1
|
Mizukami Y, Hashimoto S, Ando T, Ishikawa Y, Eguchi H, Yoshino Y, Matsunaga T, Matsuhashi N, Ikari A. Reduction of Chemoresistance by Claudin-14-Targeting Peptide in Human Colorectal Cancer Cells. J Cell Biochem 2024:e30675. [PMID: 39564693 DOI: 10.1002/jcb.30675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/19/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024]
Abstract
The expression of claudins (CLDNs), major components of tight junctions (TJs), is abnormal in various solid tumors. CLDN14 is highly expressed in human colorectal cancer (CRC) tissues and confers chemoresistance. CLDN14 may become a novel therapeutic target for CRC, but CLDN14-targeting drugs have not been developed. Here, we searched for a CLDN14-targeting peptide, which can suppress CLDN14 expression and chemoresistance using human CRC-derived DLD-1 and LoVo cells. Among some short peptides which mimic the second extracellular loop structure of CLDN14, PSGMK most strongly suppressed the protein expression of CLDN14. The mRNA expression of other endogenous TJ components was unchanged by PSGMK. The PSGMK-induced reduction of CLDN14 protein was inhibited by chloroquine, a lysosome inhibitor, and monodansylcadaverine, a clathrin-dependent endocytosis inhibitor, indicating that PSGMK may enhance endocytosis and lysosomal degradation of CLDN14. In a three-dimensional culture model, the oxidative stress was significantly reduced by PSGMK, whereas hypoxia stress was not. Furthermore, the expression levels of nuclear factor erythroid 2-related factor 2, an oxidative stress response factor, and its target genes were decreased by PSGMK. These results suggest that PSGMK relieves stress conditions in spheroids. The cell viability of spheroids was decreased by anticancer drugs such as doxorubicin and oxaliplatin, which was exaggerated by the cotreatment with PSGMK. Our data indicate that CLDN14-targeting peptide, PSGMK has an anti-chemoresistance effect in CRC cells.
Collapse
Affiliation(s)
- Yuko Mizukami
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Shotaro Hashimoto
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Tomoka Ando
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Yoshinobu Ishikawa
- Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Totsuka-ku, Yokohama, Japan
| | - Hiroaki Eguchi
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuta Yoshino
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| | | | - Nobuhisa Matsuhashi
- Department of Gastroenterological Surgery, Pediatric Surgery, Gifu Graduate School of Medicine, Gifu, Japan
| | - Akira Ikari
- Department of Biopharmaceutical Sciences, Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
2
|
Rathnayake SS, Erramilli SK, Kossiakoff AA, Vecchio AJ. Cryo-EM structures of Clostridium perfringens enterotoxin bound to its human receptor, claudin-4. Structure 2024; 32:1936-1951.e5. [PMID: 39383874 PMCID: PMC11560561 DOI: 10.1016/j.str.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Clostridium perfringens enterotoxin (CpE) causes prevalent and deadly gastrointestinal disorders. CpE binds to receptors called claudins on the apical surfaces of small intestinal epithelium. Claudins normally regulate paracellular transport but are hijacked from doing so by CpE and are instead led to form claudin/CpE complexes. Claudin/CpE complexes are the building blocks of oligomeric β-barrel pores that penetrate the plasma membrane and induce gut cytotoxicity. Here, we present the structures of CpE in complex with its native claudin receptor in humans, claudin-4, using cryogenic electron microscopy. The structures reveal the architecture of the claudin/CpE complex, the residues used in binding, the orientation of CpE relative to the membrane, and CpE-induced changes to claudin-4. Further, structures and modeling allude to the biophysical procession from claudin/CpE complexes to cytotoxic β-barrel pores during pathogenesis. In full, this work proposes a model of claudin/CpE assembly and provides strategies to obstruct its formation to treat CpE diseases.
