1
|
Matsui M, Kajikuri J, Kito H, Elboray EE, Suzuki T, Ohya S. Downregulation of IL-8 and IL-10 by LRRC8A Inhibition through the NOX2-Nrf2-CEBPB Transcriptional Axis in THP-1-Derived M 2 Macrophages. Int J Mol Sci 2024; 25:9612. [PMID: 39273558 PMCID: PMC11395230 DOI: 10.3390/ijms25179612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
M2-polarized, tumor-associated macrophages (TAMs) produce pro-tumorigenic and angiogenic mediators, such as interleukin-8 (IL-8) and IL-10. Leucine-rich repeat-containing protein 8 members (LRRC8s) form volume-regulated anion channels and play an important role in macrophage functions by regulating cytokine and chemokine production. We herein examined the role of LRRC8A in IL-8 and IL-10 expression in THP-1-differentiated M2-like macrophages (M2-MACs), which are a useful tool for investigating TAMs. In M2-MACs, the pharmacological inhibition of LRRC8A led to hyperpolarizing responses after a transient depolarization phase, followed by a slight elevation in the intracellular concentration of Ca2+. Both the small interfering RNA-mediated and pharmacological inhibition of LRRC8A repressed the transcriptional expression of IL-8 and IL-10, resulting in a significant reduction in their secretion. The inhibition of LRRC8A decreased the nuclear translocation of phosphorylated nuclear factor-erythroid 2-related factor 2 (Nrf2), while the activation of Nrf2 reversed the LRRC8A inhibition-induced transcriptional repression of IL-8 and IL-10 in M2-MACs. We identified the CCAAT/enhancer-binding protein isoform B, CEBPB, as a downstream target of Nrf2 signaling in M2-MACs. Moreover, among several upstream candidates, the inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) suppressed the Nrf2-CEBPB transcriptional axis in M2-MACs. Collectively, the present results indicate that the inhibition of LRRC8A repressed IL-8 and IL-10 transcription in M2-MACs through the NOX2-Nrf2-CEBPB axis and suggest that LRRC8A inhibitors suppress the IL-10-mediated evasion of tumor immune surveillance and IL-8-mediated metastasis and neovascularization in TAMs.
Collapse
Affiliation(s)
- Miki Matsui
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| | - Hiroaki Kito
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| | - Elghareeb E. Elboray
- Department of Complex Molecular Chemistry, SANKEN, Osaka University, Osaka 560-0043, Japan; (E.E.E.); (T.S.)
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Takayoshi Suzuki
- Department of Complex Molecular Chemistry, SANKEN, Osaka University, Osaka 560-0043, Japan; (E.E.E.); (T.S.)
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (M.M.); (J.K.); (H.K.)
| |
Collapse
|
2
|
Li Y, Sanchez Triviño CA, Hernandez A, Mortal S, Spada F, Krivosheia I, Franco N, Spelat R, Cesselli D, Manini I, Skrap M, Menini A, Cesca F, Torre V. Mechanisms of Glioblastoma Replication: Ca2+ Flares and Cl- Currents. Mol Cancer Res 2024; 22:852-863. [PMID: 38820126 DOI: 10.1158/1541-7786.mcr-23-0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Glioblastoma (GBM) is amongst the deadliest types of cancers, with no resolutive cure currently available. GBM cell proliferation in the patient's brain is a complex phenomenon controlled by multiple mechanisms. The aim of this study was to determine whether the ionic fluxes controlling cell duplication could represent a target for GBM therapy. In this work, we combined multi-channel Ca2+ and Cl- imaging, optical tweezers, electrophysiology, and immunohistochemistry to describe the role of ion fluxes in mediating the cell volume changes that accompany mitosis of U87 GBM cells. We identified three main steps: (i) in round GBM cells undergoing mitosis, during the transition from anaphase to telophase and cytokinesis, large Ca2+ flares occur, reaching values of 0.5 to 1 μmol/L; (ii) these Ca2+ flares activate Ca2+-dependent Cl- channels, allowing the entry of Cl- ions; and (iii) to maintain osmotic balance, GBM cells swell to complete mitosis. This sequence of steps was validated by electrophysiological experiments showing that Cl- channels are activated either directly or indirectly by Ca2+, and by additional live-cell imaging experiments. Cl- channel blockers with different molecular structures, such as niflumic acid and carbenoxolone, blocked GBM replication by arresting GBM cells in a round configuration. These results describe the central role of Ca2+ flares and Cl- fluxes during mitosis and show that inhibition of Ca2+-activated Cl- channels blocks GBM replication, opening the way to new approaches for the clinical treatment of GBM. Implications: Our work identifies ionic fluxes occurring during cell division as targets for devising novel therapies for glioblastoma treatment.
Collapse
Affiliation(s)
- Yunzhen Li
- Central Laboratory of the Medical Research Center, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
- International School for Advanced Studies (SISSA), Trieste, Italy
| | | | - Andres Hernandez
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Simone Mortal
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Federica Spada
- International School for Advanced Studies (SISSA), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
- IOM-CNR, Trieste, Italy
| | - Ilona Krivosheia
- International School for Advanced Studies (SISSA), Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
- IOM-CNR, Trieste, Italy
| | - Nicoletta Franco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Renza Spelat
- International School for Advanced Studies (SISSA), Trieste, Italy
- IOM-CNR, Trieste, Italy
| | - Daniela Cesselli
- Department of Medicine, Institute of Pathology, University Hospital of Udine, University of Udine, Udine, Italy
| | - Ivana Manini
- Department of Medicine, Institute of Pathology, University Hospital of Udine, University of Udine, Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Head-Neck and Neuroscience Department, University Hospital of Udine, Udine, Italy
| | - Anna Menini
- International School for Advanced Studies (SISSA), Trieste, Italy
| | - Fabrizia Cesca
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Vincent Torre
- International School for Advanced Studies (SISSA), Trieste, Italy
- IOM-CNR, Trieste, Italy
- BISS GlioGuard S.r.l., Trieste, Italy
- Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, P.R. China
| |
Collapse
|
3
|
Carpanese V, Festa M, Prosdocimi E, Bachmann M, Sadeghi S, Bertelli S, Stein F, Velle A, Abdel-Salam MAL, Romualdi C, Pusch M, Checchetto V. Interactomic exploration of LRRC8A in volume-regulated anion channels. Cell Death Discov 2024; 10:299. [PMID: 38909013 PMCID: PMC11193767 DOI: 10.1038/s41420-024-02032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/24/2024] Open
Abstract
Ion channels are critical in enabling ion movement into and within cells and are important targets for pharmacological interventions in different human diseases. In addition to their ion transport abilities, ion channels interact with signalling and scaffolding proteins, which affects their function, cellular positioning, and links to intracellular signalling pathways. The study of "channelosomes" within cells has the potential to uncover their involvement in human diseases, although this field of research is still emerging. LRRC8A is the gene that encodes a crucial protein involved in the formation of volume-regulated anion channels (VRACs). Some studies suggest that LRRC8A could be a valuable prognostic tool in different types of cancer, serving as a biomarker for predicting patients' outcomes. LRRC8A expression levels might be linked to tumour progression, metastasis, and treatment response, although its implications in different cancer types can be varied. Here, publicly accessible databases of cancer patients were systematically analysed to determine if a correlation between VRAC channel expression and survival rate exists across distinct cancer types. Moreover, we re-evaluated the impact of LRRC8A on cellular proliferation and migration in colon cancer via HCT116 LRRC8A-KO cells, which is a current topic of debate in the literature. In addition, to investigate the role of LRRC8A in cellular signalling, we conducted biotin proximity-dependent identification (BioID) analysis, revealing a correlation between VRAC channels and cell-cell junctions, mechanisms that govern cellular calcium homeostasis, kinases, and GTPase signalling. Overall, this dataset improves our understanding of LRRC8A/VRAC and explores new research avenues while identifying promising therapeutic targets and promoting inventive methods for disease treatment.
Collapse
Affiliation(s)
| | - Margherita Festa
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Institute of Biophysics, CNR, Via De Marini, 6 16149, Genova, Italy
| | | | - Magdalena Bachmann
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Daba Farber Cancer Research Institute, Boston, MA, USA
| | - Soha Sadeghi
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Sara Bertelli
- Institute of Biophysics, CNR, Via De Marini, 6, 16149, Genova, Italy
- Humboldt Universität Berlin, AG Zelluläre Biophysik, Dorotheenstr, 19-21 10099, Berlin, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Angelo Velle
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Mostafa A L Abdel-Salam
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Chiara Romualdi
- DiBio, Unipd, via Ugo Bassi 58/B, 35131, Padova, Italy
- Padua Center for Network Medicine, University of Padua, Via F. Marzolo 8, 315126, Padova, Italy
| | - Michael Pusch
- Institute of Biophysics, CNR, Via De Marini, 6, 16149, Genova, Italy
- RAISE Ecosystem, Genova, Italy
| | | |
Collapse
|
4
|
Chen R, Zhu S, Zhao R, Liu W, Jin L, Ren X, He H. Targeting ferroptosis as a potential strategy to overcome the resistance of cisplatin in oral squamous cell carcinoma. Front Pharmacol 2024; 15:1402514. [PMID: 38711989 PMCID: PMC11071065 DOI: 10.3389/fphar.2024.1402514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 05/08/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a crucial public health problem, accounting for approximately 2% of all cancers globally and 90% of oral malignancies over the world. Unfortunately, despite the achievements in surgery, radiotherapy, and chemotherapy techniques over the past decades, OSCC patients still low 5-year survival rate. Cisplatin, a platinum-containing drug, serves as one of the first-line chemotherapeutic agents of OSCC. However, the resistance to cisplatin significantly limits the clinical practice and is a crucial factor in tumor recurrence and metastasis after conventional treatments. Ferroptosis is an iron-based form of cell death, which is initiated by the intracellular accumulation of lipid peroxidation and reactive oxygen species (ROS). Interestingly, cisplatin-resistant OSCC cells exhibit lower level of ROS and lipid peroxidation compared to sensitive cells. The reduced ferroptosis in cisplatin resistance cells indicates the potential relationship between cisplatin resistance and ferroptosis, which is proved by recent studies showing that in colorectal cancer cells. However, the modulation pathway of ferroptosis reversing cisplatin resistance in OSCC cells still remains unclear. This article aims to concisely summarize the molecular mechanisms and evaluate the relationship between ferroptosis and cisplatin resistance OSCC cells, thereby providing novel strategies for overcoming cisplatin resistance and developing new therapeutic approaches.
