase (FAK) and the Rho GTPases CDC42, RHOA, and RHOB] in cervices of pregnant mice by real-time PCR and confocal immunofluorescence microscopy. Messenger RNA and protein levels increased for each of these 12 factors, except for 3 (keratin-8, profilin-1, RHOA) that decreased during the course of pregnancy and this corresponded with an increase in gravitational force exerted by the fetus on the cervix. We therefore conclude that size or weight of the growing fetus likely plays a key role in CR through mechanotransduction processes.
Collapse
|
19
|
Venugopal B, Mogha P, Dhawan J, Majumder A. Cell density overrides the effect of substrate stiffness on human mesenchymal stem cells' morphology and proliferation. Biomater Sci 2018. [PMID: 29528341 PMCID: PMC5933002 DOI: 10.1039/c7bm00853h] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effect of substrate stiffness on the cellular morphology, proliferation, and differentiation of human mesenchymal stem cells (hMSCs) has been extensively researched and well established. However, the majority of these studies are done with a low seeding density where cell to cell interactions do not play a significant role. While these conditions permit an analysis of cell-substratum interactions at the single cell level, such a model system fails to capture a critical aspect of the cellular micro-environment in vivo, i.e. the cell-cell interaction via matrix deformation (i.e., strain). To address this question, we seeded hMSCs on soft poly-acrylamide (PAA) gels, at a seeding density that permits cells to be mechanically interacting via the underlying substrate. We found that as the intercellular distance decreases with the increasing seeding density, cellular sensitivity towards the substrate rigidity becomes significantly diminished. With the increasing seeding density, the cell spread area increased on a soft substrate (500 Pa) but reduced on an even slightly stiffer substrate (2 kPa) as well as on glass making them indistinguishable at a high seeding density. Not only in terms of cell spread area but also at a high seeding density, cells formed mature focal adhesions and prominent stress fibres on a soft substrate similar to that of the cells being cultured on a stiff substrate. The decreased intercellular distance also influenced the proliferation rate of the cells: higher seeding density on the soft substrate showed cell cycle progression similar to that of the cells on glass substrates. In summary, this paper demonstrates how the effect of substrate rigidity on the cell morphology and fate is a function of inter-cellular distance when seeded on a soft substrate. Our AFM data suggest that such changes happen due to local strain stiffening of the soft PAA gel, an effect that has been rarely reported in the literature so far.
Collapse
Affiliation(s)
- Balu Venugopal
- Institute of Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India.
| | | | | | | |
Collapse
|
20
|
Urmaliya V, Franchelli G. A multidimensional sight on cardiac failure: uncovered from structural to molecular level. Heart Fail Rev 2018; 22:357-370. [PMID: 28474325 DOI: 10.1007/s10741-017-9610-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Heart failure is one of the leading causes of death, with high mortality rate within 5 years after diagnosis. Treatment and prognosis options for heart failure primarily targeted on hemodynamic and neurohumoral components that drive progressive deterioration of the heart. However, given the multifactorial background that eventually leads to the "phenotype" named heart failure, better insight into the various components may lead to personalized treatment opportunities. Indeed, currently used criteria to diagnose and/or classify heart failure are possibly too focused on phenotypic improvement rather than the molecular driver of the disease and could therefore be further refined by integrating the leap of molecular and cellular knowledge. The ambiguity of the ejection fraction-based classification criteria became evident with development of advanced molecular techniques and the dawn of omics disciplines which introduced the idea that disease is caused by a myriad of cellular and molecular processes rather than a single event or pathway. The fact that different signaling pathways may underlie similar clinical manifestations calls for a more holistic study of heart failure. In this context, the systems biology approach can offer a better understanding of how different components of a system are altered during disease and how they interact with each other, potentially leading to improved diagnosis and classification of this condition. This review is aimed at addressing heart failure through a multilayer approach that covers individually some of the anatomical, morphological, functional, and tissue aspects, with focus on cellular and subcellular features as an alternative insight into new therapeutic opportunities.
