1
|
Federspiel JM, Pfeifer J, Ramsthaler F, Reil JC, Schmidt PH, Sequeira V. Definitional Challenges in Understanding Hypertrophic Cardiomyopathy. Diagnostics (Basel) 2024; 14:2534. [PMID: 39594199 PMCID: PMC11592529 DOI: 10.3390/diagnostics14222534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common hereditary cardiomyopathy. It is often caused by mutations of genes encoding for sarcomeric or sarcomere-associated proteins. Despite its clinical importance, divergent definitions are published by major cardiology societies. Some regard HCM as a specific genetic disease, whereas others define it as a broad 'spectrum of the thick heart'. The present narrative review aimed to assess both definitions from a pathoanatomical perspective. As a conjoint interdisciplinary and translational approach is needed to further increase knowledge and improve the understanding of HCM, the PubMed database was searched using several advanced search algorithms to explore the perspectives of the (forensic) pathologist, clinician, and basic researcher regarding the difference between the definitions of HCM. This discrepancy between definitions can impact critical data, such as prevalence and mortality rate, and complicate the understanding of the disease. For example, due to the different definitions, research findings regarding molecular changes from studies applying the narrow definition cannot be simply extended to the 'spectrum' of HCM.
Collapse
Affiliation(s)
- Jan M. Federspiel
- Institute for Legal Medicine, Faculty of Medicine, Saarland University, Campus Homburg, Building 49.1, Kirrberger Straße 100, 66421 Homburg/Saar, Germany
| | - Jochen Pfeifer
- Department for Pediatric Cardiology, Saarland University Medical Centre, Building 9, Kirrberger Straße 100, 66421 Homburg/Saar, Germany
| | - Frank Ramsthaler
- Institute for Legal Medicine, Faculty of Medicine, Saarland University, Campus Homburg, Building 49.1, Kirrberger Straße 100, 66421 Homburg/Saar, Germany
| | - Jan-Christian Reil
- Department of General and Interventional Cardiology, Heart and Diabetes Centre North Rhine-Westphalia, Ruhr University Bochum, 32545 Bad Oeynhausen, Germany
| | - Peter H. Schmidt
- Institute for Legal Medicine, Faculty of Medicine, Saarland University, Campus Homburg, Building 49.1, Kirrberger Straße 100, 66421 Homburg/Saar, Germany
| | - Vasco Sequeira
- Department for Translational Research, Congestive Heart Failure Centre, University Clinic Wuerzburg, Building A15, Am Schwarzberg 15, 97078 Wuerzburg, Germany;
| |
Collapse
|
2
|
Nollet EE, Algül S, Goebel M, Schlossarek S, van der Wel NN, Jans JJ, van de Wiel MA, Knol JC, Pham TV, Piersma SR, de Goeij-de Haas R, Hermans J, van Klinken JB, van Weeghel M, Houtkooper RH, Carrier L, Jimenez CR, Kuster DW, van der Velden J. Western diet triggers cardiac dysfunction in heterozygous Mybpc3-targeted knock-in mice: A two-hit model of hypertrophic cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 6:100050. [PMID: 39802622 PMCID: PMC11708371 DOI: 10.1016/j.jmccpl.2023.100050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 01/16/2025]
Abstract
Background and aim Phenotypic expression of hypertrophic cardiomyopathy (HCM) and disease course are associated with unfavorable metabolic health. We investigated if Western diet (WD) feeding is sufficient to trigger cardiac hypertrophy and dysfunction in heterozygous (HET) Mybpc3 c.772G>A knock-in mice. Methods and results Wild-type (WT) and HET mice (3-months-old) were fed a WD or normal chow (NC) for 8 weeks. Metabolomic analyses on serum revealed systemic metabolic derailment in WD-fed WT and HET mice. Strikingly, only WD-fed HET mice developed cardiac hypertrophy and dysfunction, which was not driven by aggravated cardiac myosin binding protein-C haploinsufficiency. WD reduced oxidative phosphorylation and increased toxic lipids in the heart irrespective of genotype. Cardiac proteomic analyses revealed higher abundance of proteins involved in fatty acid oxidation in WD-fed mice, however this increase was blunted in HET compared to WT mice. Accordingly, cardiac metabolomic and lipidomic analyses showed accumulation of acylcarnitines in WD-fed HET vs WT mice. Conclusion WD feeding triggered cardiac dysfunction and hypertrophy in otherwise phenotype-negative HET Mybpc3 c.772G>A mice. We propose that the presence of a HCM mutation predisposes the heart to metabolic inflexibility when subjected to systemic metabolic stress. Our study represents a novel approach to study the interplay between unfavorable metabolic health and mutation-induced defects in HCM disease development.