Collapse
Affiliation(s)
- Rongkun Chen
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Shuyu Zhu
- Department of Oral Implantology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Ruoyu Zhao
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Wang Liu
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Luxin Jin
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Xiaobin Ren
- Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming, China
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| | - Hongbing He
- Department of Periodontology, Kunming Medical University School and Hospital of Stomatology, Kunming Medical University, Kunming, China
| |
Collapse
|
5
|
Castillo-Velasquez C, Matamala E, Becerra D, Orio P, Brauchi SE. Optical recordings of organellar membrane potentials and the components of membrane conductance in lysosomes. J Physiol 2024; 602:1637-1654. [PMID: 38625711 DOI: 10.1113/jp283825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
The eukaryotic cell is highly compartmentalized with organelles. Owing to their function in transporting metabolites, metabolic intermediates and byproducts of metabolic activity, organelles are important players in the orchestration of cellular function. Recent advances in optical methods for interrogating the different aspects of organellar activity promise to revolutionize our ability to dissect cellular processes with unprecedented detail. The transport activity of organelles is usually coupled to the transport of charged species; therefore, it is not only associated with the metabolic landscape but also entangled with membrane potentials. In this context, the targeted expression of fluorescent probes for interrogating organellar membrane potential (Ψorg) emerges as a powerful approach, offering less-invasive conditions and technical simplicity to interrogate cellular signalling and metabolism. Different research groups have made remarkable progress in adapting a variety of optical methods for measuring and monitoring Ψorg. These approaches include using potentiometric dyes, genetically encoded voltage indicators, hybrid fluorescence resonance energy transfer sensors and photoinduced electron transfer systems. These studies have provided consistent values for the resting potential of single-membrane organelles, such as lysosomes, the Golgi and the endoplasmic reticulum. We can foresee the use of dynamic measurements of Ψorg to study fundamental problems in organellar physiology that are linked to serious cellular disorders. Here, we present an overview of the available techniques, a survey of the resting membrane potential of internal membranes and, finally, an open-source mathematical model useful to interpret and interrogate membrane-bound structures of small volume by using the lysosome as an example.
Collapse
Affiliation(s)
- Cristian Castillo-Velasquez
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Ella Matamala
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| | - Diego Becerra
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Sebastian E Brauchi
- Department of Physiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile
| |
Collapse
|
6
|
Okada Y. Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC. Part 1: from its discovery and phenotype characterization to the molecular entity identification. J Physiol Sci 2024; 74:3. [PMID: 38238667 PMCID: PMC10795261 DOI: 10.1186/s12576-023-00897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024]
Abstract
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 1 review article describes, from the physiological standpoint, first its discovery and significance in cell volume regulation, second its phenotypical properties, and third its molecular identification. Although the pore-forming core molecules and the volume-sensing subcomponent of VSOR/VRAC were identified as LRRC8 members and TRPM7 in 2014 and 2021, respectively, it is stressed that the identification of the molecular entity of VSOR/VRAC is still not complete enough to explain the full set of phenotypical properties.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan.
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
| |
Collapse
|
7
|
Mao W, Wang Z, Wen S, Lin Y, Gu J, Sun J, Wang H, Cao Q, Xu Y, Xu X, Cai X. LRRC8A promotes Glaesserella parasuis cytolethal distending toxin-induced p53-dependent apoptosis in NPTr cells. Virulence 2023; 14:2287339. [PMID: 38018865 PMCID: PMC10732598 DOI: 10.1080/21505594.2023.2287339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023] Open
Abstract
Glaesserella parasuis is an early colonizer of the swine upper respiratory tract and can break through the respiratory barrier for further invasion. However, the mechanisms underlying G. parasuis increases epithelial barrier permeability remain unclear. This study demonstrates that G. parasuis cytolethal distending toxin (CDT) induces p53-dependent apoptosis in new-born piglet tracheal (NPTr) cells. Moreover, we report for the first time that leucine-rich repeat-containing protein 8A (LRRC8A), an essential subunit of the volume-regulated anion channel (VRAC), involves in apoptosis of NPTr cells mediated by G. parasuis CDT. Pharmacological inhibition of VRAC with either PPQ-102 or NS3728 largely attenuated CDT-induced apoptosis in NPTr cells. Additionally, experiments with cells knocked down for LRRC8A using small interfering ribonucleic acid (siRNA) or knocked out LRRC8A using CRISPR/Cas9 technology showed a significant reduction in CDT-induced apoptosis. Conversely, re-expression of Sus scrofa LRRC8A in LRRC8A-/- NPTr cells efficiently complemented the CDT-induced apoptosis. In summary, these findings suggest that LRRC8A is pivotal for G. parasuis CDT-induced apoptosis, providing novel insights into the mechanism of apoptosis caused by CDT.
Collapse
Affiliation(s)
- Weiting Mao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Siting Wen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yan Lin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jiayun Gu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ju Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Cao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yindi Xu
- Institute of Animal Husbandry and Veterinary Research, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaojuan Xu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xuwang Cai
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
8
|
Becchetti A. Interplay of Ca 2+ and K + signals in cell physiology and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:15-46. [PMID: 38007266 DOI: 10.1016/bs.ctm.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The cytoplasmic Ca2+ concentration and the activity of K+ channels on the plasma membrane regulate cellular processes ranging from mitosis to oriented migration. The interplay between Ca2+ and K+ signals is intricate, and different cell types rely on peculiar cellular mechanisms. Derangement of these mechanisms accompanies the neoplastic progression. The calcium signals modulated by voltage-gated (KV) and calcium-dependent (KCa) K+ channel activity regulate progression of the cell division cycle, the release of growth factors, apoptosis, cell motility and migration. Moreover, KV channels regulate the cell response to the local microenvironment by assembling with cell adhesion and growth factor receptors. This chapter summarizes the pathophysiological roles of Ca2+ and K+ fluxes in normal and cancer cells, by concentrating on several biological systems in which these functions have been studied in depth, such as early embryos, mammalian cell lines, T lymphocytes, gliomas and colorectal cancer cells. A full understanding of the underlying mechanisms will offer a comprehensive view of the ion channel implication in cancer biology and suggest potential pharmacological targets for novel therapeutic approaches in oncology.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
9
|
Bond JJ, Refshauge G, Newell MT, Holman BWB, Wheeler D, Woodgate S, Kamath KS, Hayes RC. Quantitative Differences in Rumen Epithelium Proteins in Lambs Fed Wheat, Perennial Wheat, or Perennial Wheat plus Lucerne. Proteomes 2023; 11:27. [PMID: 37755706 PMCID: PMC10537991 DOI: 10.3390/proteomes11030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
The value of crops such as perennial wheat (PW) for grain and grazing compared to conventional wheat (W), or the addition of lucerne to PW (PWL) is still being determined. This research sought to determine if these diets were associated with changes in the membranebound proteins that transport nutrients in the rumen epithelium (RE). Crossbred ewes (Poll Dorset × Merino) were fed W, PW, or PWL (50:50) fresh-cut forage ad libitum for 4 weeks. Average daily gain (ADG; p < 0.001) was highest in the W-fed lambs compared to the PW and PWL. Metabolisable energy intake (MEI) was higher in lambs fed W (p < 0.001) compared to PW and PWL. In pairwise comparisons of the PW and PWL diet group we found protein abundance was significantly (p < 0.05, FDR < 0.05, Benjamini p < 0.05) different in fatty acid metabolism, oxidative phosphorylation, and biosynthesis of cofactors pathways. There were not any differences in protein abundance related to nutrient transport or energy metabolism in the RE between W- vs. PW- and W- vs. PWL-fed lambs. However, in the PW- vs. PWL-fed lambs, there was a difference in the level of proteins regulating the metabolism of fatty acids and energy production in the mitochondria of the rumen epithelium.
Collapse
Affiliation(s)
- Jude Jessie Bond
- NSW Department of Primary Industries, Extensive Livestock Industry Centre, Trevenna Rd, University of New England, Armidale, NSW 2351, Australia
| | - Gordon Refshauge
- Cowra Agricultural Research and Advisory Station, NSW Department of Primary Industries, Cowra, NSW 2794, Australia; (G.R.); (M.T.N.); (R.C.H.)
| | - Matthew T. Newell
- Cowra Agricultural Research and Advisory Station, NSW Department of Primary Industries, Cowra, NSW 2794, Australia; (G.R.); (M.T.N.); (R.C.H.)
| | - Benjamin W. B. Holman
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - David Wheeler
- NSW Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia;
| | - Serey Woodgate
- NSW Department of Primary Industries, Extensive Livestock Industry Centre, Trevenna Rd, University of New England, Armidale, NSW 2351, Australia
| | - Karthik S. Kamath
- Australian Proteome Analysis Facility (APAF), Macquarie University, North Ryde, NSW 2109, Australia
| | - Richard C. Hayes
- Cowra Agricultural Research and Advisory Station, NSW Department of Primary Industries, Cowra, NSW 2794, Australia; (G.R.); (M.T.N.); (R.C.H.)
- Wagga Wagga Agricultural Institute, NSW Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| |
Collapse
|
10
|
Dale N, Butler J, Dospinescu VM, Nijjar S. Channel-mediated ATP release in the nervous system. Neuropharmacology 2023; 227:109435. [PMID: 36690324 DOI: 10.1016/j.neuropharm.2023.109435] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
ATP is well established as a transmitter and modulator in the peripheral and central nervous system. While conventional exocytotic release of ATP at synapses occurs, this transmitter is unusual in also being released into the extracellular space via large-pored plasma membrane channels. This review considers the channels that are known to be permeable to ATP and some of the functions of channel-mediated ATP release. While the possibility of ATP release via channels mediating volume transmission has been known for some time, localised ATP release via channels at specialised synapses made by taste cells to the afferent nerve has recently been documented in taste buds. This raises the prospect that "channel synapses" may occur in other contexts. However, volume transmission and channel synapses are not necessarily mutually exclusive. We suggest that certain glial cells in the brain stem and hypothalamus, which possess long processes and are known to release ATP, may be candidates for both modes of ATP release -channel-mediated volume transmission in the region of their somata and more localised transmission possibly via either conventional or channel synapses from their processes at distal targets. Finally, we consider the different characteristics of vesicular and channel synapses and suggest that channel synapses may be advantageous in requiring less energy than their conventional vesicular counterparts. This article is part of the Special Issue on "Purinergic Signaling: 50 years".
Collapse
Affiliation(s)
- Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK.
| | - Jack Butler
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK
| | | | - Sarbjit Nijjar
- School of Life Sciences, University of Warwick, Coventry, CV4, AL, UK
| |
Collapse
|
11
|
Rutz S, Deneka D, Dittmann A, Sawicka M, Dutzler R. Structure of a volume-regulated heteromeric LRRC8A/C channel. Nat Struct Mol Biol 2023; 30:52-61. [PMID: 36522427 PMCID: PMC9851909 DOI: 10.1038/s41594-022-00899-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022]
Abstract
Volume-regulated anion channels (VRACs) participate in the cellular response to osmotic swelling. These membrane proteins consist of heteromeric assemblies of LRRC8 subunits, whose compositions determine permeation properties. Although structures of the obligatory LRRC8A, also referred to as SWELL1, have previously defined the architecture of VRACs, the organization of heteromeric channels has remained elusive. Here we have addressed this question by the structural characterization of murine LRRC8A/C channels. Like LRRC8A, these proteins assemble as hexamers. Despite 12 possible arrangements, we find a predominant organization with an A:C ratio of two. In this assembly, four LRRC8A subunits cluster in their preferred conformation observed in homomers, as pairs of closely interacting proteins that stabilize a closed state of the channel. In contrast, the two interacting LRRC8C subunits show a larger flexibility, underlining their role in the destabilization of the tightly packed A subunits, thereby enhancing the activation properties of the protein.