Collapse
Affiliation(s)
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alex J Vecchio
- Department of Structural Biology, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
3
|
Du F, Xie Y, Wu S, Ji M, Dong B, Zhu C. Expression and Targeted Application of Claudins Family in Hepatobiliary and Pancreatic Diseases. J Hepatocell Carcinoma 2024; 11:1801-1821. [PMID: 39345937 PMCID: PMC11439345 DOI: 10.2147/jhc.s483861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Hepatobiliary and pancreatic diseases are becoming increasingly common worldwide and associated cancers are prone to recurrence and metastasis. For a more accurate treatment, new therapeutic strategies are urgently needed. The claudins (CLDN) family comprises a class of membrane proteins that are the main components of tight junctions, and are essential for forming intercellular barriers and maintaining cellular polarity. In mammals, the claudin family contains at least 27 transmembrane proteins and plays a major role in mediating cell adhesion and paracellular permeability. Multiple claudin proteins are altered in various cancers, including gastric cancer (GC), esophageal cancer (EC), hepatocellular carcinoma (HCC), pancreatic cancer (PC), colorectal cancer (CRC) and breast cancer (BC). An increasing number of studies have shown that claudins are closely associated with the occurrence and development of hepatobiliary and pancreatic diseases. Interestingly, claudin proteins exhibit different effects on cancer progression in different tumor tissues, including tumor suppression and promotion. In addition, various claudin proteins are currently being studied as potential diagnostic and therapeutic targets, including claudin-3, claudin-4, claudin-18.2, etc. In this article, the functional phenotype, molecular mechanism, and targeted application of the claudin family in hepatobiliary and pancreatic diseases are reviewed, with an emphasis on claudin-1, claudin-4, claudin-7 and claudin-18.2, and the current situation and future prospects are proposed.
Collapse
Affiliation(s)
- Fangqian Du
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Yuwei Xie
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Shengze Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Mengling Ji
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|
4
|
Erramilli SK, Dominik PK, Ogbu CP, Kossiakoff AA, Vecchio AJ. Structural and biophysical insights into targeting of claudin-4 by a synthetic antibody fragment. Commun Biol 2024; 7:733. [PMID: 38886509 PMCID: PMC11183071 DOI: 10.1038/s42003-024-06437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Claudins are a 27-member family of ~25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. As the backbone of tight junction structure and function, claudins are attractive targets for modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. Here we report the development of a synthetic antibody fragment (sFab) that binds human claudin-4 and the determination of a high-resolution structure of it bound to claudin-4/enterotoxin complexes using cryogenic electron microscopy. Structural and biophysical results reveal this sFabs mechanism of select binding to human claudin-4 over other homologous claudins and establish the ability of sFabs to bind hard-to-target claudins to probe tight junction structure and function. The findings provide a framework for tight junction modulation by sFabs for tissue-selective therapies.
Collapse
Affiliation(s)
- Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Pfizer, San Diego, CA, 92121, USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
5
|
Vonniessen B, Tabariès S, Siegel PM. Antibody-mediated targeting of Claudins in cancer. Front Oncol 2024; 14:1320766. [PMID: 38371623 PMCID: PMC10869466 DOI: 10.3389/fonc.2024.1320766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/09/2024] [Indexed: 02/20/2024] Open
Abstract
Tight junctions (TJs) are large intercellular adhesion complexes that maintain cell polarity in normal epithelia and endothelia. Claudins are critical components of TJs, forming homo- and heteromeric interaction between adjacent cells, which have emerged as key functional modulators of carcinogenesis and metastasis. Numerous epithelial-derived cancers display altered claudin expression patterns, and these aberrantly expressed claudins have been shown to regulate cancer cell proliferation/growth, metabolism, metastasis and cell stemness. Certain claudins can now be used as biomarkers to predict patient prognosis in a variety of solid cancers. Our understanding of the distinct roles played by claudins during the cancer progression has progressed significantly over the last decade and claudins are now being investigated as possible diagnostic markers and therapeutic targets. In this review, we will summarize recent progress in the use of antibody-based or related strategies for targeting claudins in cancer treatment. We first describe pre-clinical studies that have facilitated the development of neutralizing antibodies and antibody-drug-conjugates targeting Claudins (Claudins-1, -3, -4, -6 and 18.2). Next, we summarize clinical trials assessing the efficacy of antibodies targeting Claudin-6 or Claudin-18.2. Finally, emerging strategies for targeting Claudins, including Chimeric Antigen Receptor (CAR)-T cell therapy and Bi-specific T cell engagers (BiTEs), are also discussed.