Collapse
Affiliation(s)
- Edgar E. Nollet
- Department of Physiology, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
| | - Sila Algül
- Department of Physiology, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
| | - Max Goebel
- Department of Physiology, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole N. van der Wel
- Department of Medical Biology, Electron Microscopy Centre, Amsterdam UMC, Amsterdam, the Netherlands
| | - Judith J.M. Jans
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Mark A. van de Wiel
- Department of Epidemiology and Data Science, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jaco C. Knol
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Amsterdam, the Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Amsterdam, the Netherlands
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jill Hermans
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Jan Bert van Klinken
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, the Netherlands
| | - Riekelt H. Houtkooper
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Amsterdam, the Netherlands
- Core Facility Metabolomics, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism institute, Amsterdam, the Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Connie R. Jimenez
- Department of Medical Oncology, VUmc Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam UMC, Amsterdam, the Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Heart failure & Arrhythmias, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Hilderink S, Schuldt M, Goebel M, Jansen VJ, Manders E, Moorman S, Dorsch LM, van Steenbeek FG, van der Velden J, Kuster DWD. Characterization of heterozygous and homozygous mouse models with the most common hypertrophic cardiomyopathy mutation MYBPC3 c.2373InsG in the Netherlands. J Mol Cell Cardiol 2023; 185:65-76. [PMID: 37844837 DOI: 10.1016/j.yjmcc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the cardiac myosin binding protein-C (cMyBP-C) encoding gene MYBPC3. In the Netherlands, approximately 25% of patients carry the MYBPC3c.2373InsG founder mutation. Most patients are heterozygous (MYBPC3+/InsG) and have highly variable phenotypic expression, whereas homozygous (MYBPC3InsG/InsG) patients have severe HCM at a young age. To improve understanding of disease progression and genotype-phenotype relationship based on the hallmarks of human HCM, we characterized mice with CRISPR/Cas9-induced heterozygous and homozygous mutations. At 18-28 weeks of age, we assessed the cardiac phenotype of Mybpc3+/InsG and Mybpc3InsG/InsG mice with echocardiography, and performed histological analyses. Cytoskeletal proteins and cardiomyocyte contractility of 3-4 week old and 18-28 week old Mybpc3c.2373InsG mice were compared to wild-type (WT) mice. Expectedly, knock-in of Mybpc3c.2373InsG resulted in the absence of cMyBP-C and our 18-28 week old homozygous Mybpc3c.2373InsG model developed cardiac hypertrophy and severe left ventricular systolic and diastolic dysfunction, whereas HCM was not evident in Mybpc3+/InsG mice. Mybpc3InsG/InsG cardiomyocytes also presented with slowed contraction-relaxation kinetics, to a greater extent in 18-28 week old mice, partially due to increased levels of detyrosinated tubulin and desmin, and reduced cardiac troponin I (cTnI) phosphorylation. Impaired cardiomyocyte contraction-relaxation kinetics were successfully normalized in 18-28 week old Mybpc3InsG/InsG cardiomyocytes by combining detyrosination inhibitor parthenolide and β-adrenergic receptor agonist isoproterenol. Both the 3-4 week old and 18-28 week old Mybpc3InsG/InsG models recapitulate HCM, with a severe phenotype present in the 18-28 week old model.
Collapse
Affiliation(s)
- Sarah Hilderink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Maike Schuldt
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Max Goebel
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Valentijn J Jansen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Emmy Manders
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Stan Moorman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Sequeira V, Waddingham MT, Tsuchimochi H, Maack C, Pearson JT. Mechano-energetic uncoupling in hypertrophic cardiomyopathy: Pathophysiological mechanisms and therapeutic opportunities. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 4:100036. [PMID: 39801694 PMCID: PMC11708264 DOI: 10.1016/j.jmccpl.2023.100036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 01/16/2025]
Abstract
Hypertrophic cardiomyopathy (HCM) is a frequent inherited form of heart failure. The underlying cause of HCM is generally attributed to mutations in genes that encode for sarcomeric proteins, but the pathogenesis of the disease is also influenced by non-genetic factors, which can contribute to diastolic dysfunction and hypertrophic remodeling. Central to the pathogenesis of HCM is hypercontractility, a state that is an antecedent to several key derangements, including increased mitochondrial workload and oxidative stress. As a result, energy depletion and mechano-energetic uncoupling drive cardiac growth through signaling pathways such as ERK and/or potentially AMPK downregulation. Metabolic remodeling also occurs in HCM, characterized by decreased fatty acid oxidation and increased glucose uptake. In some instances, ketones may also feed the heart with energy and act as signaling molecules to reduce oxidative stress and hypertrophic signaling. In addition, arrhythmias are frequently triggered in HCM, resulting from the high Ca2+-buffering of the myofilaments and changes in the ATP/ADP ratio. Understanding the mechanisms driving the progression of HCM is critical to the development of effective therapeutic strategies. This paper presents evidence from both experimental and clinical studies that support the role of hypercontractility and cellular energy alterations in the progression of HCM towards heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Vasco Sequeira
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - Mark T. Waddingham
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
| | - Christoph Maack
- DZHI, Department of Translational Science Universitätsklinikum, Würzburg, Germany
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita-shi, Osaka, Japan
- Department of Physiology and Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Verwijs SM, Pinto YM, Kuster DW, van der Velden J, Limpens J, van Hattum JC, van der Crabben SN, Lekanne Deprez RH, Wilde AA, Jørstad HT. Beneficial Effects of Cardiomyopathy-Associated Genetic Variants on Physical Performance: A Hypothesis-Generating Scoping Review. Cardiology 2021; 147:90-97. [PMID: 34706369 PMCID: PMC8985030 DOI: 10.1159/000520471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genetic variants associated with cardiomyopathies (CMPs) are prevalent in the general population. In young athletes, CMPs account for roughly a quarter of sudden cardiac death, with further unexplained clustering in specific sports. Consequently, most CMPs form a contraindication for competitive sports. We hypothesized that genetic variants might (paradoxically) improve physical performance early in life while impairing cardiac function later in life. METHODS Systematic PubMed search was done to investigate whether genetic variants in genes associated with CMPs could be related to beneficial performance phenotypes. SUMMARY In a limited number of studies (n = 6), 2,860 individuals/subjects with genetic variants were able to outperform those without said variants, as measured by running speed (∼38 m/min in heterozygous [HET] mice, n = 6, vs. ∼32 m/min in wild type [WT] mice, n = 7, p = 0.004) and distance (966 ± 169 km HET mice vs. 561 ± 144 km WT mice, p = 0.0035, n = 10), elite athlete status in endurance athletes (n = 1,672, p = 1.43 × 10-8), maximal oxygen uptake in elite athletes (absolute difference not provided, n = 32, p = 0.005), maximal oxygen uptake in unrelated individuals (n = 473, p = 0.0025), personal records in highly trained marathon runners (2:26:28 ± 0:06:23 min HET, n = 32, vs. 2:28:53 ± 0:05:50 min without polymorphism, n = 108, p = 0.020), and peripheral muscle force contraction in patients following a cardiac rehabilitation program (absolute values not provided, n = 260). Key Message: Beneficial effects in genetic variants associated with CMPs could hypothetically play a role in the selection of young athletes, consequently explaining the prevalence of such genetic variants in athletes and the general population.