Collapse
Affiliation(s)
- Sonja Rutz
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Dawid Deneka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Marta Sawicka
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Raimund Dutzler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
The mechanisms of chromogranin B-regulated Cl- homeostasis. Biochem Soc Trans 2022; 50:1659-1672. [PMID: 36511243 DOI: 10.1042/bst20220435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022]
Abstract
Chloride is the most abundant inorganic anions in almost all cells and in human circulation systems. Its homeostasis is therefore important for systems physiology and normal cellular activities. This topic has been extensively studied with chloride loaders and extruders expressed in both cell surfaces and intracellular membranes. With the newly discovered, large-conductance, highly selective Cl- channel formed by membrane-bound chromogranin B (CHGB), which differs from all other known anion channels of conventional transmembrane topology, and is distributed in plasma membranes, endomembrane systems, endosomal, and endolysosomal compartments in cells expressing it, we will discuss the potential physiological importance of the CHGB channels to Cl- homeostasis, cellular excitability and volume control, and cation uptake or release at the cellular and subcellular levels. These considerations and CHGB's association with human diseases make the CHGB channel a possible druggable target for future molecular therapeutics.
Collapse
|
13
|
Shcheynikov N, Boggs K, Green A, Feranchak AP. Identification of the chloride channel, leucine-rich repeat-containing protein 8, subfamily a (LRRC8A), in mouse cholangiocytes. Hepatology 2022; 76:1248-1258. [PMID: 35445421 PMCID: PMC10126881 DOI: 10.1002/hep.32536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Chloride (Cl- ) channels in the apical membrane of biliary epithelial cells (BECs), also known as cholangiocytes, provide the driving force for biliary secretion. Although two Cl- channels have been identified on a molecular basis, the Cystic Fibrosis Transmembrane Conductance Regulator and Transmembrane Member 16A, a third Cl- channel with unique biophysical properties has been described. Leucine-Rich Repeat-Containing Protein 8, subfamily A (LRRC8A) is a newly identified protein capable of transporting Cl- in other epithelium in response to cell swelling. The aim of the present study was to determine if LRRC8A represents the volume-regulated anion channel in mouse BECs. APPROACH AND RESULTS Studies were performed in mouse small (MSC) and large (MLC) cholangiocytes. Membrane Cl- currents were measured by whole-cell patch-clamp techniques and cell volume measurements were performed by calcein-AM fluorescence. Exposure of either MSC or MLC to hypotonicity (190 mOsm) rapidly increased cell volume and activated Cl- currents. Currents exhibited outward rectification, time-dependent inactivation at positive membrane potentials, and reversal potential at 0 mV (ECl ). Removal of extracellular Cl- or specific pharmacological inhibition of LRRC8A abolished currents. LRRC8A was detected in both MSC and MLC by reverse transcription polymerase chain reaction and confirmed by western blot. Transfection with LRRC8A small interfering RNA decreased protein levels by >70% and abolished volume-stimulated Cl- currents. CONCLUSION These results demonstrate that LRRC8A is functionally present in mouse BECs, contributes to volume-activated Cl- secretion, and, therefore, may be a target to modulate bile formation in the treatment of cholestatic liver disorders.
Collapse
Affiliation(s)
- Nikolay Shcheynikov
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristy Boggs
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony Green
- Tissue and Research Pathology Core, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew P Feranchak
- Department of Pediatrics, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Quantification of cytosol and membrane proteins in rumen epithelium of sheep with low or high CH4 emission phenotype. PLoS One 2022; 17:e0273184. [PMID: 36256644 PMCID: PMC9578583 DOI: 10.1371/journal.pone.0273184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Ruminant livestock are a major contributor to Australian agricultural sector carbon emissions. Variation in methane (CH4) produced from enteric microbial fermentation of feed in the reticulo-rumen of sheep differs with different digestive functions. METHOD We isolated rumen epithelium enzymatically to extract membrane and cytosol proteins from sheep with high (H) and low (L) CH4 emission. Protein abundance was quantified using SWATH-mass spectrometry. RESULTS The research found differences related to the metabolism of glucose, lactate and processes of cell defence against microbes in sheep from each phenotype. Enzymes in the methylglyoxal pathway, a side path of glycolysis, resulting in D-lactate production, differed in abundance. In the H CH4 rumen epithelium the enzyme hydroxyacylglutathione hydrolase (HAGH) was 2.56 fold higher in abundance, whereas in the L CH4 epithelium lactate dehydrogenase D (LDHD) was 1.93 fold higher. Malic enzyme 1 which converts D-lactate to pyruvate via the tricarboxylic cycle was 1.57 fold higher in the L CH4 phenotype. Other proteins that are known to regulate cell defence against microbes had differential abundance in the epithelium of each phenotype. CONCLUSION Differences in the abundance of enzymes involved in the metabolism of glucose were associated with H and L CH4 phenotype sheep. Potentially this represents an opportunity to use protein markers in the rumen epithelium to select low CH4 emitting sheep.
Collapse
|
15
|
Brignone MS, Lanciotti A, Michelucci A, Mallozzi C, Camerini S, Catacuzzeno L, Sforna L, Caramia M, D’Adamo MC, Ceccarini M, Molinari P, Macioce P, Macchia G, Petrucci TC, Pessia M, Visentin S, Ambrosini E. The CaMKII/MLC1 Axis Confers Ca2+-Dependence to Volume-Regulated Anion Channels (VRAC) in Astrocytes. Cells 2022; 11:cells11172656. [PMID: 36078064 PMCID: PMC9454758 DOI: 10.3390/cells11172656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1′s proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.
Collapse
Affiliation(s)
| | - Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Cinzia Mallozzi
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Serena Camerini
- Core Facilities (FAST), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Martino Caramia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Maria Cristina D’Adamo
- Department of Medicine and Surgery, LUM Giuseppe Degennaro University, 70010 Bari, Italy
| | - Marina Ceccarini
- National Centre for Rare Diseases, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Paola Molinari
- National Centre for Drug Research and Evaluation (FARVA), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | | | | | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Sergio Visentin
- National Centre for Drug Research and Evaluation (FARVA), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
- Correspondence: ; Tel.: +39-06-4990-2037
| |
Collapse
|
16
|
Sawicka M, Dutzler R. Regulators of cell volume: The structural and functional properties of anion channels of the LRRC8 family. Curr Opin Struct Biol 2022; 74:102382. [DOI: 10.1016/j.sbi.2022.102382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
|
17
|
Yamada K, Ding WG, Omatsu-Kanbe M, Toyoda F, Tsuji S, Katsura D, Kimura F, Matsuura H, Murakami T. Expression and functional maintenance of volume-regulated anion channels in myometrial smooth muscles of pregnant mice. Exp Anim 2022; 71:123-130. [PMID: 34789619 PMCID: PMC9130036 DOI: 10.1538/expanim.21-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/13/2021] [Indexed: 11/15/2022] Open
Abstract
Pregnancy causes changes in the uterus, such as increased cell volume and altered water content. However, the mechanisms that protect the structure and maintain the function of uterine smooth muscle cells against these changes during pregnancy have not been clarified. This study focused on the volume-regulated anion channel (VRAC), which opens with cell swelling under low osmotic pressure and releases Cl- ions and various organic osmolytes to resist cell swelling and regulates a wide range of biological processes such as cell death. In this study, myometrial smooth muscle (MSM) tissues and cells (MSMCs) were collected from non-pregnant and pregnant mice. Using western blotting and immunocytochemistry, leucine-rich repeat containing protein 8A (LRRC8A), an essential membrane protein that constitutes part of the VRAC, was determined to be diffused throughout MSMCs including in the cell membrane. Patch-clamp experiments were performed to investigate the electrophysiology of swelling-induced Cl- currents (ICl, swell) mediated by the VRAC. No significant changes between non-pregnancy and pregnancy groups were observed in either the expression density of LRRC8A or the current density of ICl, swell, however the presence of LRRC8A on the cell membrane was significantly increased in the third trimester of pregnancy compared to the non-pregnancy. This study suggests that the VRAC may play a role, such as maintaining cellular homeostasis in the pregnant MSM.
Collapse
Affiliation(s)
- Kazutaka Yamada
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu-shi, Shiga, 520-2192, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu-shi, Shiga 520-2192, Japan
| | - Mariko Omatsu-Kanbe
- Department of Physiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu-shi, Shiga 520-2192, Japan
| | - Futoshi Toyoda
- Department of Physiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu-shi, Shiga 520-2192, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu-shi, Shiga, 520-2192, Japan
| | - Daisuke Katsura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu-shi, Shiga, 520-2192, Japan
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu-shi, Shiga, 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu-shi, Shiga 520-2192, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Setatsukinowa-cho, Otsu-shi, Shiga, 520-2192, Japan
| |
Collapse
|
18
|
Xia Y, Huang X, Mo L, Wang C, Fan W, Huang H. TMT-based proteomics analysis of the cerebral cortex of TauT knockout rats. Proteome Sci 2022; 20:6. [PMID: 35468821 PMCID: PMC9040245 DOI: 10.1186/s12953-022-00189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background Taurine serves a variety of nutritional and physiological roles, and it is mostly transported in cells via taurine transporter (TauT). The effect of taurine transporter in cerebral cortex is still unknown. We employed TMT label-based proteomics to find differences in proteins in the cerebral cortex of TauT knockout rats in this investigation. The goal of this research was to see how TauT deletion affected protein alterations in brain tissue and to see if there was a new research area for TauT. Methods The cerebral cortex of TauT knockout rats and wild-type control rats were analyzed using TMT-based proteomics, and differentially expressed proteins were analyzed by bioinformatics analysis means such as GO and KEGG, the association between the proteins was found by PPI, and biologically significant and interesting proteins were selected for verification by WB and immunohistochemistry. Results There were total of 8275 proteins found, but only 35 differentially expressed proteins were identified (27 up-regulated and 8 down-regulated), and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the biological pathways and functional classification of the proteins. The results show that these differentially expressed proteins are mainly enriched in lysine degradation, cell cycle, chronic myeloid leukemia, and longevity regulating pathways-multiple species, renal cell carcinoma, pathways in cancer, etc. To verify the proteomic data, we analyzed the expression of Annexin6 and Pik3r2 by western blotting and immunofluorescence. The results are consistent with proteomics, which proves the reliability of our proteomics data. Conclusion Through TMT-based proteomics, we have a comprehensive understanding of the effect of TauT knockout on the changes of other proteins in the cerebral cortex, providing new evidence for further understanding the function of TauT.
