1
|
Brunner N, Stein L, Amasheh S. Cellular Distribution Pattern of tjp1 (ZO-1) in Xenopus laevis Oocytes Heterologously Expressing Claudins. J Membr Biol 2023; 256:51-61. [PMID: 35737002 PMCID: PMC9884258 DOI: 10.1007/s00232-022-00251-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Epithelial barriers constitute a fundamental requirement in every organism, as they allow the separation of different environments and set boundaries against noxious and other adverse effectors. In many inflammatory and degenerative diseases, epithelial barrier function is impaired because of a disturbance of the paracellular seal. Recently, the Xenopus laevis oocyte has been established as a heterologous expression model for the analysis of transmembrane tight junction protein interactions and is currently considered to be a suitable screening model for barrier effectors. A prerequisite for this application is a physiological anchoring of claudins to the cytoskeleton via the major scaffolding protein tjp1 (tight junction protein 1, ZO-1). We have analyzed the oocyte model with regard to the interaction of heterologously expressed claudins and tjp1. Our experiments have revealed endogenous tjp1 expression in protein and mRNA analyses of unfertilized Xenopus laevis oocytes expressing human claudin 1 (CLDN1) to claudin 5 (CLDN5). The amphibian cell model can therefore be used for the analysis of claudin interactions.
Collapse
Affiliation(s)
- Nora Brunner
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Laura Stein
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Salah Amasheh
- Institute of Veterinary Physiology, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| |
Collapse
|
3
|
Palma AG, Soares Machado M, Lira MC, Rosa F, Rubio MF, Marino G, Kotsias BA, Costas MA. Functional relationship between CFTR and RAC3 expression for maintaining cancer cell stemness in human colorectal cancer. Cell Oncol (Dordr) 2021; 44:627-641. [PMID: 33616840 DOI: 10.1007/s13402-021-00589-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE CFTR mutations not only cause cystic fibrosis, but also increase the risk of colorectal cancer. A putative role of CFTR in colorectal cancer patients without cystic fibrosis has so far, however, not been investigated. RAC3 is a nuclear receptor coactivator that has been found to be overexpressed in several human tumors, and to be required for maintaining cancer stemness. Here, we investigated the functional relationship between CFTR and RAC3 for maintaining cancer stemness in human colorectal cancer. METHODS Cancer stemness was investigated by analysing the expression of stem cell markers, clonogenic growth and selective retention of fluorochrome, using stable transfection of shCFTR or shRAC3 in HCT116 colorectal cancer cells. In addition, we performed pathway enrichment and network analyses in both primary human colorectal cancer samples (TCGA, Xena platform) and Caco-2 colorectal cancer cells including (1) CD133+ or CD133- side populations and (2) CFTRwt or CFTRmut cells (ConsensusPathDB, STRING, Cytoscape, GeneMANIA). RESULTS We found that the CD133+ side population expresses higher levels of RAC3 and CFTR than the CD133- side population. RAC3 overexpression increased CFTR expression, whereas CFTR downregulation inhibited the cancer stem phenotype. CFTR mRNA levels were found to be increased in colorectal cancer samples from patients without cystic fibrosis compared to those with CFTR mutations, and this correlated with an increased expression of RAC3. The expression pattern of a gene set involved in inflammatory response and nuclear receptor modulation in CD133+ Caco-2 cells was found to be shared with that in CFTRwt Caco-2 cells. These genes may contribute to colorectal cancer development. CONCLUSIONS CFTR may play a non-tumor suppressor role in colorectal cancer development and maintenance involving enhancement of the expression of a set of genes related to cancer stemness and development in patients without CFTR mutations.
Collapse
Affiliation(s)
- Alejandra Graciela Palma
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina
| | - Mileni Soares Machado
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina
| | - María Cecilia Lira
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina
| | - Francisco Rosa
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina
| | - María Fernanda Rubio
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina.,CONICET, Buenos Aires, Argentina
| | - Gabriela Marino
- CONICET, Buenos Aires, Argentina.,Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO, Buenos Aires, Argentina
| | - Basilio Aristidis Kotsias
- CONICET, Buenos Aires, Argentina.,Laboratorio de Canales Iónicos, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150, C1427ARO, Buenos Aires, Argentina
| | - Mónica Alejandra Costas
- Laboratorio de Biología Molecular y Apoptosis, Instituto de Investigaciones Médicas Alfredo Lanari, IDIM-UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Combatientes de Malvinas 3150. Cuerpo II, Piso 1, C1427ARO, Buenos Aires, Argentina. .,CONICET, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Direct neurotransmitter activation of voltage-gated potassium channels. Nat Commun 2018; 9:1847. [PMID: 29748663 PMCID: PMC5945843 DOI: 10.1038/s41467-018-04266-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/16/2018] [Indexed: 11/25/2022] Open
Abstract
Voltage-gated potassium channels KCNQ2–5 generate the M-current, which controls neuronal excitability. KCNQ2–5 subunits each harbor a high-affinity anticonvulsant drug-binding pocket containing an essential tryptophan (W265 in human KCNQ3) conserved for >500 million years, yet lacking a known physiological function. Here, phylogenetic analysis, electrostatic potential mapping, in silico docking, electrophysiology, and radioligand binding assays reveal that the anticonvulsant binding pocket evolved to accommodate endogenous neurotransmitters including γ-aminobutyric acid (GABA), which directly activates KCNQ5 and KCNQ3 via W265. GABA, and endogenous metabolites β-hydroxybutyric acid (BHB) and γ-amino-β-hydroxybutyric acid (GABOB), competitively and differentially shift the voltage dependence of KCNQ3 activation. Our results uncover a novel paradigm: direct neurotransmitter activation of voltage-gated ion channels, enabling chemosensing of the neurotransmitter/metabolite landscape to regulate channel activity and cellular excitability. M-current is conveyed by voltage-sensitive KCNQ channels, which are enriched in GABAergic neurons and are activated by anticonvulsants such as retigabine. Here the authors show that GABA directly activates KCNQ3, at the residue required for its anticonvulsant activity.
Collapse
|