Collapse
Affiliation(s)
- Sjoerd M. Verwijs
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Yigal M. Pinto
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jacqueline Limpens
- Medical Library, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Juliette C. van Hattum
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | - Ronald H. Lekanne Deprez
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Arthur A.M. Wilde
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Harald T. Jørstad
- Department of Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ion Channel Impairment and Myofilament Ca 2+ Sensitization: Two Parallel Mechanisms Underlying Arrhythmogenesis in Hypertrophic Cardiomyopathy. Cells 2021; 10:cells10102789. [PMID: 34685769 PMCID: PMC8534456 DOI: 10.3390/cells10102789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Life-threatening ventricular arrhythmias are the main clinical burden in patients with hypertrophic cardiomyopathy (HCM), and frequently occur in young patients with mild structural disease. While massive hypertrophy, fibrosis and microvascular ischemia are the main mechanisms underlying sustained reentry-based ventricular arrhythmias in advanced HCM, cardiomyocyte-based functional arrhythmogenic mechanisms are likely prevalent at earlier stages of the disease. In this review, we will describe studies conducted in human surgical samples from HCM patients, transgenic animal models and human cultured cell lines derived from induced pluripotent stem cells. Current pieces of evidence concur to attribute the increased risk of ventricular arrhythmias in early HCM to different cellular mechanisms. The increase of late sodium current and L-type calcium current is an early observation in HCM, which follows post-translation channel modifications and increases the occurrence of early and delayed afterdepolarizations. Increased myofilament Ca2+ sensitivity, commonly observed in HCM, may promote afterdepolarizations and reentry arrhythmias with direct mechanisms. Decrease of K+-currents due to transcriptional regulation occurs in the advanced disease and contributes to reducing the repolarization-reserve and increasing the early afterdepolarizations (EADs). The presented evidence supports the idea that patients with early-stage HCM should be considered and managed as subjects with an acquired channelopathy rather than with a structural cardiac disease.
Collapse
|
7
|
Düsener S, Flenner F, Maack C, Kohlhaas M, Bay J, Carrier L, Friedrich FW. Ouabain worsens diastolic sarcomere length in myocytes from a cardiomyopathy mouse model. Eur J Pharmacol 2021; 904:174170. [PMID: 33984298 DOI: 10.1016/j.ejphar.2021.174170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/28/2021] [Accepted: 05/06/2021] [Indexed: 12/01/2022]
Abstract
Diastolic dysfunction is a major feature of hypertrophic cardiomyopathy (HCM). Data from patient tissue and animal models associate increased Ca2+ sensitivity of myofilaments with altered Na+ and Ca2+ ion homeostasis in cardiomyocytes with diastolic dysfunction. In this study, we tested the acute effects of ouabain on ventricular myocytes of an HCM mouse model. The effects of ouabain on contractility and Ca2+ transients were tested in intact adult mouse ventricular myocytes (AMVMs) of Mybpc3-targeted knock-in (KI) and wild-type (WT) mice. Concentration-response assessment of contractile function revealed low sensitivity of AMVMs to ouabain (10 μM) compared to literature data on human cardiomyocytes (100 nM). Three hundred μM ouabain increased contraction amplitude (WT ~1.8-fold; KI ~1.5-fold) and diastolic intracellular Ca2+ in both WT and KI (+12-18%), but further decreased diastolic sarcomere length in KI cardiomyocytes (-5%). Western Blot analysis of whole heart protein extracts revealed 50% lower amounts of Na+/K+ ATPase (NKA) in KI than in WT. Ouabain worsened the diastolic phenotype of KI cardiomyocytes at concentrations which did not impair WT diastolic function. Ouabain led to an elevation of intracellular Ca2+, which was poorly tolerated in KI showing already high cytosolic Ca2+ at baseline due to increased myofilament Ca2+ sensitivity. Lower amounts of NKA in KI could amplify the need to exchange excessive intracellular Na+ for Ca2+ and thereby explain the general tendency to higher diastolic Ca2+ in KI.
Collapse
Affiliation(s)
- Silke Düsener
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Michael Kohlhaas
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Johannes Bay
- Department of Pediatrics and Neonatology, Saarland University Hospital, Homburg, Saar, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| | - Felix W Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
8
|
Schuldt M, Pei J, Harakalova M, Dorsch LM, Schlossarek S, Mokry M, Knol JC, Pham TV, Schelfhorst T, Piersma SR, Dos Remedios C, Dalinghaus M, Michels M, Asselbergs FW, Moutin MJ, Carrier L, Jimenez CR, van der Velden J, Kuster DWD. Proteomic and Functional Studies Reveal Detyrosinated Tubulin as Treatment Target in Sarcomere Mutation-Induced Hypertrophic Cardiomyopathy. Circ Heart Fail 2021; 14:e007022. [PMID: 33430602 PMCID: PMC7819533 DOI: 10.1161/circheartfailure.120.007022] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Supplemental Digital Content is available in the text. Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease. While ≈50% of patients with HCM carry a sarcomere gene mutation (sarcomere mutation-positive, HCMSMP), the genetic background is unknown in the other half of the patients (sarcomere mutation-negative, HCMSMN). Genotype-specific differences have been reported in cardiac function. Moreover, HCMSMN patients have later disease onset and a better prognosis than HCMSMP patients. To define if genotype-specific derailments at the protein level may explain the heterogeneity in disease development, we performed a proteomic analysis in cardiac tissue from a clinically well-phenotyped HCM patient group.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Jiayi Pei
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands
| | - Magdalena Harakalova
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.).,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (S.S., L.C.)
| | - Michal Mokry
- Department of Pediatric Gastroenterology, Wilhelmina Children's Hospital (M. Morky), University Medical Center Utrecht, The Netherlands
| | - Jaco C Knol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Thang V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Tim Schelfhorst
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Sander R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Cris Dos Remedios
- Sydney Heart Bank, Discipline of Anatomy, Bosch Institute, University of Sydney, Australia (C.d.R.)