Collapse
Affiliation(s)
- Vijay Urmaliya
- Discovery Sciences, Janssen Research & Development, Beerse, Belgium.
| | | |
Collapse
|
21
|
Arif S, Natkunam K, Buyandelger B, Lai CH, Knöll R. An inverse problem approach to identify the internal force of a mechanosensation process in a cardiac myocyte. INFORMATICS IN MEDICINE UNLOCKED 2017. [DOI: 10.1016/j.imu.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Paudyal A, Dewan S, Ikie C, Whalley BJ, de Tombe PP, Boateng SY. Nuclear accumulation of myocyte muscle LIM protein is regulated by heme oxygenase 1 and correlates with cardiac function in the transition to failure. J Physiol 2016; 594:3287-305. [PMID: 26847743 DOI: 10.1113/jp271809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/25/2016] [Indexed: 01/19/2023] Open
Abstract
KEY POINTS The present study investigated the mechanism associated with impaired cardiac mechanosensing that leads to heart failure by examining the factors regulating muscle LIM protein subcellular distribution in myocytes. In myocytes, muscle LIM protein subcellular distribution is regulated by cell contractility rather than passive stretch via heme oxygenase-1 and histone deacetylase signalling. The result of the present study provide new insights into mechanotransduction in cardiac myocytes. Myocyte mechanosensitivity, as indicated by the muscle LIM protein ratio, is also correlated with cardiac function in the transition to failure in a guinea-pig model of disease. This shows that the loss mechanosensitivity plays an important role during the transition to failure in the heart. The present study provides the first indication that mechanosensing could be modified pharmacologically during the transition to heart failure. ABSTRACT Impaired mechanosensing leads to heart failure and a decreased ratio of cytoplasmic to nuclear CSRP3/muscle LIM protein (MLP ratio) is associated with a loss of mechanosensitivity. In the present study, we tested whether passive or active stress/strain was important in modulating the MLP ratio and determined whether this correlated with heart function during the transition to failure. We exposed cultured neonatal rat myocytes to a 10% cyclic mechanical stretch at 1 Hz, or electrically paced myocytes at 6.8 V (1 Hz) for 48 h. The MLP ratio decreased by 50% (P < 0.05, n = 4) only in response to electrical pacing, suggesting impaired mechanosensitivity. Inhibition of contractility with 10 μm blebbistatin resulted in an ∼3-fold increase in the MLP ratio (n = 8, P < 0.05), indicating that myocyte contractility regulates nuclear MLP. Inhibition of histone deacetylase (HDAC) signalling with trichostatin A increased nuclear MLP following passive stretch, suggesting that HDACs block MLP nuclear accumulation. Inhibition of heme oxygenase1 (HO-1) activity with protoporphyrin IX zinc(II) blocked MLP nuclear accumulation. To examine how mechanosensitivity changes during the transition to heart failure, we studied a guinea-pig model of angiotensin II infusion (400 ng kg(-1) min(-1) ) over 12 weeks. Using subcellular fractionation, we showed that the MLP ratio increased by 88% (n = 4, P < 0.01) during compensated hypertrophy but decreased significantly during heart failure (P < 0.001, n = 4). The MLP ratio correlated significantly with the E/A ratio (r = 0.71, P < 0.01, n = 12), a clinical measure of diastolic function. These data indicate for the first time that myocyte mechanosensitivity as indicated by the MLP ratio is regulated primarily by myocyte contractility via HO-1 and HDAC signalling.
Collapse
Affiliation(s)
- Anju Paudyal
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights, Reading, UK
| | - Sukriti Dewan
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Cindy Ikie
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights, Reading, UK
| | | | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Samuel Y Boateng
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Hopkins Building, University of Reading, Whiteknights, Reading, UK
| |
Collapse
|
23
|
Neves JS, Leite-Moreira AM, Neiva-Sousa M, Almeida-Coelho J, Castro-Ferreira R, Leite-Moreira AF. Acute Myocardial Response to Stretch: What We (don't) Know. Front Physiol 2016; 6:408. [PMID: 26779036 PMCID: PMC4700209 DOI: 10.3389/fphys.2015.00408] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/11/2015] [Indexed: 12/24/2022] Open
Abstract
Myocardial stretch, as result of acute hemodynamic overload, is one of the most frequent challenges to the heart and the ability of the heart to intrinsically adapt to it is essential to prevent circulatory congestion. In this review, we highlight the historical background, the currently known mechanisms, as well as the gaps in the understanding of this physiological response. The systolic adaptation to stretch is well-known for over 100 years, being dependent on an immediate increase in contractility—known as the Frank-Starling mechanism—and a further progressive increase—the slow force response. On the other hand, its diastolic counterpart remains largely unstudied. Mechanosensors are structures capable of perceiving mechanical signals and activating pathways that allow their transduction into biochemical responses. Although the connection between these structures and stretch activated pathways remains elusive, we emphasize those most likely responsible for the initiation of the acute response. Calcium-dependent pathways, including angiotensin- and endothelin-related pathways; and cGMP-dependent pathways, comprising the effects of nitric oxide and cardiac natriuretic hormones, embody downstream signaling. The ischemic setting, a paradigmatic situation of acute hemodynamic overload, is also touched upon. Despite the relevant knowledge accumulated, there is much that we still do not know. The quest for further understanding the myocardial response to acute stretch may provide new insights, not only in its physiological importance, but also in the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- João S Neves