Collapse
Affiliation(s)
- Benjamin Vonniessen
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Sébastien Tabariès
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Peter M. Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
- Department of Anatomy & Cell Biology, McGill University, Montréal, QC, Canada
- Department of Oncology, McGill University, Montréal, QC, Canada
| |
Collapse
|
6
|
Waldow A, Beier LS, Arndt J, Schallenberg S, Vollbrecht C, Bischoff P, Farrera-Sal M, Loch FN, Bojarski C, Schumann M, Winkler L, Kamphues C, Ehlen L, Piontek J. cCPE Fusion Proteins as Molecular Probes to Detect Claudins and Tight Junction Dysregulation in Gastrointestinal Cell Lines, Tissue Explants and Patient-Derived Organoids. Pharmaceutics 2023; 15:1980. [PMID: 37514167 PMCID: PMC10385049 DOI: 10.3390/pharmaceutics15071980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Claudins regulate paracellular permeability, contribute to epithelial polarization and are dysregulated during inflammation and carcinogenesis. Variants of the claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) are highly sensitive protein ligands for generic detection of a broad spectrum of claudins. Here, we investigated the preferential binding of YFP- or GST-cCPE fusion proteins to non-junctional claudin molecules. Plate reader assays, flow cytometry and microscopy were used to assess the binding of YFP- or GST-cCPE to non-junctional claudins in multiple in vitro and ex vivo models of human and rat gastrointestinal epithelia and to monitor formation of a tight junction barrier. Furthermore, YFP-cCPE was used to probe expression, polar localization and dysregulation of claudins in patient-derived organoids generated from gastric dysplasia and gastric cancer. Live-cell imaging and immunocytochemistry revealed cell polarity and presence of tight junctions in glandular organoids (originating from intestinal-type gastric cancer and gastric dysplasia) and, in contrast, a disrupted diffusion barrier for granular organoids (originating from discohesive tumor areas). In sum, we report the use of cCPE fusion proteins as molecular probes to specifically and efficiently detect claudin expression, localization and tight junction dysregulation in cell lines, tissue explants and patient-derived organoids of the gastrointestinal tract.
Collapse
Affiliation(s)
- Ayk Waldow
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Laura-Sophie Beier
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Janine Arndt
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Simon Schallenberg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Claudia Vollbrecht
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
| | - Philip Bischoff
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Berlin Institute of Health, Institute of Pathology, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Martí Farrera-Sal
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
| | - Florian N Loch
- Department of General and Visceral Surgery, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Christian Bojarski
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Michael Schumann
- Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Lars Winkler
- Experimental Pharmacology & Oncology Berlin-Buch GmbH, 13125 Berlin, Germany
| | - Carsten Kamphues
- Park-Klinik Weißensee, Department of General-Visceral and Minimally-Invasive Surgery, 13086 Berlin, Germany
| | - Lukas Ehlen
- Berlin Institute of Health (BIH), Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Jörg Piontek
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
| |
Collapse
|
7
|
Spray-dried porcine plasma enhances feed efficiency, intestinal integrity, and immune response of broilers challenged with necrotic enteritis. Poult Sci 2022; 102:102431. [PMID: 36610106 PMCID: PMC9829710 DOI: 10.1016/j.psj.2022.102431] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Re-emergence of enteric diseases in the postantibiotic era has imposed severe loss to the poultry industry leading to the urgent need for appropriate additives to maintain gut health. Recently, more attention has been paid to animal plasma due to its high concentrations of active components such as albumins and globulins. The objective of this study was to evaluate the effects of spray-dried porcine plasma (SDP) supplementation during the starter phase (d 0-10) on growth performance, intestine health, and immune response of broilers under necrotic enteritis (NE) challenge. A total of 720 day-old male broiler parental line chicks (Ross 308) were randomly assigned to a 2 (NE challenge: no, yes) × 2 (SDP: 0, 2%) factorial arrangement with 12 replications of 15 chicks each. To induce NE, birds were inoculated with live Eimeria vaccine on d 9 and Clostridium perfringens on d 14. The body weight of birds and feed consumption were measured per pen on d 8, 10, 24, and 29 to calculate performance parameters. On d 16, three birds per pen were sampled to analyse the intestinal lesion score, gut permeability, villi morphology, relative weight of organs, and immune response. Results showed that SDP improved (P < 0.001) FCR in the pre-challenge phase (d 0-8). The results indicated that supplementing SDP lowered (P < 0.01) FCR at the end of the experiment (d 29). Dietary SDP decreased (P < 0.05) the concentration of FITC-d in serum samples of challenged broilers, although it did not affect the intestinal morphology and lesion score. Birds fed with SDP had a higher (P < 0.05) relative weight of bursa (g/kg live body weight) compared to non-supplemented birds. Supplementing SDP reduced the concentration of interleukin-6 (P < 0.05) and α-1 acid glycoprotein (P = 0.051) in serum samples of broilers. In conclusion, supplementation of SDP in the starter phase enhanced feed efficiency and gut integrity in NE challenged broilers, possibly through manipulating the immune response, while further studies targeting intestinal microflora and key genes are required to explore the mode of action.