Collapse
Affiliation(s)
- Yiming Xia
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaoling Huang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Lidong Mo
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Chen Wang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Weijia Fan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China
| | - Huiling Huang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China. .,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, 300350, China.
| |
Collapse
|
19
|
Wang Z, Li Y, Zeng Z, Guo S, Chen W, Luo Y. Leucine-rich repeat containing 8A contributes to the expansion of The potential role of leucine-rich repeat-containing protein 8A in central nervous system: current situation and prospect. Neuroscience 2022; 488:122-131. [PMID: 35276302 DOI: 10.1016/j.neuroscience.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
Cell swelling usually initiates the regulatory volume decrease (RVD) process mediated mainly by volume-regulated anion channels (VRACs), which are formed by multiple different leucine-rich repeat-containing protein 8 (LRRC8) family members. VRAC currents have been widely recorded in astrocytes, neurons and microglia in the brain, and VRACs have been suggested to be involved in the important pathogenesis of cell swelling-related central nervous system (CNS) diseases, such as ischemic stroke, epilepsy and epileptogenesis, glioblastoma (GBM), and so on. Recently, the increasing studies started to focus on LRRC8A (SWELL1), an obligatory subunit of VRAC indentified in 2014, which may be the key target to regulate the VRAC functions. After cerebral ischemia, the swollen astrocytes, neurons and microglia can activate LRRC8A-dependent VRACs, which may respectively promote the release of excitatory amino acids (EAA), interaction with ionotropic glutamate receptors, and regulating inflammation, suggesting the pleiotropic roles of LRRC8A in swollen brain cells. For the treatment of cell swelling-related CNS diseases, specific targeting LRRC8A may be a superior strategy to inhibit swollen-induced VRAC hyperactivity without blocking the normal VRAC function.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China; Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, Hubei, China
| | - Yunhui Li
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Zhikun Zeng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Shuang Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei, China.
| |
Collapse
|
20
|
Kittl M, Winklmayr M, Preishuber-Pflügl J, Strobl V, Gaisberger M, Ritter M, Jakab M. Low pH Attenuates Apoptosis by Suppressing the Volume-Sensitive Outwardly Rectifying (VSOR) Chloride Current in Chondrocytes. Front Cell Dev Biol 2022; 9:804105. [PMID: 35186954 PMCID: PMC8847443 DOI: 10.3389/fcell.2021.804105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/31/2021] [Indexed: 11/25/2022] Open
Abstract
In a variety of physiological and pathophysiological conditions, cells are exposed to acidic environments. Severe synovial fluid acidification also occurs in a progressive state of osteoarthritis (OA) affecting articular chondrocytes. In prior studies extracellular acidification has been shown to protect cells from apoptosis but the underlying mechanisms remain elusive. In the present study, we demonstrate that the inhibition of Cl− currents plays a significant role in the antiapoptotic effect of acidification in human articular chondrocytes. Drug-induced apoptosis was analyzed after exposure to staurosporine by caspase 3/7 activity and by annexin-V/7-actinomycin D (7-AAD) staining, followed by flow cytometry. Cell viability was assessed by resazurin, CellTiter-Glo and CellTiter-Fluor assays. Cl− currents and the mean cell volume were determined using the whole cell patch clamp technique and the Coulter method, respectively. The results reveal that in C28/I2 cells extracellular acidification decreases caspase 3/7 activity, enhances cell viability following staurosporine treatment and gradually deactivates the volume-sensitive outwardly rectifying (VSOR) Cl− current. Furthermore, the regulatory volume decrease (RVD) as well as the apoptotic volume decrease (ADV), which represents an early event during apoptosis, were absent under acidic conditions after hypotonicity-induced cell swelling and staurosporine-induced apoptosis, respectively. Like acidosis, the VSOR Cl− current inhibitor DIDS rescued chondrocytes from apoptotic cell death and suppressed AVD after induction of apoptosis with staurosporine. Similar to acidosis and DIDS, the VSOR channel blockers NPPB, niflumic acid (NFA) and DCPIB attenuated the staurosporine-induced AVD. NPPB and NFA also suppressed staurosporine-induced caspase 3/7 activation, while DCPIB and Tamoxifen showed cytotoxic effects per se. From these data, we conclude that the deactivation of VSOR Cl− currents impairs cell volume regulation under acidic conditions, which is likely to play an important role in the survivability of human articular chondrocytes.
Collapse
Affiliation(s)
- Michael Kittl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- *Correspondence: Michael Kittl,
| | - Martina Winklmayr
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
| | - Julia Preishuber-Pflügl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Victoria Strobl
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Martin Gaisberger
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology, Pathophysiology and Biophysics—Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Martin Jakab
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology—Salzburg, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Salzburg, Austria
| |
Collapse
|
21
|
Kolobkova Y, Pervaiz S, Stauber T. The expanding toolbox to study the LRRC8-formed volume-regulated anion channel VRAC. CURRENT TOPICS IN MEMBRANES 2021; 88:119-163. [PMID: 34862024 DOI: 10.1016/bs.ctm.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The volume-regulated anion channel (VRAC) is activated upon cell swelling and facilitates the passive movement of anions across the plasma membrane in cells. VRAC function underlies many critical homeostatic processes in vertebrate cells. Among them are the regulation of cell volume and membrane potential, glutamate release and apoptosis. VRAC is also permeable for organic osmolytes and metabolites including some anti-cancer drugs and antibiotics. Therefore, a fundamental understanding of VRAC's structure-function relationships, its physiological roles, its utility for therapy of diseases, and the development of compounds modulating its activity are important research frontiers. Here, we describe approaches that have been applied to study VRAC since it was first described more than 30 years ago, providing an overview of the recent methodological progress. The diverse applications reflecting a compromise between the physiological situation, biochemical definition, and biophysical resolution range from the study of VRAC activity using a classic electrophysiology approach, to the measurement of osmolytes transport by various means and the investigation of its activation using a novel biophysical approach based on fluorescence resonance energy transfer.
Collapse
Affiliation(s)
- Yulia Kolobkova
- Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Germany
| | - Sumaira Pervaiz
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany
| | - Tobias Stauber
- Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany.
| |
Collapse
|
22
|
Siemer S, Bauer TA, Scholz P, Breder C, Fenaroli F, Harms G, Dietrich D, Dietrich J, Rosenauer C, Barz M, Becker S, Strieth S, Reinhardt C, Fauth T, Hagemann J, Stauber RH. Targeting Cancer Chemotherapy Resistance by Precision Medicine-Driven Nanoparticle-Formulated Cisplatin. ACS NANO 2021; 15:18541-18556. [PMID: 34739225 DOI: 10.1021/acsnano.1c08632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from in silico to analytical and in vitro to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NPCis, Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged in vivo circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NPCis significantly (p < 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway via the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.
Collapse
Affiliation(s)
- Svenja Siemer
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Tobias A Bauer
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Paul Scholz
- BRAIN AG, Darmstaedter Straße 34, 64673 Zwingenberg, Germany
| | - Christina Breder
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Federico Fenaroli
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Gregory Harms
- Cell Biology Unit, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany
| | - Jörn Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany
| | - Christine Rosenauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Matthias Barz
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55099 Mainz, Germany Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Sven Becker
- Department of Otorhinolaryngology, University Medical Center Tuebingen, Elfriede-Aulhorn-Str. 5, 72076 Tuebingen, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Bonn, 53127 Bonn, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Torsten Fauth
- BRAIN AG, Darmstaedter Straße 34, 64673 Zwingenberg, Germany
| | - Jan Hagemann
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Roland H Stauber
- Nanobiomedicine/ENT Department, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
23
|
Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas. Heredity (Edinb) 2021; 127:443-454. [PMID: 34537819 PMCID: PMC8551249 DOI: 10.1038/s41437-021-00472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the role of adaptation in species' responses to climate change is important for evaluating the evolutionary potential of populations and informing conservation efforts. Population genomics provides a useful approach for identifying putative signatures of selection and the underlying environmental factors or biological processes that may be involved. Here, we employed a population genomic approach within a space-for-time study design to investigate the genetic basis of local adaptation and reconstruct patterns of movement across rapidly changing environments in a thermally sensitive mammal, the American pika (Ochotona princeps). Using genotypic data at 49,074 single-nucleotide polymorphisms (SNPs), we analyzed patterns of genome-wide diversity, structure, and migration along three independent elevational transects located at the northern extent (Tweedsmuir South Provincial Park, British Columbia, Canada) and core (North Cascades National Park, Washington, USA) of the Cascades lineage. We identified 899 robust outlier SNPs within- and among-transects. Of those annotated to genes with known function, many were linked with cellular processes related to climate stress including ATP-binding, ATP citrate synthase activity, ATPase activity, hormone activity, metal ion-binding, and protein-binding. Moreover, we detected evidence for contrasting patterns of directional migration along transects across geographic regions that suggest an increased propensity for American pikas to disperse among lower elevation populations at higher latitudes where environments are generally cooler. Ultimately, our data indicate that fine-scale demographic patterns and adaptive processes may vary among populations of American pikas, providing an important context for evaluating biotic responses to climate change in this species and other alpine-adapted mammals.
Collapse
|
24
|
Rezola M, Castellanos A, Gasull X, Comes N. Functional Interaction Between Caveolin 1 and LRRC8-Mediated Volume-Regulated Anion Channel. Front Physiol 2021; 12:691045. [PMID: 34658903 PMCID: PMC8517123 DOI: 10.3389/fphys.2021.691045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Volume-regulated anion channel (VRAC), constituted by leucine-rich repeat-containing 8 (LRRC8) heteromers, is crucial for volume homeostasis in vertebrate cells. This widely expressed channel has been associated with membrane potential modulation, proliferation, migration, apoptosis, and glutamate release. VRAC is activated by cell swelling and by low cytoplasmic ionic strength or intracellular guanosine 5′-O-(3-thiotriphosphate) (GTP-γS) in isotonic conditions. Despite the substantial number of studies that characterized the biophysical properties of VRAC, its mechanism of activation remains a mystery. Different evidence suggests a possible effect of caveolins in modulating VRAC activity: (1) Caveolin 1 (Cav1)-deficient cells display insignificant swelling-induced Cl– currents mediated by VRAC, which can be restored by Cav1 expression; (2) Caveolin 3 (Cav3) knockout mice display reduced VRAC currents; and (3) Interaction between LRRC8A, the essential subunit for VRAC, and Cav3 has been found in transfected human embryonic kidney 293 (HEK 293) cells. In this study, we demonstrate a physical interaction between endogenous LRRC8A and Cav1 proteins, that is enhanced by hypotonic stimulation, suggesting that this will increase the availability of the channel to Cav1. In addition, LRRC8A targets plasma membrane regions outside caveolae of HEK 293 cells where it associates with non-caveolar Cav1. We propose that a rise in cell membrane tension by hypotonicity would flatten caveolae, as described previously, increasing the amount of Cav1 outside of caveolar structures interacting with VRAC. Besides, the expression of Cav1 in HEK Cav1- cells increases VRAC current density without changing the main biophysical properties of the channel. The present study provides further evidence on the relevance of Cav1 on the activation of endothelial VRAC through a functional molecular interaction.