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - André M Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Manuel Neiva-Sousa
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - João Almeida-Coelho
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Ricardo Castro-Ferreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine of the University of Porto Porto, Portugal
| |
Collapse
|
24
|
Vafiadaki E, Arvanitis DA, Sanoudou D. Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions. Gene 2015; 566:1-7. [PMID: 25936993 PMCID: PMC6660132 DOI: 10.1016/j.gene.2015.04.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
Abstract
Muscle LIM Protein (MLP) has emerged as a key regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, are causative of human cardiomyopathies, whereas altered expression patterns are observed in human failing heart and skeletal myopathies. In vitro and in vivo evidences reveal a complex and diverse functional role of MLP in striated muscle, which is determined by its multiple interacting partners and subcellular distribution. Experimental evidence suggests that MLP is implicated in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles still unfolds.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
25
|
Lyon RC, Zanella F, Omens JH, Sheikh F. Mechanotransduction in cardiac hypertrophy and failure. Circ Res 2015; 116:1462-1476. [PMID: 25858069 PMCID: PMC4394185 DOI: 10.1161/circresaha.116.304937] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/13/2015] [Indexed: 01/10/2023]
Abstract
Cardiac muscle cells have an intrinsic ability to sense and respond to mechanical load through a process known as mechanotransduction. In the heart, this process involves the conversion of mechanical stimuli into biochemical events that induce changes in myocardial structure and function. Mechanotransduction and its downstream effects function initially as adaptive responses that serve as compensatory mechanisms during adaptation to the initial load. However, under prolonged and abnormal loading conditions, the remodeling processes can become maladaptive, leading to altered physiological function and the development of pathological cardiac hypertrophy and heart failure. Although the mechanisms underlying mechanotransduction are far from being fully elucidated, human and mouse genetic studies have highlighted various cytoskeletal and sarcolemmal structures in cardiac myocytes as the likely candidates for load transducers, based on their link to signaling molecules and architectural components important in disease pathogenesis. In this review, we summarize recent developments that have uncovered specific protein complexes linked to mechanotransduction and mechanotransmission within the sarcomere, the intercalated disc, and at the sarcolemma. The protein structures acting as mechanotransducers are the first step in the process that drives physiological and pathological cardiac hypertrophy and remodeling, as well as the transition to heart failure, and may provide better insights into mechanisms driving mechanotransduction-based diseases.
Collapse
Affiliation(s)
- Robert C. Lyon
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Fabian Zanella
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jeffrey H. Omens
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Farah Sheikh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
26
|
Knöll R. A role for membrane shape and information processing in cardiac physiology. Pflugers Arch 2014; 467:167-73. [PMID: 25129123 PMCID: PMC4281353 DOI: 10.1007/s00424-014-1575-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 01/04/2023]
Abstract
While the heart is a dynamic organ and one of its major functions is to provide the organism with sufficient blood supply, the regulatory feedback systems, which allow adaptation to hemodynamic changes, remain not well understood. Our current description of mechanosensation focuses on stretch-sensitive ion channels, cytoskeletal components, structures such as the sarcomeric Z-disc, costameres, caveolae, or the concept of tensegrity, but these models appear incomplete as the remarkable plasticity of the myocardium in response to biomechanical stress and heart rate variations remains unexplained. Signaling activity at membranes depends on their geometric parameters such as surface area and curvature, which links shape to information processing. In the heart, continuous cycles of contraction and relaxation reshape membrane morphology and hence affect cardio-mechanic signaling. This article provides a brief review on current models of mechanosensation and focuses on how signaling, cardiac myocyte dynamics, and membrane shape interact and potentially give rise to a self-organized system that uses shape to sense the extra- and intracellular environment. This novel concept may help to explain how changes in frequency, and thus membrane shape, affect cardiac plasticity. One of the conclusions is that hypertrophy and associated fibrosis, which have been considered as necessary to cope with increased wall stress, can also be seen as part of complex feedback systems which use local membrane inhomogeneity in different cardiac cell types to influence whole organphysiology and which are predicted to fine-tune and thus regulate membrane-mediated signaling.
Collapse
Affiliation(s)
- Ralph Knöll
- Innovative Medicines and Early Development, Cardiovascular and Metabolic Diseases iMed, AstraZeneca Research and Development Mölndal, Pepparedsleden 1, SE-431 83, Mölndal, Sweden,
| |
Collapse
|