1
|
Jian L, Zhang Q, Yao D, Wang Q, Chen M, Xia Y, Li S, Shen Y, Cao M, Qin A, Li L, Cao Y. The structural insight into the functional modulation of human anion exchanger 3. Nat Commun 2024; 15:6134. [PMID: 39033175 PMCID: PMC11271275 DOI: 10.1038/s41467-024-50572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Anion exchanger 3 (AE3) is pivotal in regulating intracellular pH across excitable tissues, yet its structural intricacies and functional dynamics remain underexplored compared to other anion exchangers. This study unveils the structural insights into human AE3, including the cryo-electron microscopy structures for AE3 transmembrane domains (TMD) and a chimera combining AE3 N-terminal domain (NTD) with AE2 TMD (hAE3NTD2TMD). Our analyzes reveal a substrate binding site, an NTD-TMD interlock mechanism, and a preference for an outward-facing conformation. Unlike AE2, which has more robust acid-loading capabilities, AE3's structure, including a less stable inward-facing conformation due to missing key NTD-TMD interactions, contributes to its moderated pH-modulating activity and increased sensitivity to the inhibitor DIDS. These structural differences underline AE3's distinct functional roles in specific tissues and underscore the complex interplay between structural dynamics and functional specificity within the anion exchanger family, enhancing our understanding of the physiological and pathological roles of the anion exchanger family.
Collapse
Affiliation(s)
- Liyan Jian
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Qing Zhang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
| | - Deqiang Yao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Wang
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Moxin Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Shaobai Li
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - Mi Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lin Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, Shanghai, China.
| |
Collapse
|
2
|
Garrud TAC, Bell B, Mata-Daboin A, Peixoto-Neves D, Collier DM, Cordero-Morales JF, Jaggar JH. WNK kinase is a vasoactive chloride sensor in endothelial cells. Proc Natl Acad Sci U S A 2024; 121:e2322135121. [PMID: 38568964 PMCID: PMC11009681 DOI: 10.1073/pnas.2322135121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.
Collapse
Affiliation(s)
- Tessa A. C. Garrud
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN38163
| | - Briar Bell
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN38163
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX77030
| | - Alejandro Mata-Daboin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN38163
| | | | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Julio F. Cordero-Morales
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN38163
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX77030
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN38163
| |
Collapse
|
3
|
Geertsma ER, Oliver D. SLC26 Anion Transporters. Handb Exp Pharmacol 2024; 283:319-360. [PMID: 37947907 DOI: 10.1007/164_2023_698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Solute carrier family 26 (SLC26) is a family of functionally diverse anion transporters found in all kingdoms of life. Anions transported by SLC26 proteins include chloride, bicarbonate, and sulfate, but also small organic dicarboxylates such as fumarate and oxalate. The human genome encodes ten functional homologs, several of which are causally associated with severe human diseases, highlighting their physiological importance. Here, we review novel insights into the structure and function of SLC26 proteins and summarize the physiological relevance of human members.
Collapse
Affiliation(s)
- Eric R Geertsma
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Dominik Oliver
- Department of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps University Marburg, Marburg, Germany.
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg and Giessen, Marburg, Giessen, Germany.
| |
Collapse
|
4
|
Zhang Q, Jian L, Yao D, Rao B, Xia Y, Hu K, Li S, Shen Y, Cao M, Qin A, Zhao J, Cao Y. The structural basis of the pH-homeostasis mediated by the Cl -/HCO 3- exchanger, AE2. Nat Commun 2023; 14:1812. [PMID: 37002221 PMCID: PMC10066210 DOI: 10.1038/s41467-023-37557-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The cell maintains its intracellular pH in a narrow physiological range and disrupting the pH-homeostasis could cause dysfunctional metabolic states. Anion exchanger 2 (AE2) works at high cellular pH to catalyze the exchange between the intracellular HCO3- and extracellular Cl-, thereby maintaining the pH-homeostasis. Here, we determine the cryo-EM structures of human AE2 in five major operating states and one transitional hybrid state. Among those states, the AE2 shows the inward-facing, outward-facing, and intermediate conformations, as well as the substrate-binding pockets at two sides of the cell membrane. Furthermore, critical structural features were identified showing an interlock mechanism for interactions among the cytoplasmic N-terminal domain and the transmembrane domain and the self-inhibitory effect of the C-terminal loop. The structural and cell-based functional assay collectively demonstrate the dynamic process of the anion exchange across membranes and provide the structural basis for the pH-sensitive pH-rebalancing activity of AE2.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Liyan Jian
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Deqiang Yao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China
| | - Bing Rao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Ying Xia
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Kexin Hu
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Shaobai Li
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Yafeng Shen
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - Mi Cao
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
- Department of Orthopaedics, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China
| | - Yu Cao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.