Collapse
Affiliation(s)
- Mikel Rezola
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Aida Castellanos
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Xavier Gasull
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Núria Comes
- Neurophysiology Laboratory, Physiology Unit, Department of Biomedicine, Medical School, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
25
|
Siemer S, Fauth T, Scholz P, Al-Zamel Y, Khamis A, Gül D, Freudelsperger L, Wollenberg B, Becker S, Stauber RH, Hagemann J. Profiling Cisplatin Resistance in Head and Neck Cancer: A Critical Role of the VRAC Ion Channel for Chemoresistance. Cancers (Basel) 2021; 13:4831. [PMID: 34638315 PMCID: PMC8508519 DOI: 10.3390/cancers13194831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022] Open
Abstract
Treatment success of head and neck cancers (HNSCC) is often hindered by tumor relapses due to therapy resistances. This study aimed at profiling cisplatin resistance mechanisms and identifying biomarkers potentially suitable as drug targets and for patient stratification. Bioinformatic analyses of suggested resistance factors in a cohort of 565 HNSCC patients identified the VRAC ion channel as a clinically relevant indicator for recurrent diseases following radiochemotherapy (p = 0.042). Other drug import/export transporters, such as CTR1, OCT1, or MRP1, were found to be less relevant. To experimentally verify VRAC's critical role for cisplatin resistance, we used CRISPR/Cas9 knockout resulting in cisplatin-resistant HNSCC cells, which could be resensitized by VRAC expression. Next-generation sequencing further underlined VRAC's importance and identified VRAC-regulated signaling networks, potentially also contributing to cisplatin resistance. CTR1, OCT1, or MRP1 did not contribute to increased cisplatin resistance. In addition to two-dimensional HNSCC models, three-dimensional tumor spheroid cultures confirmed VRAC's unique role for cisplatin sensitivity. Here, resistance correlated with DNA damage and downstream apoptosis. The cisplatin specificity of the identified VRAC pathway was verified by testing paclitaxel and doxorubicin. Our results were independently confirmed in naturally occurring, cisplatin-resistant HNSCC cancer cell models. Collectively, we here demonstrate VRAC's role for cisplatin resistance in HNSCC and its relevance as a potential drug target and/or prognostic biomarker for chemotherapy resistance.
Collapse
Affiliation(s)
- Svenja Siemer
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (S.S.); (Y.A.-Z.); (A.K.); (D.G.); (L.F.); (S.B.); (J.H.)
| | - Torsten Fauth
- BRAIN Biotech AG, 64673 Zwingenberg, Germany; (T.F.); (P.S.)
| | - Paul Scholz
- BRAIN Biotech AG, 64673 Zwingenberg, Germany; (T.F.); (P.S.)
| | - Yara Al-Zamel
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (S.S.); (Y.A.-Z.); (A.K.); (D.G.); (L.F.); (S.B.); (J.H.)
| | - Aya Khamis
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (S.S.); (Y.A.-Z.); (A.K.); (D.G.); (L.F.); (S.B.); (J.H.)
| | - Désirée Gül
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (S.S.); (Y.A.-Z.); (A.K.); (D.G.); (L.F.); (S.B.); (J.H.)
| | - Laura Freudelsperger
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (S.S.); (Y.A.-Z.); (A.K.); (D.G.); (L.F.); (S.B.); (J.H.)
| | - Barbara Wollenberg
- Department of Otorhinolaryngology Head and Neck Surgery, University Hospital Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Sven Becker
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (S.S.); (Y.A.-Z.); (A.K.); (D.G.); (L.F.); (S.B.); (J.H.)
- Department of Otorhinolaryngology, University Medical Center Tuebingen, 72076 Tuebingen, Germany
| | - Roland H. Stauber
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (S.S.); (Y.A.-Z.); (A.K.); (D.G.); (L.F.); (S.B.); (J.H.)
| | - Jan Hagemann
- Department of Otorhinolaryngology Head and Neck Surgery, Molecular and Cellular Oncology, University Medical Center, 55131 Mainz, Germany; (S.S.); (Y.A.-Z.); (A.K.); (D.G.); (L.F.); (S.B.); (J.H.)
| |
Collapse
|
26
|
Sphingosine-1-Phosphate Induces ATP Release via Volume-Regulated Anion Channels in Breast Cell Lines. Life (Basel) 2021; 11:life11080851. [PMID: 34440595 PMCID: PMC8401269 DOI: 10.3390/life11080851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/25/2022] Open
Abstract
High interstitial level of ATP and its lysate adenosine in the cancer microenvironment are considered a halo mark of cancer. Adenosine acts as a strong immune suppressor. However, the source of ATP release is unclear. We clarified the release of ATP via volume-regulated anion channels (VRACs) in breast cell lines using an ATP luminescence imaging system. We detected a slowly rising diffuse pattern of ATP release that was only observed in undifferentiated cells, not in differentiated primary cultured cells. This was confirmed by suppression with DCPIB, a blocker of VRACs, and shRNA for LRRC8A, an indispensable subunit of VRACs. We herein demonstrated that the inflammatory mediator sphingosine-1-phosphate (S1P), which exists abundantly in the cancer microenvironment, induced a diffuse pattern of ATP release isovolumetrically. The response was dose-dependent and suppressed by the knock-down of LRRC8A. It was also suppressed by blockers of S1P receptor 1 and 2 (W146 and JTE013, respectively). RTqPCR demonstrated the prominent presence of S1PR1 and S1PR2 mRNAs. We discussed the roles of S1P-induced ATP release in the cancer microenvironment.
Collapse
|
27
|
Targeting DNA Damage Response and Repair to Enhance Therapeutic Index in Cisplatin-Based Cancer Treatment. Int J Mol Sci 2021; 22:ijms22158199. [PMID: 34360968 PMCID: PMC8347825 DOI: 10.3390/ijms22158199] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapies, such as cisplatin, play a large role in cancer treatment. The development of resistance and treatment toxicity creates substantial barriers to disease control, yet. To enhance the therapeutic index of cisplatin-based chemotherapy, it is imperative to circumvent resistance and toxicity while optimizing tumor sensitization. One of the primary mechanisms by which cancer cells develop resistance to cisplatin is through upregulation of DNA repair pathways. In this review, we discuss the DNA damage response in the context of cisplatin-induced DNA damage. We describe the proteins involved in the pathways and their roles in resistance development. Common biomarkers for cisplatin resistance and their utilization to improve patient risk stratification and treatment personalization are addressed. Finally, we discuss some of the current treatments and future strategies to circumvent the development of cisplatin resistance.
Collapse
|
28
|
Potassium and Chloride Ion Channels in Cancer: A Novel Paradigm for Cancer Therapeutics. Rev Physiol Biochem Pharmacol 2021; 183:135-155. [PMID: 34291318 DOI: 10.1007/112_2021_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a collection of diseases caused by specific changes at the genomic level that support cell proliferation indefinitely. Traditionally, ion channels are known to control a variety of cellular processes including electrical signal generation and transmission, secretion, and contraction by controlling ionic gradients. However, recent studies had brought to light important facts on ion channels in cancer biology.In this review we discuss the mechanism linking potassium or chloride ion channel activity to biochemical pathways controlling proliferation in cancer cells and the potential advantages of targeting ion channels as an anticancer therapeutic option.
Collapse
|
29
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
30
|
Yurinskaya V, Aksenov N, Moshkov A, Goryachaya T, Shemery A, Vereninov A. Flow fluorometry quantification of anion channel VRAC subunit LRRC8A at the membrane of living U937 cells. Channels (Austin) 2021; 14:45-52. [PMID: 32075501 PMCID: PMC7039630 DOI: 10.1080/19336950.2020.1730535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Assessing the expression of channels on the cell membrane is a necessary step in studying the functioning of ion channels in living cells. We explore, first, if endogenous VRAC can be assayed using flow cytometry and a commercially available antibody against an extracellular loop of the LRRC8A, also known as SWELL1, subunit of the VRAC channel. The second goal is to determine if an increase in the number of VRAC channels at the cell membrane is responsible for an increase in chloride permeability of the membrane in two well-known cases: during staurosporine (STS)-induced apoptosis and after water balance disturbance caused by hypotonic medium. Human suspension lymphoid cells U937 were used as they are suitable for flow fluorometry and because we have recently studied their membrane chloride permeability during apoptosis. We found that surface expression of endogenous LRRC8A subunits can be quantified in living U937 cells using flow fluorometry with the Alomone Lab antibody. Further, we revealed that treatment of cells for 1 hour using STS or a hypotonic solution did not change the number of LRRC8A subunits to the extent that would correspond to changes in the membrane chloride permeability determined by ion content analysis. This indicates that prolonged increase in chloride permeability of the cell membrane during apoptotic cell shrinkage or cell volume regulation under hypotonicity in U937 cells occurs without altering cell surface expression of VRAC.
Collapse
Affiliation(s)
| | - Nikolay Aksenov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Alexey Moshkov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Tatyana Goryachaya
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| | - Ashley Shemery
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Alexey Vereninov
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
31
|
Figueroa EE, Denton JS. Zinc pyrithione activates the volume-regulated anion channel through an antioxidant-sensitive mechanism. Am J Physiol Cell Physiol 2021; 320:C1088-C1098. [PMID: 33826406 PMCID: PMC8285639 DOI: 10.1152/ajpcell.00070.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Leucine-rich repeat-containing 8 (LRRC8) volume-regulated anion channels (VRACs) play important physiological roles in diverse cell types and may represent therapeutic targets for various diseases. To date, however, the pharmacological tools for evaluating the druggability of VRACs have been limited to inhibitors, as no activators of the channel have been reported. We therefore performed a fluorescence-based high-throughput screening (HTS) of 1,184 Food and Drug Administration-approved drugs for compounds that increase VRAC activity. The most potent VRAC potentiator identified was zinc pyrithione (ZPT), which is used commercially as an antifouling agent and for treating dandruff and other skin disorders. In intracellular Yellow Fluorescent Protein YFP(F46L/H148Q/I152L)-quenching assays, ZPT potentiates the rate and extent of swelling-induced iodide influx dose dependently with a half-maximal effective concentration (EC50) of 5.7 µM. Whole cell voltage-clamp experiments revealed that coapplication of hypotonic solution and 30 µM ZPT to human embryonic kidney 293 or human colorectal carcinoma 116 cells increases the rate of swelling-induced VRAC activation by approximately 10-fold. ZPT potentiates swelling-induced VRAC currents after currents have reached a steady state and activates currents in the absence of cell swelling. Neither ZnCl2 nor free pyrithione activated VRAC; however, treating cells with a mixture of ZnCl2 and pyrithione led to robust channel activation. Finally, the effects of ZPT on VRAC were inhibited by reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) and NAD(P)H oxidase inhibitor diphenyleneiodonium chloride, suggesting the mechanism of action involves ROS generation. The discovery of ZPT as a potentiator/activator of VRAC demonstrates the utility of HTS for identifying small-molecule modulators of VRAC and adds to a growing repertoire of pharmacological tool compounds for probing the molecular physiology and regulation of this important channel.