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology (M.D.), Erasmus Medical Center Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Thorax Center (M. Michels), Erasmus Medical Center Rotterdam, The Netherlands
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology (J.P., M.H., F.W.A.), University Medical Center Utrecht, The Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences (F.W.A.), University College London, United Kingdom.,Health Data Research UK and Institute of Health Informatics (F.W.A.), University College London, United Kingdom
| | - Marie-Jo Moutin
- Grenoble Institut des Neurosciences (GIN), Université Grenoble Alpes, Grenoble, France (M.-J.M.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.).,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany (S.S., L.C.)
| | - Connie R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, OncoProteomics Laboratory, VUmc-Cancer Center Amsterdam, The Netherlands (J.C.K., T.V.P., T.S., S.R.P., C.R.J.)
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, The Netherlands (M.S., L.M.D., J.v.d.V., D.W.D.K.)
| |
Collapse
|
9
|
Schuldt M, Johnston JR, He H, Huurman R, Pei J, Harakalova M, Poggesi C, Michels M, Kuster DWD, Pinto JR, van der Velden J. Mutation location of HCM-causing troponin T mutations defines the degree of myofilament dysfunction in human cardiomyocytes. J Mol Cell Cardiol 2021; 150:77-90. [PMID: 33148509 PMCID: PMC10616699 DOI: 10.1016/j.yjmcc.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND The clinical outcome of hypertrophic cardiomyopathy patients is not only determined by the disease-causing mutation but influenced by a variety of disease modifiers. Here, we defined the role of the mutation location and the mutant protein dose of the troponin T mutations I79N, R94C and R278C. METHODS AND RESULTS We determined myofilament function after troponin exchange in permeabilized single human cardiomyocytes as well as in cardiac patient samples harboring the R278C mutation. Notably, we found that a small dose of mutant protein is sufficient for the maximal effect on myofilament Ca2+-sensitivity for the I79N and R94C mutation while the mutation location determines the magnitude of this effect. While incorporation of I79N and R94C increased myofilament Ca2+-sensitivity, incorporation of R278C increased Ca2+-sensitivity at low and intermediate dose, while it decreased Ca2+-sensitivity at high dose. All three cTnT mutants showed reduced thin filament binding affinity, which coincided with a relatively low maximal exchange (50.5 ± 5.2%) of mutant troponin complex in cardiomyocytes. In accordance, 32.2 ± 4.0% mutant R278C was found in two patient samples which showed 50.0 ± 3.7% mutant mRNA. In accordance with studies that showed clinical variability in patients with the exact same mutation, we observed variability on the functional single cell level in patients with the R278C mutation. These differences in myofilament properties could not be explained by differences in the amount of mutant protein. CONCLUSIONS Using troponin exchange in single human cardiomyocytes, we show that TNNT2 mutation-induced changes in myofilament Ca2+-sensitivity depend on mutation location, while all mutants show reduced thin filament binding affinity. The specific mutation-effect observed for R278C could not be translated to myofilament function of cardiomyocytes from patients, and is most likely explained by other (post)-translational troponin modifications. Overall, our studies illustrate that mutation location underlies variability in myofilament Ca2+-sensitivity, while only the R278C mutation shows a highly dose-dependent effect on myofilament function.
Collapse
Affiliation(s)
- Maike Schuldt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| | - Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA
| | - Roy Huurman
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jiayi Pei
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands; Regenerative Medicine Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michelle Michels
- Department of Cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Wijnker PJ, Sequeira V, Kuster DW, van der Velden J. Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits. Antioxid Redox Signal 2019; 31:318-358. [PMID: 29490477 PMCID: PMC6602117 DOI: 10.1089/ars.2017.7236] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Significance: Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction, and myocardial disarray. Disease onset occurs between 20 and 50 years of age, thus affecting patients in the prime of their life. HCM is caused by mutations in sarcomere proteins, the contractile building blocks of the heart. Despite increased knowledge of causal mutations, the exact path from genetic defect leading to cardiomyopathy is complex and involves additional disease hits. Recent Advances: Laboratory-based studies indicate that HCM development not only depends on the primary sarcomere impairment caused by the mutation but also on secondary disease-related alterations in the heart. Here we propose a vicious mutation-induced disease cycle, in which a mutation-induced energy depletion alters cellular metabolism with increased mitochondrial work, which triggers secondary disease modifiers that will worsen disease and ultimately lead to end-stage HCM. Critical Issues: Evidence shows excessive cellular reactive oxygen species (ROS) in HCM patients and HCM animal models. Oxidative stress markers are increased in the heart (oxidized proteins, DNA, and lipids) and serum of HCM patients. In addition, increased mitochondrial ROS production and changes in endogenous antioxidants are reported in HCM. Mutant sarcomeric protein may drive excessive levels of cardiac ROS via changes in cardiac efficiency and metabolism, mitochondrial activation and/or dysfunction, impaired protein quality control, and microvascular dysfunction. Future Directions: Interventions restoring metabolism, mitochondrial function, and improved ROS balance may be promising therapeutic approaches. We discuss the effects of current HCM pharmacological therapies and potential future therapies to prevent and reverse HCM. Antioxid. Redox Signal. 31, 318-358.
Collapse
Affiliation(s)
- Paul J.M. Wijnker
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Vasco Sequeira
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
11
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
12
|
Bollen IAE, van der Meulen M, de Goede K, Kuster DWD, Dalinghaus M, van der Velden J. Cardiomyocyte Hypocontractility and Reduced Myofibril Density in End-Stage Pediatric Cardiomyopathy. Front Physiol 2017; 8:1103. [PMID: 29312005 PMCID: PMC5743800 DOI: 10.3389/fphys.2017.01103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/13/2017] [Indexed: 12/25/2022] Open
Abstract
Dilated cardiomyopathy amongst children (pediatric cardiomyopathy, pediatric CM) is associated with a high morbidity and mortality. Because little is known about the pathophysiology of pediatric CM, treatment is largely based on adult heart failure therapy. The reason for high morbidity and mortality is largely unknown as well as data on cellular pathomechanisms is limited. Here, we assessed cardiomyocyte contractility and protein expression to define cellular pathomechanisms in pediatric CM. Explanted heart tissue of 11 pediatric CM patients and 18 controls was studied. Contractility was measured in single membrane-permeabilized cardiomyocytes and protein expression was assessed with gel electrophoresis and western blot analysis. We observed increased Ca2+-sensitivity of myofilaments which was due to hypophosphorylation of cardiac troponin I, a feature commonly observed in adult DCM. We also found a significantly reduced maximal force generating capacity of pediatric CM cardiomyocytes, as well as a reduced passive force development over a range of sarcomere lengths. Myofibril density was reduced in pediatric CM compared to controls. Correction of maximal force and passive force for myofibril density normalized forces in pediatric CM cardiomyocytes to control values. This implies that the hypocontractility was caused by the reduction in myofibril density. Unlike in adult DCM we did not find an increase in compliant titin isoform expression in end-stage pediatric CM. The limited ability of pediatric CM patients to maintain myofibril density might have contributed to their early disease onset and severity.