Collapse
|
8
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
9
|
Nowicki A, Kulus M, Wieczorkiewicz M, Pieńkowski W, Stefańska K, Skupin-Mrugalska P, Bryl R, Mozdziak P, Kempisty B, Piotrowska-Kempisty H. Ovarian Cancer and Cancer Stem Cells-Cellular and Molecular Characteristics, Signaling Pathways, and Usefulness as a Diagnostic Tool in Medicine and Oncology. Cancers (Basel) 2021; 13:cancers13164178. [PMID: 34439332 PMCID: PMC8394875 DOI: 10.3390/cancers13164178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Ovarian cancer is still a high-risk, metastatic disease, often diagnosed at a late stage. Difficulties in its treatment are associated with high resistance to chemotherapy and recurrence. Responsible for the malignant features of cancer are considered to be cancer stem cells (CSCs), which generate new cells by modifying various signaling pathways. Signaling pathways are crucial for the regulation of epithelial-mesenchymal transition, metastasis, and self-renewal of CSCs. New therapies based on the use of inhibitors that block CSC growth and proliferation signals are being investigated. The current histological classification of ovarian tumors, their epidemiology, and the recent knowledge of ovarian CSCs, with particular emphasis on their molecular basis, are important considerations. Abstract Despite the increasing development of medicine, ovarian cancer is still a high-risk, metastatic disease that is often diagnosed at a late stage. In addition, difficulties in its treatment are associated with high resistance to chemotherapy and frequent relapse. Cancer stem cells (CSCs), recently attracting significant scientific interest, are considered to be responsible for the malignant features of tumors. CSCs, as the driving force behind tumor development, generate new cells by modifying different signaling pathways. Moreover, investigations on different types of tumors have shown that signaling pathways are key to epithelial-mesenchymal transition (EMT) regulation, metastasis, and self-renewal of CSCs. Based on these established issues, new therapies are being investigated based on the use of inhibitors to block CSC growth and proliferation signals. Many reports indicate that CSC markers play a key role in cancer metastasis, with hopes placed in their targeting to block this process and eliminate relapses. Current histological classification of ovarian tumors, their epidemiology, and the most recent knowledge of ovarian CSCs, with particular emphasis on their molecular background, are important aspects for consideration. Furthermore, the importance of signaling pathways involved in tumor growth, development, and metastasis, is also presented.
Collapse
Affiliation(s)
- Andrzej Nowicki
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (B.K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
| | - Wojciech Pieńkowski
- Division of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland;
| | - Rut Bryl
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
| | - Paul Mozdziak
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (B.K.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland;
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland;
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland;
- Correspondence:
| |
Collapse
|
10
|
Zuo JY, Tong YJ, Yue DM. [A review on the effect of Claudin-18 on bronchopulmonary dysplasia in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:542-547. [PMID: 34020748 PMCID: PMC8140329 DOI: 10.7499/j.issn.1008-8830.2101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Bronchopulmonary dysplasia (BPD) has the main manifestations of pulmonary edema in the early stage and characteristic alveolar obstruction and microvascular dysplasia in the late stage, which may be caused by structural and functional destruction of the lung epithelial barrier. The Claudin family is the main component of tight junction and plays an important role in regulating the permeability of paracellular ions and solutes. Claudin-18 is the only known tight junction protein solely expressed in the lung. The lack of Claudin-18 can lead to barrier dysfunction and impaired alveolar development, and the knockout of Claudin-18 can cause characteristic histopathological changes of BPD. This article elaborates on the important role of Claudin-18 in the development and progression of BPD from the aspects of lung epithelial permeability, alveolar development, and progenitor cell homeostasis, so as to provide new ideas for the pathogenesis and clinical treatment of BPD.