Collapse
Affiliation(s)
- Eric E. Figueroa
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Jerod S. Denton
- 1Department of Pharmacology, Vanderbilt University, Nashville, Tennessee,2Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee,3Vanderbilt Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee
| |
Collapse
|
32
|
The Role of Nucleotide Excision Repair in Cisplatin-Induced Peripheral Neuropathy: Mechanism, Prevention, and Treatment. Int J Mol Sci 2021; 22:ijms22041975. [PMID: 33671279 PMCID: PMC7921932 DOI: 10.3390/ijms22041975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common dose-limiting effects of cancer treatment and results in dose reduction and discontinuation of life-saving chemotherapy. Its debilitating effects are often permanent and lead to lifelong impairment of quality of life in cancer patients. While the mechanisms underlying the toxicity are not yet fully defined, dorsal root ganglia sensory neurons play an integral role in symptom development. DNA-platinum adducts accumulate in these cells and inhibit normal cellular function. Nucleotide excision repair (NER) is integral to the repair of platinum adducts, and proteins involved in its mechanism serve as potential targets for future therapeutics. This review aims to highlight NER’s role in cisplatin-induced peripheral neuropathy, summarize current clinical approaches to the toxicity, and discuss future perspectives for the prevention and treatment of CIPN.
Collapse
|
33
|
Chorieva NM, Fayziev DD, Tsiferova NA, Toshtemirova GA, Khamidova OJ, Merzlyak PG, Kurbannazarova RS, Ziyaev KL, Gafurov MB, Sabirov RZ. Lytic and sublytic effects of gossypol on red blood cells and thymocytes. Clin Exp Pharmacol Physiol 2021; 48:227-237. [PMID: 33124084 DOI: 10.1111/1440-1681.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/21/2023]
Abstract
Gossypol is a natural polyphenol presently considered as a promising biological phytochemical with a range of activities including anticancer. We examined volume regulation-dependent effects of gossypol using erythrocytes and thymic lymphocytes. Gossypol effectively lysed human red blood cells (RBC) with a half-maximal concentration of 67.4 ± 1.6 μmol/L and in a non-colloid osmotic manner. Sublytic gossypol doses of 1-10 μmol/L significantly protected RBC from osmotic hemolysis, but potentiated their sensitivity to the colloid-osmotic lysis induced by a pore-former nystatin. When added to the thymocytes suspension, gossypol caused a strong depression of the ability of cells to restore their volume under hypoosmotic stress with a half-maximal activity at 2.1 ± 0.3 μmol/L. Gossypol suppressed regulatory volume decrease under experimental conditions, when cationic permeability was controlled by gramicidin D, and volume recovery depended mainly on anionic conductance, suggesting that the polyphenol inhibits the swelling-induced anion permeability. In direct patch-clamp experiments, gossypol inhibited the volume-sensitive outwardly rectifying (VSOR) chloride channel in thymocytes and in human HCT116 and HeLa cells, possibly by a mechanism when gossypol molecule with a radius close to the size of channel pore plugs into the narrowest portion of the native VSOR chloride channel. Micromolar gossypol suppressed proliferation of thymocytes, HCT116 and HeLa cells. VSOR blockage may represent new mechanism of anticancer activity of gossypol in addition to its action as a BH3-mimetic.
Collapse
Affiliation(s)
- Nargiza M Chorieva
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Termez State University, Termez, Uzbekistan
| | - Diyor D Fayziev
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Nargiza A Tsiferova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Center for Advanced Technologies, Tashkent, Uzbekistan
| | - Gulnoza A Toshtemirova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ozoda J Khamidova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Petr G Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Ranokhon Sh Kurbannazarova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Technical Institute of the National Guard, Tashkent, Uzbekistan
| | - Khayrulla L Ziyaev
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Makhmud B Gafurov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
| | - Ravshan Z Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
- Department of Biophysics, National University of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
34
|
Okada Y, Sabirov RZ, Sato-Numata K, Numata T. Cell Death Induction and Protection by Activation of Ubiquitously Expressed Anion/Cation Channels. Part 1: Roles of VSOR/VRAC in Cell Volume Regulation, Release of Double-Edged Signals and Apoptotic/Necrotic Cell Death. Front Cell Dev Biol 2021; 8:614040. [PMID: 33511120 PMCID: PMC7835517 DOI: 10.3389/fcell.2020.614040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
Cell volume regulation (CVR) is essential for survival and functions of animal cells. Actually, normotonic cell shrinkage and swelling are coupled to apoptotic and necrotic cell death and thus called the apoptotic volume decrease (AVD) and the necrotic volume increase (NVI), respectively. A number of ubiquitously expressed anion and cation channels are involved not only in CVD but also in cell death induction. This series of review articles address the question how cell death is induced or protected with using ubiquitously expressed ion channels such as swelling-activated anion channels, acid-activated anion channels and several types of TRP cation channels including TRPM2 and TRPM7. The Part 1 focuses on the roles of the volume-sensitive outwardly rectifying anion channels (VSOR), also called the volume-regulated anion channel (VRAC), which is activated by cell swelling or reactive oxygen species (ROS) in a manner dependent on intracellular ATP. First we describe phenotypical properties, the molecular identity, and physical pore dimensions of VSOR/VRAC. Second, we highlight the roles of VSOR/VRAC in the release of organic signaling molecules, such as glutamate, glutathione, ATP and cGAMP, that play roles as double-edged swords in cell survival. Third, we discuss how VSOR/VRAC is involved in CVR and cell volume dysregulation as well as in the induction of or protection from apoptosis, necrosis and regulated necrosis under pathophysiological conditions.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences, Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ravshan Z. Sabirov
- Laboratory of Molecular Physiology, Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomohiro Numata
- Department of Physiology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
35
|
Kittl M, Winklmayr M, Helm K, Lettner J, Gaisberger M, Ritter M, Jakab M. Acid- and Volume-Sensitive Chloride Currents in Human Chondrocytes. Front Cell Dev Biol 2020; 8:583131. [PMID: 33282866 PMCID: PMC7691427 DOI: 10.3389/fcell.2020.583131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
Chondrocytes face extreme alterations of extracellular osmolarity and pH, which force them to appropriately regulate their cell volume (CV) and cellular pH. Perturbations of these mechanisms lead to chondrocyte death and ultimately to osteoarthritis (OA), the most common chronic joint diseases worldwide. OA hallmarks are altered cartilage hydration and severe fluid acidification. Impaired CV regulation and acidotoxicity contribute to disease progression and volume-sensitive anion channels are upregulated in OA. This study assessed the effect of hypotonicity and extracellular acidification on chondrocyte Cl– conductances and CV regulation. Cl– currents and membrane potentials were measured in human C28/I2 cells and primary human chondrocytes using the patch clamp technique. Intracellular pH was assessed by BCECF fluorescence, CV measurements were performed using the Coulter method, and cell viability/cell death by a resazurin assay. Hypotonic cell swelling caused activation of a volume-sensitive outwardly rectifying (VSOR) Cl– current followed by a regulatory volume decrease (RVD), which was attenuated by the Cl– channel blocker DCPIB. Extracellular, but not intracellular acidification to pH ≤ 5.0 elicited an acid-sensitive outwardly rectifying (ASOR) Cl– conductance. Activation of either current depolarized the cell membrane potential. Under simultaneous hypotonic and acidic stimulation, VSOR and ASOR currents transiently coactivated, giving rise to a mixed current phenotype. Over time the VSOR current gradually vanished and the residual conductance showed a pure ASOR current phenotype. Extracellular acidification caused an isotonic CV gain and a complete suppression of RVD under hypotonic conditions. The results suggest that deactivation of the VSOR current under acidic conditions impairs CV regulation in chondrocytes, which is likely to compromise chondrocyte viability.