Collapse
Affiliation(s)
- Ilse A E Bollen
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| | - Marijke van der Meulen
- Department of Pediatric Cardiology, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Kyra de Goede
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Erasmus Medical Center, Erasmus University Rotterdam, Rotterdam, Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands
| |
Collapse
|
13
|
Finocchiaro G, Magavern E, Sinagra G, Ashley E, Papadakis M, Tome-Esteban M, Sharma S, Olivotto I. Impact of Demographic Features, Lifestyle, and Comorbidities on the Clinical Expression of Hypertrophic Cardiomyopathy. J Am Heart Assoc 2017; 6:JAHA.117.007161. [PMID: 29237589 PMCID: PMC5779031 DOI: 10.1161/jaha.117.007161] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gherardo Finocchiaro
- Molecular and Clinical Sciences Research Institute Cardiology Clinical Academic Group, St George's, University of London, London, United Kingdom
| | - Emma Magavern
- Imperial College Healthcare NHS Trust, St Mary's Hospital, London, United Kingdom
| | | | | | - Michael Papadakis
- Molecular and Clinical Sciences Research Institute Cardiology Clinical Academic Group, St George's, University of London, London, United Kingdom
| | - Maite Tome-Esteban
- Molecular and Clinical Sciences Research Institute Cardiology Clinical Academic Group, St George's, University of London, London, United Kingdom
| | - Sanjay Sharma
- Molecular and Clinical Sciences Research Institute Cardiology Clinical Academic Group, St George's, University of London, London, United Kingdom
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
14
|
Bollen IAE, Ehler E, Fleischanderl K, Bouwman F, Kempers L, Ricke-Hoch M, Hilfiker-Kleiner D, Dos Remedios CG, Krüger M, Vink A, Asselbergs FW, van Spaendonck-Zwarts KY, Pinto YM, Kuster DWD, van der Velden J. Myofilament Remodeling and Function Is More Impaired in Peripartum Cardiomyopathy Compared with Dilated Cardiomyopathy and Ischemic Heart Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2645-2658. [PMID: 28935576 DOI: 10.1016/j.ajpath.2017.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 01/09/2023]
Abstract
Peripartum cardiomyopathy (PPCM) and dilated cardiomyopathy (DCM) show similarities in clinical presentation. However, although DCM patients do not recover and slowly deteriorate further, PPCM patients show either a fast cardiac deterioration or complete recovery. The aim of this study was to assess if underlying cellular changes can explain the clinical similarities and differences in the two diseases. We, therefore, assessed sarcomeric protein expression, modification, titin isoform shift, and contractile behavior of cardiomyocytes in heart tissue of PPCM and DCM patients and compared these with nonfailing controls. Heart samples from ischemic heart disease (ISHD) patients served as heart failure control samples. Passive force was only increased in PPCM samples compared with controls, whereas PPCM, DCM, and ISHD samples all showed increased myofilament Ca2+ sensitivity. Length-dependent activation was significantly impaired in PPCM compared with controls, no impairment was observed in ISHD samples, and DCM samples showed an intermediate response. Contractile impairments were caused by impaired protein kinase A (PKA)-mediated phosphorylation because exogenous PKA restored all parameters to control levels. Although DCM samples showed reexpression of EH-myomesin, an isoform usually only expressed in the heart before birth, PPCM and ISHD did not. The lack of EH-myomesin, combined with low PKA-mediated phosphorylation of myofilament proteins and increased compliant titin isoform, may explain the increase in passive force and blunted length-dependent activation of myofilaments in PPCM samples.
Collapse
Affiliation(s)
- Ilse A E Bollen
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - Elisabeth Ehler
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Karin Fleischanderl
- Randall Division of Cell and Molecular Biophysics and Cardiovascular Division, British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Floor Bouwman
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Lanette Kempers
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Cristobal G Dos Remedios
- Bosch Institute, Discipline of Anatomy and Histology, University of Sydney, Sydney, New South Wales, Australia
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands; Durrer Center for Cardiogenetic Research, Netherlands Heart Institute, Utrecht, the Netherlands; Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, United Kingdom
| | - Karin Y van Spaendonck-Zwarts
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Department of Clinical Genetics, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Yigal M Pinto
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Amsterdam Medical Center Heart Center, Department of Clinical and Experimental Cardiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
15
|
Stücker S, Kresin N, Carrier L, Friedrich FW. Nebivolol Desensitizes Myofilaments of a Hypertrophic Cardiomyopathy Mouse Model. Front Physiol 2017; 8:558. [PMID: 28824454 PMCID: PMC5539082 DOI: 10.3389/fphys.2017.00558] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/17/2017] [Indexed: 01/19/2023] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) patients often present with diastolic dysfunction and a normal to supranormal systolic function. To counteract this hypercontractility, guideline therapies advocate treatment with beta-adrenoceptor and Ca2+ channel blockers. One well established pathomechanism for the hypercontractile phenotype frequently observed in HCM patients and several HCM mouse models is an increased myofilament Ca2+ sensitivity. Nebivolol, a commonly used beta-adrenoceptor antagonist, has been reported to lower maximal force development and myofilament Ca2+ sensitivity in rabbit and human heart tissues. The aim of this study was to evaluate the effect of nebivolol in cardiac muscle strips of an established HCM Mybpc3 mouse model. Furthermore, we investigated actions of nebivolol and epigallocatechin-gallate, which has been shown to desensitize myofilaments for Ca2+ in mouse and human HCM models, in cardiac strips of HCM patients with a mutation in the most frequently mutated HCM gene MYBPC3. Methods and Results: Nebivolol effects were tested on contractile parameters and force-Ca2+ relationship of skinned ventricular muscle strips isolated from Mybpc3-targeted knock-in (KI), wild-type (WT) mice and cardiac strips of three HCM patients with MYBPC3 mutations. At baseline, KI strips showed no difference in maximal force development compared to WT mouse heart strips. Neither 1 nor 10 μM nebivolol had an effect on maximal force development in both genotypes. 10 μM nebivolol induced myofilament Ca2+ desensitization in WT strips and to a greater extent in KI strips. Neither 1 nor 10 μM nebivolol had an effect on Ca2+ sensitivity in cardiac muscle strips of three HCM patients with MYBPC3 mutations, whereas epigallocatechin-gallate induced a right shift in the force-Ca2+ curve. Conclusion: Nebivolol induced a myofilament Ca2+ desensitization in both WT and KI strips, which was more pronounced in KI muscle strips. In human cardiac muscle strips of three HCM patients nebivolol had no effect on myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Sabrina Stücker