Collapse
Affiliation(s)
- Jing-Ye Zuo
- Department of Neonatology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Ya-Jie Tong
- Department of Neonatology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Dong-Mei Yue
- Department of Neonatology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| |
Collapse
|
11
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
12
|
Tight Junction Modulating Bioprobes for Drug Delivery System to the Brain: A Review. Pharmaceutics 2020; 12:pharmaceutics12121236. [PMID: 33352631 PMCID: PMC7767277 DOI: 10.3390/pharmaceutics12121236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB), which is composed of endothelial cells, pericytes, astrocytes, and neurons, separates the brain extracellular fluid from the circulating blood, and maintains the homeostasis of the central nervous system (CNS). The BBB endothelial cells have well-developed tight junctions (TJs) and express specific polarized transport systems to tightly control the paracellular movements of solutes, ions, and water. There are two types of TJs: bicellular TJs (bTJs), which is a structure at the contact of two cells, and tricellular TJs (tTJs), which is a structure at the contact of three cells. Claudin-5 and angulin-1 are important components of bTJs and tTJs in the brain, respectively. Here, we review TJ-modulating bioprobes that enable drug delivery to the brain across the BBB, focusing on claudin-5 and angulin-1.
Collapse
|
13
|
Effects of cLFchimera peptide on intestinal morphology, integrity, microbiota, and immune cells in broiler chickens challenged with necrotic enteritis. Sci Rep 2020; 10:17704. [PMID: 33077741 PMCID: PMC7573599 DOI: 10.1038/s41598-020-74754-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Three hundred and sixty 1-day-old male broiler chicks were randomly allocated to 4 treatments of 6 replicates to evaluate the effects of cLFchimera, a recombinant antimicrobial peptide (AMP), on gut health attributes of broiler chickens under necrotic enteritis (NE) challenge. Treatments were as follows: (T1) unchallenged group fed with corn-soybean meal (CSM) without NE challenge and additives (NC); (T2) group fed with CSM and challenged with NE without any additives (PC); (T3) PC group supplemented with 20 mg cLFchimera/kg diet (AMP); (T4) PC group supplemented with 45 mg antibiotic (bacitracin methylene disalicylate)/kg diet (antibiotic). Birds were sampled for villi morphology, ileal microbiota, and jejunal gene expression of cytokines, tight junctions proteins, and mucin. Results showed that AMP ameliorated NE-related intestinal lesions, reduced mortality, and rehabilitated jejunal villi morphology in NE challenged birds. While the antibiotic non-selectively reduced the count of bacteria, AMP restored microflora balance in the ileum of challenged birds. cLFchimera regulated the expression of cytokines, junctional proteins, and mucin transcripts in the jejunum of NE challenged birds. In conclusion, cLFchimera can be a reliable candidate to substitute growth promoter antibiotics, while more research is required to unveil the exact mode of action of this synthetic peptide.
Collapse
|
14
|
Use of Modified Clostridium perfringens Enterotoxin Fragments for Claudin Targeting in Liver and Skin Cells. Int J Mol Sci 2019; 20:ijms20194774. [PMID: 31561440 PMCID: PMC6801472 DOI: 10.3390/ijms20194774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022] Open
Abstract
Claudins regulate paracellular permeability in different tissues. The claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) is a known modulator of a claudin subset. However, it does not efficiently bind to claudin-1 (Cldn1). Cldn1 is a pharmacological target since it is (i) an essential co-receptor for hepatitis C virus (HCV) infections and (ii) a key element of the epidermal barrier limiting drug delivery. In this study, we investigated the potential of a Cldn1-binding cCPE mutant (i) to inhibit HCV entry into hepatocytes and (ii) to open the epidermal barrier. Inhibition of HCV infection by blocking of Cldn1 with cCPE variants was analyzed in the Huh7.5 hepatoma cell line. A model of reconstructed human epidermis was used to investigate modulation of the epidermal barrier by cCPE variants. In contrast to cCPEwt, the Cldn1-binding cCPE-S305P/S307R/S313H inhibited infection of Huh7.5 cells with HCV in a dose-dependent manner. In addition, TJ modulation by cCPE variant-mediated targeting of Cldn1 and Cldn4 opened the epidermal barrier in reconstructed human epidermis. cCPE variants are potent claudin modulators. They can be applied for mechanistic in vitro studies and might also be used as biologics for therapeutic claudin targeting including HCV treatment (host-targeting antivirals) and improvement of drug delivery.