Collapse
Affiliation(s)
- Michael Kittl
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Martina Winklmayr
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Helm
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Johannes Lettner
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| | - Martin Gaisberger
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Markus Ritter
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria.,Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria.,Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
| | - Martin Jakab
- Institute of Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
36
|
Shimizu T, Fujii T, Sakai H. The Relationship Between Actin Cytoskeleton and Membrane Transporters in Cisplatin Resistance of Cancer Cells. Front Cell Dev Biol 2020; 8:597835. [PMID: 33195280 PMCID: PMC7655133 DOI: 10.3389/fcell.2020.597835] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin [cis-diamminedichloroplatinum (II)] is a platinum-based anticancer drug widely used for the treatment of various cancers. It forms interstrand and intrastrand cross-linking with DNA and block DNA replication, resulting in apoptosis. On the other hand, intrinsic and acquired cisplatin resistance restricts its therapeutic effects. Although some studies suggest that dramatic epigenetic alternations are involved in the resistance triggered by cisplatin, the mechanism is complicated and remains poorly understood. Recent studies reported that cytoskeletal structures regulate cisplatin sensitivity and that activities of membrane transporters contribute to the development of resistance to cisplatin. Therefore, we focus on the roles of actin filaments and membrane transporters in cisplatin-induced apoptosis. In this review, we summarize the relationship between actin cytoskeleton and membrane transporters in the cisplatin resistance of cancer cells.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
37
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
38
|
Shimizu T, Fujii T, Ohtake H, Tomii T, Takahashi R, Kawashima K, Sakai H. Impaired actin filaments decrease cisplatin sensitivity via dysfunction of volume-sensitive Cl - channels in human epidermoid carcinoma cells. J Cell Physiol 2020; 235:9589-9600. [PMID: 32372464 DOI: 10.1002/jcp.29767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/20/2023]
Abstract
Cisplatin is a widely used platinum-based anticancer drug in the chemotherapy of numerous human cancers. However, cancer cells acquire resistance to cisplatin. So far, functional loss of volume-sensitive outwardly rectifying (VSOR) Cl- channels has been reported to contribute to cisplatin resistance of cancer cells. Here, we analyzed protein expression patterns of human epidermoid carcinoma KB cells and its cisplatin-resistant KCP-4 cells. Intriguingly, KB cells exhibited higher β-actin expression and clearer actin filaments than KCP-4 cells. The β-actin knockdown in KB cells decreased VSOR Cl- currents and inhibited the regulatory volume decrease (RVD) process after cell swelling. Consistently, KB cells treated with cytochalasin D, which depolymerizes actin filaments, showed smaller VSOR Cl- currents and slower RVD. Cytochalasin D also inhibited cisplatin-triggered apoptosis in KB cells. These results suggest that the disruption of actin filaments cause the dysfunction of VSOR Cl- channels, which elicits resistance to cisplatin in human epidermoid carcinoma cells.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takuto Fujii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hironao Ohtake
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Toshie Tomii
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Ryuta Takahashi
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kentaro Kawashima
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
39
|
Wilke BU, Kummer KK, Leitner MG, Kress M. Chloride - The Underrated Ion in Nociceptors. Front Neurosci 2020; 14:287. [PMID: 32322187 PMCID: PMC7158864 DOI: 10.3389/fnins.2020.00287] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/12/2020] [Indexed: 01/06/2023] Open
Abstract
In contrast to pain processing neurons in the spinal cord, where the importance of chloride conductances is already well established, chloride homeostasis in primary afferent neurons has received less attention. Sensory neurons maintain high intracellular chloride concentrations through balanced activity of Na+-K+-2Cl- cotransporter 1 (NKCC1) and K+-Cl- cotransporter 2 (KCC2). Whereas in other cell types activation of chloride conductances causes hyperpolarization, activation of the same conductances in primary afferent neurons may lead to inhibitory or excitatory depolarization depending on the actual chloride reversal potential and the total amount of chloride efflux during channel or transporter activation. Dorsal root ganglion (DRG) neurons express a multitude of chloride channel types belonging to different channel families, such as ligand-gated, ionotropic γ-aminobutyric acid (GABA) or glycine receptors, Ca2+-activated chloride channels of the anoctamin/TMEM16, bestrophin or tweety-homolog family, CLC chloride channels and transporters, cystic fibrosis transmembrane conductance regulator (CFTR) as well as volume-regulated anion channels (VRACs). Specific chloride conductances are involved in signal transduction and amplification at the peripheral nerve terminal, contribute to excitability and action potential generation of sensory neurons, or crucially shape synaptic transmission in the spinal dorsal horn. In addition, chloride channels can be modified by a plethora of inflammatory mediators affecting them directly, via protein-protein interaction, or through signaling cascades. Since chloride channels as well as mediators that modulate chloride fluxes are regulated in pain disorders and contribute to nociceptor excitation and sensitization it is timely and important to emphasize their critical role in nociceptive primary afferents in this review.
Collapse
Affiliation(s)
| | | | | | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
40
|
Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application. Rev Physiol Biochem Pharmacol 2020; 181:375-427. [PMID: 32789787 DOI: 10.1007/112_2020_38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Head and neck cancers are a highly complex and heterogeneous group of malignancies that involve very diverse anatomical structures and distinct aetiological factors, treatments and clinical outcomes. Among them, head and neck squamous cell carcinomas (HNSCC) are predominant and the sixth most common cancer worldwide with still low survival rates. Omic technologies have unravelled the intricacies of tumour biology, harbouring a large diversity of genetic and molecular changes to drive the carcinogenesis process. Nonetheless, this remarkable heterogeneity of molecular alterations opens up an immense opportunity to discover novel biomarkers and develop molecular-targeted therapies. Increasing evidence demonstrates that dysregulation of ion channel expression and/or function is frequently and commonly observed in a variety of cancers from different origin. As a consequence, the concept of ion channels as potential membrane therapeutic targets and/or biomarkers for cancer diagnosis and prognosis has attracted growing attention. This chapter intends to comprehensively and critically review the current state-of-art ion channel dysregulation specifically focusing on head and neck cancers and to formulate the major challenges and research needs to translate this knowledge into clinical application. Based on current reported data, various voltage-gated potassium (Kv) channels (i.e. Kv3.4, Kv10.1 and Kv11.1) have been found frequently aberrantly expressed in HNSCC as well as precancerous lesions and are highlighted as clinically and biologically relevant features in both early stages of tumourigenesis and late stages of disease progression. More importantly, they also emerge as promising candidates as cancer risk markers, tumour markers and potential anti-proliferative and anti-metastatic targets for therapeutic interventions; however, the oncogenic properties seem to be independent of their ion-conducting function.
Collapse
|
41
|
Afzal A, Figueroa EE, Kharade SV, Bittman K, Matlock BK, Flaherty DK, Denton JS. The LRRC8 volume-regulated anion channel inhibitor, DCPIB, inhibits mitochondrial respiration independently of the channel. Physiol Rep 2019; 7:e14303. [PMID: 31814333 PMCID: PMC6900491 DOI: 10.14814/phy2.14303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
There has been a resurgence of interest in the volume-regulated anion channel (VRAC) since the recent cloning of the LRRC8A-E gene family that encodes VRAC. The channel is a heteromer comprised of LRRC8A and at least one other family member; disruption of LRRC8A expression abolishes VRAC activity. The best-in-class VRAC inhibitor, DCPIB, suffers from off-target activity toward several different channels and transporters. Considering that some anion channel inhibitors also suppress mitochondrial respiration, we systematically explored whether DCPIB inhibits respiration in wild type (WT) and LRRC8A-knockout HAP-1 and HEK-293 cells. Knockout of LRRC8A had no apparent effects on cell morphology, proliferation rate, mitochondrial content, or expression of several mitochondrial genes in HAP-1 cells. Addition of 10 µM DCPIB, a concentration typically used to inhibit VRAC, suppressed basal and ATP-linked respiration in part through uncoupling the inner mitochondrial membrane (IMM) proton gradient and membrane potential. Additionally, DCPIB inhibits the activity of complex I, II, and III of the electron transport chain (ETC). Surprisingly, the effects of DCPIB on mitochondrial function are also observed in HAP-1 and HEK-293 cells which lack LRRC8A expression. Finally, we demonstrate that DCPIB activates ATP-inhibitable potassium channels comprised of heterologously expressed Kir6.2 and SUR1 subunits. These data indicate that DCPIB suppresses mitochondrial respiration and ATP production by dissipating the mitochondrial membrane potential and inhibiting complexes I-III of the ETC. They further justify the need for the development of sharper pharmacological tools for evaluating the integrative physiology and therapeutic potential of VRAC in human diseases.
Collapse
Affiliation(s)
- Aqeela Afzal
- Department of Neurological SurgeryVanderbilt UniversityNashvilleTennessee
- Department of MedicineVanderbilt UniversityNashvilleTennessee
| | - Eric E. Figueroa
- Department of PharmacologyVanderbilt UniversityNashvilleTennessee
| | - Sujay V. Kharade
- Department of AnesthesiologyVanderbilt University Medical CenterNashvilleTennessee
| | | | - Brittany K. Matlock
- Vanderbilt Vaccine CenterVanderbilt University Medical CenterNashvilleTennessee
| | - David K. Flaherty
- Vanderbilt Vaccine CenterVanderbilt University Medical CenterNashvilleTennessee
| | - Jerod S. Denton
- Department of PharmacologyVanderbilt UniversityNashvilleTennessee
- Department of AnesthesiologyVanderbilt University Medical CenterNashvilleTennessee
| |
Collapse
|
42
|
Lu P, Ding Q, Li X, Ji X, Li L, Fan Y, Xia Y, Tian D, Liu M. SWELL1 promotes cell growth and metastasis of hepatocellular carcinoma in vitro and in vivo. EBioMedicine 2019; 48:100-116. [PMID: 31597595 PMCID: PMC6838441 DOI: 10.1016/j.ebiom.2019.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022] Open
Abstract
Background SWELL1 was recently demonstrated to be an indispensable part of the volume-regulated anion channel (VRAC). VRAC is reported to participate in cell proliferation, survival, and migration. However, the correlation between SWELL1 and hepatocellular carcinoma (HCC) remains poorly-understood. In this study, we tried to explore the role of SWELL1 in HCC. Methods Immunohistochemistry and quantitative real-time-PCR (qRT-PCR) was used to measure SWELL1 expression in HCC samples obtained from patients with HCC. The effects of SWELL1 on HCC cell proliferation, apoptosis, and metastasis were analysed by corresponding cytological experiments including Cell Counting Kit-8 (CCK8), colony-forming, 5-ethynyl-2′-deoxyuridine (EdU), cell cycle analysis, TUNEL, Annexin V and PI staining, wound healing, transwell, and so on. BALB/c nude mice were used for the in vivo assays. qRT-PCR and western blotting was performed for molecular mechanisms. Findings SWELL1 was highly expressed in HCC tissues, and related to the poor prognosis. In vitro, the over-expression of SWELL1 significantly induced cell proliferation and migration, and inhibited apoptosis, whereas suppressing SWELL1 had the opposite effects. Moreover, knockdown of SWELL1 suppressed the growth and metastasis of HCC in vivo. Further experiments revealed that SWELL1 induced cell growth by activating the cyclinD1/CDK2 pathway via the connection with PKCa at the signalling level, and regulated cell migration through the JNK pathway in HCC. Interpretation SWELL1 acts as a promoter in the growth and metastasis of HCC cells and may be a potential intervention target for HCC. Fund This work is supported by the National Natural Science Foundation of China (No. 81572422, 81700515).
Collapse
Affiliation(s)
- Panpan Lu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiang Ding
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xin Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lili Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuhui Fan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Department of Gastroenterology, Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Yujia Xia
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
43
|
The LRRC8-mediated volume-regulated anion channel is altered in glaucoma. Sci Rep 2019; 9:5392. [PMID: 30931966 PMCID: PMC6443673 DOI: 10.1038/s41598-019-41524-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/04/2019] [Indexed: 01/07/2023] Open
Abstract
Regulation of cellular volume is an essential process to balance volume changes during cell proliferation and migration or when intracellular osmolality increases due to transepithelial transport. We previously characterized the key role of volume-regulated anion channels (VRAC) in the modulation of the volume of trabecular meshwork (TM) cells and, in turn, the aqueous humour (AH) outflow from the eye. The balance between the secretion and the drainage of AH determines the intraocular pressure (IOP) that is the major casual risk factor for glaucoma. Glaucoma is an ocular disease that causes irreversible blindness due to the degeneration of retinal ganglion cells. The recent identification of Leucine-Rich Repeat-Containing 8 (LRRC8A-E) proteins as the molecular components of VRAC opens the field to elucidate their function in the physiology of TM and glaucoma. Human TM cells derived from non-glaucomatous donors and from open-angle glaucoma patients were used to determine the expression and the functional activity of LRRC8-mediated channels. Expression levels of LRRC8A-E subunits were decreased in HTM glaucomatous cells compared to normotensive HTM cells. Consequently, the activity of VRAC currents and volume regulation of TM cells were significantly affected. Impaired cell volume regulation will likely contribute to altered aqueous outflow and intraocular pressure.