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-EppendorfHamburg, Germany.,German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Nico Kresin
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-EppendorfHamburg, Germany.,German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-EppendorfHamburg, Germany.,German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Felix W Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-EppendorfHamburg, Germany.,German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| |
Collapse
|
16
|
Bollen IAE, Schuldt M, Harakalova M, Vink A, Asselbergs FW, Pinto JR, Krüger M, Kuster DWD, van der Velden J. Genotype-specific pathogenic effects in human dilated cardiomyopathy. J Physiol 2017; 595:4677-4693. [PMID: 28436080 PMCID: PMC5509872 DOI: 10.1113/jp274145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/18/2017] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3p.98trunc resulted in haploinsufficiency, increased Ca2+ -sensitivity and reduced length-dependent activation. TNNT2p.K217del caused increased passive tension. A mutation in the gene encoding Lamin A/C (LMNAp.R331Q ) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy. Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. ABSTRACT Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non-sarcomeric genes. In this study we defined the pathogenic effects of three DCM-causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3p.98truncation ) and cardiac troponin T (TNNT2p.K217deletion ; also known as the p.K210del) and the non-sarcomeric gene mutation encoding lamin A/C (LMNAp.R331Q ). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane-permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3p.98trunc and TNNT2p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3p.98trunc showed pure haploinsufficiency, increased Ca2+ -sensitivity and impaired length-dependent activation. The TNNT2p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild-type troponin complex corrected troponin protein levels to 83% of controls in the TNNI3p.98trunc sample. Moreover, upon exchange all functional deficits in the TNNI3p.98trunc and TNNT2p.K217del samples were normalized to control values confirming the pathogenic effects of the troponin mutations. The LMNAp.R331Q mutation resulted in reduced maximal force development due to disease remodelling. Our study shows that different gene mutations induce DCM via diverse cellular pathways.
Collapse
Affiliation(s)
- Ilse A E Bollen
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Maike Schuldt
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division of Heart and Lungs, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division of Heart and Lungs, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
17
|
Murphy E, Amanakis G, Fillmore N, Parks RJ, Sun J. Sex Differences in Metabolic Cardiomyopathy. Cardiovasc Res 2017; 113:370-377. [PMID: 28158412 PMCID: PMC5852638 DOI: 10.1093/cvr/cvx008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
In contrast to ischemic cardiomyopathies which are more common in men, women are over-represented in diabetic cardiomyopathies. Diabetes is a risk factor for cardiovascular disease; however, there is a sexual dimorphism in this risk factor: heart disease is five times more common in diabetic women but only two-times more common in diabetic men. Heart failure with preserved ejection fraction, which is associated with metabolic syndrome, is also more prevalent in women. This review will examine potential mechanisms for the sex differences in metabolic cardiomyopathies. Sex differences in metabolism, calcium handling, nitric oxide, and structural proteins will be evaluated. Nitric oxide synthase and PPARα exhibit sex differences and have also been proposed to mediate the development of hypertrophy and heart failure. We focused on a role for these signalling pathways in regulating sex differences in metabolic cardiomyopathies.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, MSC 1770, 10 Center Dr, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
18
|
Flenner F, Geertz B, Reischmann-Düsener S, Weinberger F, Eschenhagen T, Carrier L, Friedrich FW. Diltiazem prevents stress-induced contractile deficits in cardiomyocytes, but does not reverse the cardiomyopathy phenotype in Mybpc3-knock-in mice. J Physiol 2017; 595:3987-3999. [PMID: 28090637 DOI: 10.1113/jp273769] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac illness and can lead to diastolic dysfunction, sudden cardiac death and heart failure. Treatment of HCM patients is empirical and current pharmacological treatments are unable to stop disease progression or reverse hypertrophy. In this study, we tested if the non-dihydropyridine Ca2+ channel blocker diltiazem, which previously showed potential to stop disease progression, can improve the phenotype of a HCM mouse model (Mybpc3-targeted knock-in), which is based on a mutation commonly found in patients. Diltiazem improved contractile function of isolated ventricular cardiomyocytes acutely, but chronic application did not improve the phenotype of adult mice with a fully developed HCM. Our study shows that diltiazem has beneficial effects in HCM, but long-term treatment success is likely to depend on characteristics and cause of HCM and onset of treatment. ABSTRACT Left ventricular hypertrophy, diastolic dysfunction and fibrosis are the main features of hypertrophic cardiomyopathy (HCM). Guidelines recommend β-adrenoceptor or Ca2+ channel antagonists as pharmacological treatment. The Ca2+ channel blocker diltiazem recently showed promising beneficial effects in pre-clinical HCM, particularly in patients carrying MYBPC3 mutations. In the present study we evaluated whether diltiazem could ameliorate or reverse the disease phenotype in cells and in vivo in an Mybpc3-targeted knock-in (KI) mouse model of HCM. Sarcomere shortening and Ca2+ transients were measured in KI and wild-type (WT) cardiomyocytes in basal conditions (1-Hz pacing) and under stress conditions (30 nm isoprenaline, 5-Hz pacing) with or without pre-treatment with 1 μm diltiazem. KI cardiomyocytes exhibited lower diastolic sarcomere length (dSL) at baseline, a tendency to a stronger positive inotropic response to isoprenaline than WT, a marked reduction of dSL and a tendency towards arrhythmias under stress conditions. Pre-treatment of cardiomyocytes with 1 μm diltiazem reduced the drop in dSL and arrhythmia frequency in KI, and attenuated the positive inotropic effect of isoprenaline. Furthermore, diltiazem reduced the contraction amplitude at 5 Hz but did not affect diastolic Ca2+ load and Ca2+ transient amplitude. Six months of diltiazem treatment of KI mice did not reverse cardiac hypertrophy and dysfunction, activation of the fetal gene program or fibrosis. In conclusion, diltiazem blunted the response to isoprenaline in WT and KI cardiomyocytes and improved diastolic relaxation under stress conditions in KI cardiomyocytes. This beneficial effect of diltiazem in cells did not translate in therapeutic efficacy when applied chronically in KI mice.