Collapse
|
15
|
In-silico design and production of a novel antigenic chimeric Shigella IpaB fused to C-terminal of Clostridium perfringens enterotoxin. Mol Biol Rep 2019; 46:6105-6115. [PMID: 31473892 DOI: 10.1007/s11033-019-05046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
The emergence of antibiotic-resistant phenotypes in Shigella serotypes and the high mortality rate, approximately one million dead annually, in affected patients announce a global demand for an effective serotype-independent vaccine against Shigella. This study aims to design, express, and purify a novel chimeric protein, as a serotype-independent vaccine candidate against Shigella containing full-length Shigella invasion plasmid antigen B (IpaB) and a C-terminal fragment (residues 194-319) of Clostridium perfringens enterotoxin (C-CPE) as a mucosal adjuvant. Several online databases and bioinformatics software were utilized to design the chimeric protein and the relative recombinant gene. The recombinant gene encoding IpaB-CPE194-319 was synthesized, cloned into pACYCDuet-1 expression vector, and transferred to E. coli Bl21 (DE3) cells. IpaB-CPE194-319 was then expressed in auto-induction medium, purified and characterized using MALDI-TOF-TOF mass spectrometry. Followed by subcutaneous injection of the purified IpaB-CPE194-319 to BALB/c mice, antigenicity of this chimeric protein was determined through performing dot-blot immunoassay on nitrocellulose membrane using mice sera. The outcomes of this study show the successful design, efficient expression, and purification of IpaB-CPE194-319 divalent chimeric protein under mentioned conditions. The obtained results also demonstrate the intrinsic antigenic property of IpaB-CPE194-319.
Collapse
|
16
|
Potential for Tight Junction Protein-Directed Drug Development Using Claudin Binders and Angubindin-1. Int J Mol Sci 2019; 20:ijms20164016. [PMID: 31426497 PMCID: PMC6719960 DOI: 10.3390/ijms20164016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/30/2022] Open
Abstract
The tight junction (TJ) is an intercellular sealing component found in epithelial and endothelial tissues that regulates the passage of solutes across the paracellular space. Research examining the biology of TJs has revealed that they are complex biochemical structures constructed from a range of proteins including claudins, occludin, tricellulin, angulins and junctional adhesion molecules. The transient disruption of the barrier function of TJs to open the paracellular space is one means of enhancing mucosal and transdermal drug absorption and to deliver drugs across the blood–brain barrier. However, the disruption of TJs can also open the paracellular space to harmful xenobiotics and pathogens. To address this issue, the strategies targeting TJ proteins have been developed to loosen TJs in a size- or tissue-dependent manner rather than to disrupt them. As several TJ proteins are overexpressed in malignant tumors and in the inflamed intestinal tract, and are present in cells and epithelia conjoined with the mucosa-associated lymphoid immune tissue, these TJ-protein-targeted strategies may also provide platforms for the development of novel therapies and vaccines. Here, this paper reviews two TJ-protein-targeted technologies, claudin binders and an angulin binder, and their applications in drug development.
Collapse
|
17
|
Tsukita S, Tanaka H, Tamura A. The Claudins: From Tight Junctions to Biological Systems. Trends Biochem Sci 2019; 44:141-152. [DOI: 10.1016/j.tibs.2018.09.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 01/04/2023]
|
18
|
Tachibana K, Kondoh M. A Method to Prepare Claudin-Modulating Recombinant Proteins. Methods Mol Biol 2019; 2109:251-260. [PMID: 31471875 DOI: 10.1007/7651_2019_258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The epithelium forms tight junctions by sealing the paracellular space, and tight junctions prevent the free movement of solutes. Claudin is an important structural and functional component of tight junctions and contributes to the formation of paracellular pathways for different populations of size- and charge-selective solutes. Therefore, modulation of tight junctions is important to develop drug delivery strategies. Clostridium perfringens enterotoxin (CPE) causes food poisoning in humans and is a 35-kDa polypeptide, consisting of 319 amino acids and two functional regions. The C-terminal region of CPE (C-CPE) is not cytotoxic and binds to its receptor claudin, which in turn modulates the epithelial tight junction barrier. Thus, claudin binders, such as C-CPE, are useful tools for drug delivery targeting tight junctions. Here, we provide a protocol for the expression and purification of recombinant C-CPE proteins as claudin binders, an analysis method for C-CPE binding affinity, and a procedure for assessing the effect of modulating tight junction integrity.