Collapse
|
44
|
Caramia M, Sforna L, Franciolini F, Catacuzzeno L. The Volume-Regulated Anion Channel in Glioblastoma. Cancers (Basel) 2019; 11:cancers11030307. [PMID: 30841564 PMCID: PMC6468384 DOI: 10.3390/cancers11030307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/02/2023] Open
Abstract
Malignancy of glioblastoma multiforme (GBM), the most common and aggressive form of human brain tumor, strongly depends on its enhanced cell invasion and death evasion which make surgery and accompanying therapies highly ineffective. Several ion channels that regulate membrane potential, cytosolic Ca2+ concentration and cell volume in GBM cells play significant roles in sustaining these processes. Among them, the volume-regulated anion channel (VRAC), which mediates the swelling-activated chloride current (IClswell) and is highly expressed in GBM cells, arguably plays a major role. VRAC is primarily involved in reestablishing the original cell volume that may be lost under several physiopathological conditions, but also in sustaining the shape and cell volume changes needed for cell migration and proliferation. While experimentally VRAC is activated by exposing cells to hypotonic solutions that cause the increase of cell volume, in vivo it is thought to be controlled by several different stimuli and modulators. In this review we focus on our recent work showing that two conditions normally occurring in pathological GBM tissues, namely high serum levels and severe hypoxia, were both able to activate VRAC, and their activation was found to promote cell migration and resistance to cell death, both features enhancing GBM malignancy. Also, the fact that the signal transduction pathway leading to VRAC activation appears to involve GBM specific intracellular components, such as diacylglicerol kinase and phosphatidic acid, reportedly not involved in the activation of VRAC in healthy tissues, is a relevant finding. Based on these observations and the impact of VRAC in the physiopathology of GBM, targeting this channel or its intracellular regulators may represent an effective strategy to contrast this lethal tumor.
Collapse
Affiliation(s)
- Martino Caramia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy.
| | - Luigi Sforna
- Department of Experimental Medicine, University of Perugia, Perugia 06132, Italy.
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy.
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy.
| |
Collapse
|
45
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Gaur K, Vázquez-Salgado A, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera J, Fernández-Vega L, Carmona Sarabia L, Cruz García A, Pérez-Deliz F, Méndez Román J, Vega-Cartagena M, Loza-Rosas S, Rodriguez Acevedo X, Tinoco A. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018. [DOI: https://doi.org/10.3390/inorganics6040126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
|
47
|
Gaur K, Vázquez-Salgado AM, Duran-Camacho G, Dominguez-Martinez I, Benjamín-Rivera JA, Fernández-Vega L, Sarabia LC, García AC, Pérez-Deliz F, Méndez Román JA, Vega-Cartagena M, Loza-Rosas SA, Acevedo XR, Tinoco AD. Iron and Copper Intracellular Chelation as an Anticancer Drug Strategy. INORGANICS 2018; 6:126. [PMID: 33912613 PMCID: PMC8078164 DOI: 10.3390/inorganics6040126] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs. Efforts to improve the cellular delivery, efficacy, and tumor responsiveness of these chelators are also presented including a transmetallation strategy for dual targeting of Cu and Fe. To elucidate the effectiveness and specificity of Cu and Fe chelators for treating cancer, analytical tools are described for measuring Cu and Fe levels and for tracking the metals in cells, tissue, and the body.
Collapse
Affiliation(s)
- Kavita Gaur
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Geraldo Duran-Camacho
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Josué A Benjamín-Rivera
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lauren Fernández-Vega
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Lesly Carmona Sarabia
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Angelys Cruz García
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Felipe Pérez-Deliz
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - José A Méndez Román
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Melissa Vega-Cartagena
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | - Sergio A Loza-Rosas
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| | | | - Arthur D Tinoco
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, PR 00931, USA
| |
Collapse
|
48
|
Wang Y, Ren F, Chen P, Liu S, Song Z, Ma X. Identification of a six-gene signature with prognostic value for patients with endometrial carcinoma. Cancer Med 2018; 7:5632-5642. [PMID: 30306731 PMCID: PMC6247034 DOI: 10.1002/cam4.1806] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/09/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is frequently diagnosed among women worldwide. However, there are different prognostic outcomes because of heterogeneity. Thus, the aim of the current study was to identify a gene signature that can predict the prognosis of patients with UCEC. UCEC gene expression profiles were first downloaded from the The Cancer Genome Atlas (TCGA) database. After data processing and forward screening, 11 390 key genes were selected. The UCEC samples were randomly divided into training and testing sets. In total, 996 genes with prognostic value were then examined by univariate Cox survival analysis with a P-value <0.01 in the training set. Next, using robust likelihood-based survival modeling, we developed a six-gene signature (CTSW, PCSK4, LRRC8D, TNFRSF18, IHH, and CDKN2A) with a prognostic function in UCEC. A prognostic risk score system was developed by multivariate Cox proportional hazard regression based on this six-gene signature. According to the Kaplan-Meier curve, patients in the high-risk group had significantly poorer overall survival (OS) outcomes than those in the low-risk group (log-rank test P-value <0.0001). This signature was further validated in the testing dataset and the entire TCGA dataset. In conclusion, we conducted an integrated study to develop a six-gene signature for the prognostic prediction of patients with UCEC. Our findings may provide novel biomarkers for prognosis and have significant implications in the understanding of therapeutic targets for UCEC.
Collapse
Affiliation(s)
- Yizi Wang
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Fang Ren
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Peng Chen
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Shuang Liu
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Zixuan Song
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| | - Xiaoxin Ma
- Department of Obstetrics and GynecologyShengjing Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
49
|
Prevarskaya N, Skryma R, Shuba Y. Ion Channels in Cancer: Are Cancer Hallmarks Oncochannelopathies? Physiol Rev 2018; 98:559-621. [PMID: 29412049 DOI: 10.1152/physrev.00044.2016] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a primary cause and fundamental feature of human cancer. However, all cancer cell genotypes generally translate into several common pathophysiological features, often referred to as cancer hallmarks. Although nowadays the catalog of cancer hallmarks is quite broad, the most common and obvious of them are 1) uncontrolled proliferation, 2) resistance to programmed cell death (apoptosis), 3) tissue invasion and metastasis, and 4) sustained angiogenesis. Among the genes affected by cancer, those encoding ion channels are present. Membrane proteins responsible for signaling within cell and among cells, for coupling of extracellular events with intracellular responses, and for maintaining intracellular ionic homeostasis ion channels contribute to various extents to pathophysiological features of each cancer hallmark. Moreover, tight association of these hallmarks with ion channel dysfunction gives a good reason to classify them as special type of channelopathies, namely oncochannelopathies. Although the relation of cancer hallmarks to ion channel dysfunction differs from classical definition of channelopathies, as disease states causally linked with inherited mutations of ion channel genes that alter channel's biophysical properties, in a broader context of the disease state, to which pathogenesis ion channels essentially contribute, such classification seems absolutely appropriate. In this review the authors provide arguments to substantiate such point of view.
Collapse
Affiliation(s)
- Natalia Prevarskaya
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Roman Skryma
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| | - Yaroslav Shuba
- INSERM U-1003, Equipe Labellisée par la Ligue Nationale contre le Cancer et LABEX, Université Lille1 , Villeneuve d'Ascq , France ; Bogomoletz Institute of Physiology and International Center of Molecular Physiology, NASU, Kyiv-24, Ukraine
| |
Collapse
|
50
|
Rohrbough J, Nguyen H, Lamb FS. Modulation of ClC-3 gating and proton/anion exchange by internal and external protons and the anion selectivity filter. J Physiol 2018; 596:4091-4119. [PMID: 29917234 PMCID: PMC6117567 DOI: 10.1113/jp276332] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS The ClC-3 2Cl- /1H+ exchanger modulates endosome pH and Cl- concentration. We investigated the relationships between ClC-3-mediated ion transport (steady-state transport current, ISS ), gating charge (Q) and cytoplasmic alkalization. ClC-3 transport is functionally unidirectional. ClC-5 and ClC-3 display indistinguishable exchange ratios, but ClC-3 cycling is less "efficient", as reflected by a large Q/ISS . An M531A mutation predicted to increase water-wire stability and cytoplasmic proton supply improves efficiency. Protonation (pH 5.0) of the outer glutamate gate (Gluext ; E224) reduces Q, inhibits transport, and weakens coupling. Removal of the central tyrosine anion gate (Y572S) greatly increases uncoupled anion current. Tyrosine -OH removal (Y572F) alters anion selectivity and impairs coupling. E224 and Y572 act as anion barriers, and contribute to gating. The Y572 side chain and -OH regulate Q movement kinetics and voltage dependence. E224 and Y572 interact to create a "closed" inner gate conformation that maintains coupling during cycling. ABSTRACT We utilized plasma membrane-localized ClC-3 to investigate relationships between steady-state transport current (ISS ), gating charge (Q) movement, and cytoplasmic alkalization rate. ClC-3 exhibited lower transport efficiency than ClC-5, as reflected by a larger Q/ISS ratio, but an indistinguishable Cl- /H+ coupling ratio. External SCN- reduced H+ transport rate and uncoupled anion/H+ exchange by 80-90%. Removal of the external gating glutamate ("Gluext ") (E224A mutation) reduced Q and abolished H+ transport. We hypothesized that Methionine 531 (M531) impedes "water wire" H+ transfer from the cytoplasm to E224. Accordingly, an M531A mutation decreased the Q/ISS ratio by 50% and enhanced H+ transport. External protons (pH 5.0) inhibited ISS and markedly reduced Q while shifting the Q-voltage (V) relationship positively. The Cl- /H+ coupling ratio at pH 5.0 was significantly increased, consistent with externally protonated Gluext adopting an outward/open position. Internal "anion gate" removal (Y572S) dramatically increased ISS and impaired coupling, without slowing H+ transport rate. Loss of both gates (Y572S/E224A) resulted in a large "open pore" conductance. Y572F (removing only the phenolic hydroxide) and Y572S shortened Q duration similarly, resulting in faster Q kinetics at all voltages. These data reveal a complex relationship between Q and ion transport. Q/ISS must be assessed together with coupling ratio to properly interpret efficiency. Coupling and transport rate are influenced by the anion, internal proton supply and external protons. Y572 regulates H+ coupling as well as anion selectivity, and interacts directly with E224. Disruption of this "closed gate" conformation by internal protons may represent a critical step in the ClC-3 transport cycle.
Collapse
Affiliation(s)
- Jeffrey Rohrbough
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| | - Hong‐Ngan Nguyen
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| | - Fred S. Lamb
- Departments of Pediatrics and Molecular Physiology & BiophysicsMonroe Carell Children's Hospital at Vanderbilt UniversityNashvilleTNUSA
| |
Collapse
|