Collapse
Affiliation(s)
- Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Silke Reischmann-Düsener
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Felix W Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| |
Collapse
|
19
|
Friedrich FW, Flenner F, Nasib M, Eschenhagen T, Carrier L. Epigallocatechin-3-Gallate Accelerates Relaxation and Ca 2+ Transient Decay and Desensitizes Myofilaments in Healthy and Mybpc3-Targeted Knock-in Cardiomyopathic Mice. Front Physiol 2016; 7:607. [PMID: 27994558 PMCID: PMC5136558 DOI: 10.3389/fphys.2016.00607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/22/2016] [Indexed: 11/13/2022] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac muscle disease with left ventricular hypertrophy, interstitial fibrosis and diastolic dysfunction. Increased myofilament Ca2+ sensitivity could be the underlying cause of diastolic dysfunction. Epigallocatechin-3-gallate (EGCg), a catechin found in green tea, has been reported to decrease myofilament Ca2+ sensitivity in HCM models with troponin mutations. However, whether this is also the case for HCM-associated thick filament mutations is not known. Therefore, we evaluated whether EGCg affects the behavior of cardiomyocytes and myofilaments of an HCM mouse model carrying a gene mutation in cardiac myosin-binding protein C and exhibiting both increased myofilament Ca2+ sensitivity and diastolic dysfunction. Methods and Results: Acute effects of EGCg were tested on fractional sarcomere shortening and Ca2+ transients in intact ventricular myocytes and on force-Ca2+ relationship of skinned ventricular muscle strips isolated from Mybpc3-targeted knock-in (KI) and wild-type (WT) mice. Fractional sarcomere shortening and Ca2+ transients were analyzed at 37°C under 1-Hz pacing in the absence or presence of EGCg (1.8 μM). At baseline and in the absence of Fura-2, KI cardiomyocytes displayed lower diastolic sarcomere length, higher fractional sarcomere shortening, longer time to peak shortening and time to 50% relengthening than WT cardiomyocytes. In WT and KI neither diastolic sarcomere length nor fractional sarcomere shortening were influenced by EGCg treatment, but relaxation time was reduced, to a greater extent in KI cells. EGCg shortened time to peak Ca2+ and Ca2+ transient decay in Fura-2-loaded WT and KI cardiomyocytes. EGCg did not influence phosphorylation of phospholamban. In skinned cardiac muscle strips, EGCg (30 μM) decreased Ca2+ sensitivity in both groups. Conclusion: EGCg hastened relaxation and Ca2+ transient decay to a larger extent in KI than in WT cardiomyocytes. This effect could be partially explained by myofilament Ca2+ desensitization.
Collapse
Affiliation(s)
- Felix W Friedrich
- Cardiovascular Research Center, Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Frederik Flenner
- Cardiovascular Research Center, Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Mahtab Nasib
- Cardiovascular Research Center, Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Thomas Eschenhagen
- Cardiovascular Research Center, Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| | - Lucie Carrier
- Cardiovascular Research Center, Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-EppendorfHamburg, Germany; German Centre for Cardiovascular Research (DZHK)Hamburg, Germany
| |
Collapse
|
20
|
Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ Res 2016; 118:1294-312. [PMID: 27081111 DOI: 10.1161/circresaha.116.307509] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Nearly one-third of deaths in the United States are caused by cardiovascular disease (CVD) each year. In the past, CVD was thought to mainly affect men, leading to the exclusion of women and female animals from clinical studies and preclinical research. In light of sexual dimorphisms in CVD, a need exists to examine baseline cardiac differences in humans and the animals used to model CVD. In humans, sex differences are apparent at every level of cardiovascular physiology from action potential duration and mitochondrial energetics to cardiac myocyte and whole-heart contractile function. Biological sex is an important modifier of the development of CVD with younger women generally being protected, but this cardioprotection is lost later in life, suggesting a role for estrogen. Although endogenous estrogen is most likely a mediator of the observed functional differences in both health and disease, the signaling mechanisms involved are complex and are not yet fully understood. To investigate how sex modulates CVD development, animal models are essential tools and should be useful in the development of therapeutics. This review will focus on describing the cardiovascular sexual dimorphisms that exist both physiologically and in common animal models of CVD.