- Institute of Precision Medicine, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 115 Jinzun Road, 200125, Shanghai, China.
| |
Collapse
|
5
|
Pfau A, López-Cayuqueo KI, Scherer N, Wuttke M, Wernstedt A, González Fassrainer D, Smith DE, van de Kamp JM, Ziegeler K, Eckardt KU, Luft FC, Aronson PS, Köttgen A, Jentsch TJ, Knauf F. SLC26A1 is a major determinant of sulfate homeostasis in humans. J Clin Invest 2023; 133:e161849. [PMID: 36719378 PMCID: PMC9888379 DOI: 10.1172/jci161849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023] Open
Abstract
Sulfate plays a pivotal role in numerous physiological processes in the human body, including bone and cartilage health. A role of the anion transporter SLC26A1 (Sat1) for sulfate reabsorption in the kidney is supported by the observation of hyposulfatemia and hypersulfaturia in Slc26a1-knockout mice. The impact of SLC26A1 on sulfate homeostasis in humans remains to be defined. By combining clinical genetics, functional expression assays, and population exome analysis, we identify SLC26A1 as a sulfate transporter in humans and experimentally validate several loss-of-function alleles. Whole-exome sequencing from a patient presenting with painful perichondritis, hyposulfatemia, and renal sulfate wasting revealed a homozygous mutation in SLC26A1, which has not been previously described to the best of our knowledge. Whole-exome data analysis of more than 5,000 individuals confirmed that rare, putatively damaging SCL26A1 variants were significantly associated with lower plasma sulfate at the population level. Functional expression assays confirmed a substantial reduction in sulfate transport for the SLC26A1 mutation of our patient, which we consider to be novel, as well as for the additional variants detected in the population study. In conclusion, combined evidence from 3 complementary approaches supports SLC26A1 activity as a major determinant of sulfate homeostasis in humans. In view of recent evidence linking sulfate homeostasis with back pain and intervertebral disc disorder, our study identifies SLC26A1 as a potential target for modulation of musculoskeletal health.
Collapse
Affiliation(s)
- Anja Pfau
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Karen I. López-Cayuqueo
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center and
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center and
| | | | | | - Desiree E.C. Smith
- Metabolic Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience and
| | - Jiddeke M. van de Kamp
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Katharina Ziegeler
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Friedrich C. Luft
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Peter S. Aronson
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center and
- CIBSS – Centre for Integrative Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Knauf
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Heneghan JF, Majmundar AJ, Rivera A, Wohlgemuth JG, Dlott JS, Snyder LM, Hildebrandt F, Alper SL. Activation of 2-oxoglutarate receptor 1 (OXGR1) by α-ketoglutarate (αKG) does not detectably stimulate Pendrin-mediated anion exchange in Xenopus oocytes. Physiol Rep 2022; 10:e15362. [PMID: 35851763 PMCID: PMC9294391 DOI: 10.14814/phy2.15362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023] Open
Abstract
SLC26A4/Pendrin is the major electroneutral Cl- /HCO3- exchanger of the apical membrane of the Type B intercalated cell (IC) of the connecting segment (CNT) and cortical collecting duct (CCD). Pendrin mediates both base secretion in response to systemic base load and Cl- reabsorption in response to systemic volume depletion, manifested as decreased nephron salt and water delivery to the distal nephron. Pendrin-mediated Cl- /HCO3- exchange in the apical membrane is upregulated through stimulation of the β-IC apical membrane G protein-coupled receptor, 2-oxoglutarate receptor 1 (OXGR1/GPR99), by its ligand α-ketoglutarate (αKG). αKG is both filtered by the glomerulus and lumenally secreted by proximal tubule apical membrane organic anion transporters (OATs). OXGR1-mediated regulation of Pendrin by αKG has been documented in transgenic mice and in isolated perfused CCD. However, aspects of the OXGR1 signaling pathway have remained little investigated since its original discovery in lymphocytes. Moreover, no ex vivo cellular system has been reported in which to study the OXGR1 signaling pathway of Type B-IC, a cell type refractory to survival in culture in its differentiated state. As Xenopus oocytes express robust heterologous Pendrin activity, we investigated OXGR1 regulation of Pendrin in oocytes. Despite functional expression of OXGR1 in oocytes, co-expression of Pendrin and OXGR1 failed to exhibit αKG-sensitive stimulation of Pendrin-mediated Cl- /anion exchange under a wide range of conditions. We conclude that Xenopus oocytes lack one or more essential molecular components or physical conditions required for OXGR1 to regulate Pendrin activity.
Collapse
Affiliation(s)
- John F. Heneghan
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Amar J. Majmundar
- Division of NephrologyBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
| | - Alicia Rivera
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | | | - Friedhelm Hildebrandt
- Division of NephrologyBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of GeneticsHarvard Medical SchoolBostonMassachusettsUSA
| | - Seth L. Alper
- Division of NephrologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
7
|
Kato A, Nagashima A, Hosono K, Romero MF. Membrane Transport Proteins Expressed in the Renal Tubular Epithelial Cells of Seawater and Freshwater Teleost Fishes. Front Physiol 2022; 13:939114. [PMID: 35812342 PMCID: PMC9259948 DOI: 10.3389/fphys.2022.939114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
The kidney is an important organ that maintains body fluid homeostasis in seawater and freshwater teleost fishes. Seawater teleosts excrete sulfate and magnesium in small amounts of isotonic urine, and freshwater teleosts excrete water in large amounts of hypo-osmotic urine. The volume, osmolality, and ionic compositions of the urine are regulated mainly by membrane transport proteins expressed in the renal tubular epithelial cells. Gene expression, immunohistochemical, and functional analyses of the fish kidney identified membrane transport proteins involved in the secretion of sulfate and magnesium ions by the proximal tubules and reduction of urine volume by the collecting ducts in seawater teleosts, and excretion of water as hypotonic urine by the distal tubules and collecting ducts in freshwater teleosts. These studies promote an understanding of how the kidney contributes to the seawater and freshwater acclimation of teleosts at the molecular level.
Collapse
Affiliation(s)
- Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Akira Kato,
| | - Ayumi Nagashima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Kohei Hosono
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Michael F. Romero
- Department of Physiology and Biomedical Engineering, Nephrology and Hypertension and O’Brien Urology Research Center, Mayo Clinic College of Medicine & Science, Rochester, MN, United States
| |
Collapse
|
8
|
Whittamore JM, Hatch M. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021; 12:2835-2875. [PMID: 34964122 DOI: 10.1002/cphy.c210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Abstract
Cl- is the major extracellular (Cl-out) and intracellular (Cl-in) anion whose concentration is actively regulated by multiple transporters. These transporters generate Cl- gradients across the plasma membrane and between the cytoplasm and intracellular organelles. [Cl-]in changes rapidly in response to cell stimulation and influences many physiological functions, as well as cellular and systemic homeostasis. However, less appreciated is the signaling function of Cl-. Cl- interacts with multiple proteins to directly modify their activity. This review highlights the signaling function of Cl- and argues that Cl- is a bona fide signaling ion, a function deserving extensive exploration.
Collapse
Affiliation(s)
- Benjamin P Lüscher
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Laura Vachel
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Patel OV, Casey T, Plaut K. Profiling solute-carrier transporters in key metabolic tissues during the postpartum evolution of mammary epithelial cells from nonsecretory to secretory. Physiol Genomics 2019; 51:539-552. [PMID: 31545931 DOI: 10.1152/physiolgenomics.00058.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modifications in the abundance of solute-carrier (SLC) transcripts in tandem with adjustments in genes-associated with energy homeostasis during the postpartum transition of the mammary epithelial cells (MEC) from nonsecretory to secretory is pivotal for supporting milk synthesis. The goal of this study was to identify differentially expressed SLC genes across key metabolic tissues between late pregnancy and onset of lactation. Total RNA was isolated from the mammary, liver, and adipose tissues collected from rat dams on day 20 of pregnancy (P20) and day 1 of lactation (L1) and gene expression was measured with Rat 230 2.0 Affymetrix GeneChips. LIMMA was utilized to identify the differential gene expression patterns between P20 and L1 tissues. Transcripts engaged in conveying anions, cations, carboxylates, sugars, amino acids, metals, nucleosides, vitamins, and fatty acids were significantly increased (P < 0.05) in MEC during the P20 to L1 shift. Downregulated (P < 0.05) genes in the mammary during the physiological transition included GLUT8 and SLC45a3. In the liver, SLC genes encoding for anion, carbonyl, and nucleotide sugar transporters were upregulated (P < 0.05) at L1. while genes facilitating transportation of anions and hexose were increased (P < 0.05), from P20 to L1 in the adipose tissue. GLUT1 and GLUT4 in the liver, along with GLUT4 and SGLT2 in the adipose tissue, were repressed (P < 0.05) at L1. Our results illustrate that MEC exhibit dynamic molecular plasticity during the nonsecretory to secretory transition and increase biosynthetic capacity through a coordinated tissue specific SLC transcriptome modification to facilitate substrate transfer.