Collapse
Affiliation(s)
- Christa L Blenck
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Pamela A Harvey
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Jane F Reckelhoff
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.).
| |
Collapse
|
21
|
Birch CL, Behunin SM, Lopez-Pier MA, Danilo C, Lipovka Y, Saripalli C, Granzier H, Konhilas JP. Sex dimorphisms of crossbridge cycling kinetics in transgenic hypertrophic cardiomyopathy mice. Am J Physiol Heart Circ Physiol 2016; 311:H125-36. [PMID: 27199124 DOI: 10.1152/ajpheart.00592.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is a disease of the sarcomere and may lead to hypertrophic, dilated, restrictive, and/or arrhythmogenic cardiomyopathy, congestive heart failure, or sudden cardiac death. We hypothesized that hearts from transgenic HCM mice harboring a mutant myosin heavy chain increase the energetic cost of contraction in a sex-specific manner. To do this, we assessed Ca(2+) sensitivity of tension and crossbridge kinetics in demembranated cardiac trabeculas from male and female wild-type (WT) and HCM hearts at an early time point (2 mo of age). We found a significant effect of sex on Ca(2+) sensitivity such that male, but not female, HCM mice displayed a decrease in Ca(2+) sensitivity compared with WT counterparts. The HCM transgene and sex significantly impacted the rate of force redevelopment by a rapid release-restretch protocol and tension cost by the ATPase-tension relationship. In each of these measures, HCM male trabeculas displayed a gain-of-function when compared with WT counterparts. In addition, cardiac remodeling measured by echocardiography, histology, morphometry, and posttranslational modifications demonstrated sex- and HCM-specific effects. In conclusion, female and male HCM mice display sex dimorphic crossbridge kinetics accompanied by sex- and HCM-dependent cardiac remodeling at the morphometric, histological, and cellular level.
Collapse
Affiliation(s)
- Camille L Birch
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Samantha M Behunin
- Department of Physiology, University of Arizona, Tucson, Arizona; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Marissa A Lopez-Pier
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Christiane Danilo
- Department of Physiology, University of Arizona, Tucson, Arizona; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Yulia Lipovka
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona; Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona; and
| | - Chandra Saripalli
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Henk Granzier
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - John P Konhilas
- Department of Physiology, University of Arizona, Tucson, Arizona; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona;
| |
Collapse
|
22
|
Najafi A, Sequeira V, Helmes M, Bollen IAE, Goebel M, Regan JA, Carrier L, Kuster DWD, Van Der Velden J. Selective phosphorylation of PKA targets after β-adrenergic receptor stimulation impairs myofilament function in Mybpc3-targeted HCM mouse model. Cardiovasc Res 2016; 110:200-14. [PMID: 26825555 DOI: 10.1093/cvr/cvw026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/22/2016] [Indexed: 12/19/2022] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) has been associated with reduced β-adrenergic receptor (β-AR) signalling, leading downstream to a low protein kinase A (PKA)-mediated phosphorylation. It remained undefined whether all PKA targets will be affected similarly by diminished β-AR signalling in HCM. We aimed to investigate the role of β-AR signalling on regulating myofilament and calcium handling in an HCM mouse model harbouring a gene mutation (G > A transition on the last nucleotide of exon 6) in Mybpc3 encoding cardiac myosin-binding protein C. METHODS AND RESULTS Cardiomyocyte contractile properties and phosphorylation state were measured in left ventricular permeabilized and intact cardiomyocytes isolated from heterozygous (HET) or homozygous (KI) Mybpc3-targeted knock-in mice. Significantly higher myofilament Ca²⁺sensitivity and passive tension were detected in KI mice, which were normalized after PKA treatment. Loaded intact cardiomyocyte force-sarcomere length relation was impaired in both HET and KI mice, suggesting a reduced length-dependent activation. Unloaded cardiomyocyte function revealed an impaired myofilament contractile response to isoprenaline (ISO) in KI, whereas the calcium-handling response to ISO was maintained. This disparity was explained by an attenuated increase in cardiac troponin I (cTnI) phosphorylation in KI, whereas the increase in phospholamban (PLN) phosphorylation was maintained to wild-type values. CONCLUSION These data provide evidence that in the KI HCM mouse model, β-AR stimulation leads to preferential PKA phosphorylation of PLN over cTnI, resulting in an impaired inotropic and lusitropic response.
Collapse
Affiliation(s)
- Aref Najafi
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | - Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Michiel Helmes
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Ilse A E Bollen
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Max Goebel
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Jessica A Regan
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Diederik W D Kuster
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Jolanda Van Der Velden
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
23
|
Barefield D, Kumar M, Gorham J, Seidman JG, Seidman CE, de Tombe PP, Sadayappan S. Haploinsufficiency of MYBPC3 exacerbates the development of hypertrophic cardiomyopathy in heterozygous mice. J Mol Cell Cardiol 2015; 79:234-43. [PMID: 25463273 PMCID: PMC4642280 DOI: 10.1016/j.yjmcc.2014.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/10/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023]
Abstract
Mutations in MYBPC3, the gene encoding cardiac myosin binding protein-C (cMyBP-C), account for ~40% of hypertrophic cardiomyopathy (HCM) cases. Most pathological MYBPC3 mutations encode truncated protein products not found in tissue. Reduced protein levels occur in symptomatic heterozygous human HCM carriers, suggesting haploinsufficiency as an underlying mechanism of disease. However, we do not know if reduced cMyBP-C content results from, or initiates the development of HCM. In previous studies, heterozygous (HET) mice with a MYBPC3 C'-terminal truncation mutation and normal cMyBP-C levels show altered contractile function prior to any overt hypertrophy. Therefore, this study aimed to test whether haploinsufficiency occurs, with decreased cMyBP-C content, following cardiac stress and whether the functional impairment in HET MYBPC3 hearts leads to worsened disease progression. To address these questions, transverse aortic constriction (TAC) was performed on three-month-old wild-type (WT) and HET MYBPC3-truncation mutant mice and then characterized at 4 and 12weeks post-surgery. HET-TAC mice showed increased hypertrophy and reduced ejection fraction compared to WT-TAC mice. At 4weeks post-surgery, HET myofilaments showed significantly reduced cMyBP-C content. Functionally, HET-TAC cardiomyocytes showed impaired force generation, higher Ca(2+) sensitivity, and blunted length-dependent increase in force generation. RNA sequencing revealed several differentially regulated genes between HET and WT groups, including regulators of remodeling and hypertrophic response. Collectively, these results demonstrate that haploinsufficiency occurs in HET MYBPC3 mutant carriers following stress, causing, in turn, reduced cMyBP-C content and exacerbating the development of dysfunction at myofilament and whole-heart levels.
Collapse
Affiliation(s)
- David Barefield
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|