Collapse
Affiliation(s)
- Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan
| | - Theresa Casey
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Karen Plaut
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
11
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Whittamore JM, Stephens CE, Hatch M. Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia. Am J Physiol Gastrointest Liver Physiol 2019; 316:G82-G94. [PMID: 30383413 PMCID: PMC6383384 DOI: 10.1152/ajpgi.00299.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The anion exchanger SAT-1 [sulfate anion transporter 1 (Slc26a1)] is considered an important regulator of oxalate and sulfate homeostasis, but the mechanistic basis of these critical roles remain undetermined. Previously, characterization of the SAT-1-knockout (KO) mouse suggested that the loss of SAT-1-mediated oxalate secretion by the intestine was responsible for the hyperoxaluria, hyperoxalemia, and calcium oxalate urolithiasis reportedly displayed by this model. To test this hypothesis, we compared the transepithelial fluxes of 14C-oxalate, 35SO42- , and 36Cl- across isolated, short-circuited segments of the distal ileum, cecum, and distal colon from wild-type (WT) and SAT-1-KO mice. The absence of SAT-1 did not impact the transport of these anions by any part of the intestine examined. Additionally, SAT-1-KO mice were neither hyperoxaluric nor hyperoxalemic. Instead, 24-h urinary oxalate excretion was almost 50% lower than in WT mice. With no contribution from the intestine, we suggest that this may reflect the loss of SAT-1-mediated oxalate efflux from the liver. SAT-1-KO mice were, however, profoundly hyposulfatemic, even though there were no changes to intestinal sulfate handling, and the renal clearances of sulfate and creatinine indicated diminished rates of sulfate reabsorption by the proximal tubule. Aside from this distinct sulfate phenotype, we were unable to reproduce the hyperoxaluria, hyperoxalemia, and urolithiasis of the original SAT-1-KO model. In conclusion, oxalate and sulfate transport by the intestine were not dependent on SAT-1, and we found no evidence supporting the long-standing hypothesis that intestinal SAT-1 contributes to oxalate and sulfate homeostasis. NEW & NOTEWORTHY SAT-1 is a membrane-bound transport protein expressed in the intestine, liver, and kidney, where it is widely considered essential for the excretion of oxalate, a potentially toxic waste metabolite. Previously, calcium oxalate kidney stone formation by the SAT-1-knockout mouse generated the hypothesis that SAT-1 has a major role in oxalate excretion via the intestine. We definitively tested this proposal and found no evidence for SAT-1 as an intestinal anion transporter contributing to oxalate homeostasis.
Collapse
Affiliation(s)
- Jonathan M. Whittamore
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Christine E. Stephens
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Marguerite Hatch
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
13
|
Vachel L, Shcheynikov N, Yamazaki O, Fremder M, Ohana E, Son A, Shin DM, Yamazaki-Nakazawa A, Yang CR, Knepper MA, Muallem S. Modulation of Cl - signaling and ion transport by recruitment of kinases and phosphatases mediated by the regulatory protein IRBIT. Sci Signal 2018; 11:11/554/eaat5018. [PMID: 30377224 DOI: 10.1126/scisignal.aat5018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IRBIT is a multifunctional protein that controls the activity of various epithelial ion transporters including NBCe1-B. Interaction with IRBIT increases NBCe1-B activity and exposes two cryptic Cl--sensing GXXXP sites that enable regulation of NBCe1-B by intracellular Cl- (Cl- in). Here, phosphoproteomic analysis revealed that IRBIT controlled five phosphorylation sites in NBCe1-B that determined both the active conformation of the transporter and its regulation by Cl- in Mutational analysis suggested that the phosphorylation status of Ser232, Ser233, and Ser235 was regulated by IRBIT and determined whether NBCe1 transporters are in active or inactive conformations. The absence of phosphorylation at Ser232, Ser233, or Ser235 produced NBCe1-B in the conformations pSer233/pSer235, pSer232/pSer235, or pSer232/pSer233, respectively. The activity of the pSer233/pSer235 form was similar to that of IRBIT-activated NBCe1-B, but it was insensitive to inhibition by Cl- in The properties of the pSer232/pSer235 form were similar to those of wild-type NBCe1-B, whereas the pSer232/pSer233 form was partially active, further activated by IRBIT, but retained inhibition by Cl- in Furthermore, IRBIT recruited the phosphatase PP1 and the kinase SPAK to control phosphorylation of Ser65, which affected Cl- in sensing by the 32GXXXP36 motif. IRBIT also recruited the phosphatase calcineurin and the kinase CaMKII to control phosphorylation of Ser12, which affected Cl- in sensing by the 194GXXXP198 motif. Ser232, Ser233, and Ser235 are conserved in all NBCe1 variants and affect their activity. These findings reveal how multiple kinase and phosphatase pathways use phosphorylation sites to fine-tune a transporter, which have important implications for epithelial fluid and HCO3 - secretion.
Collapse
Affiliation(s)
- Laura Vachel
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nikolay Shcheynikov
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Osamu Yamazaki
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.,Apheresis and Dialysis Center/General Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-0016, Japan
| | - Moran Fremder
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Ehud Ohana
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Aran Son
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul 120-752, Korea
| | - Ai Yamazaki-Nakazawa
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|