Collapse
Affiliation(s)
- Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
19
|
Hashimoto Y, Hata T, Tada M, Iida M, Watari A, Okada Y, Doi T, Kuniyasu H, Yagi K, Kondoh M. Safety evaluation of a human chimeric monoclonal antibody that recognizes the extracellular loop domain of claudin-2. Eur J Pharm Sci 2018; 117:161-167. [PMID: 29448044 DOI: 10.1016/j.ejps.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 01/05/2023]
Abstract
Claudin-2 (CLDN-2), a pore-forming tight junction protein with a tetra-transmembrane domain, is involved in carcinogenesis and the metastasis of some cancers. Although CLDN-2 is highly expressed in the tight junctions of the liver and kidney, whether CLDN-2 is a safe target for cancer therapy remains unknown. We recently generated a rat monoclonal antibody (mAb, clone 1A2) that recognizes the extracellular domains of human and mouse CLDN-2. Here, we investigated the safety of CLDN-2-targeted cancer therapy by using 1A2 as a model therapeutic antibody. Because most human therapeutic mAbs are IgG1 subtype that can induce antibody-dependent cellular cytotoxicity, we generated a human-rat chimeric IgG1 form of 1A2 (xi-1A2). xi-1A2 activated Fcγ receptor IIIa in the presence of CLDN-2-expressing cells, indicating that xi-1A2 likely exerts antibody-dependent cellular cytotoxicity. At 24 h after its intravenous injection, xi-1A2 was distributed into the liver, kidney, and tumor tissues of mice bearing CLDN-2-expressing fibrosarcoma cells. Treatment of the xenografted mice with xi-1A2 attenuated tumor growth without apparent adverse effects, such as changes in body weight and biochemical markers of liver and kidney injury. These results support xi-1A2 as the lead candidate mAb for safe CLDN-2-targeted cancer therapy.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Tomoyuki Hata
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo 158-0098, Japan
| | - Manami Iida
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Akihiro Watari
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yoshiaki Okada
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Takefumi Doi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Nara 634-8521, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
20
|
Arabshahi S, Nayeri Fasaei B, Derakhshandeh A, Novinrooz A. In silico design of a novel chimeric shigella IpaB fused to C terminal of clostridium perfringens enterotoxin as a vaccine candidate. Bioengineered 2017; 9:170-177. [PMID: 29091543 PMCID: PMC5972921 DOI: 10.1080/21655979.2017.1373535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study aimed to design a novel chimeric protein in silico to serve as a serotype-independent vaccine candidate against Shigella. The chimera contains amino acid residues 240–460 of Shigella invasion plasmid antigen B (IpaB) and the C-terminus of Clostridium perfringens enterotoxin (C-CPE). Amino acid sequences of 537 peptide linkers were obtained from two protein linker databases. 3D structures of IpaB-CPE290–319, IpaB-CPE184–319, IpaB-CPE194–319 and 537 newly designed IpaB-linker-CPE290–319 constructs with varying linker regions were predicted. These predicted 3D structures were merged with the 3D structures of native IpaB240–460, CPE194–319, CPE184–319 and CPE290–319 to select the structure most similar to native IpaB and C-CPE. Several in silico tools were used to determine the suitability of the selected IpaB-C-CPE structure as a vaccine candidate. None of the 537 linkers was capable of preserving the native structure of CPE290–319 within the IpaB-linker-CPE290–319 structure. In silico analysis determined that the IpaB-CPE194–319 3D structure was the most similar to the 3D structure of the respective native CPE domain and that it was a stable chimeric protein exposing multiple B-cell epitopes. IpaB-CPE194–319 was designed for its capability to bind to human intestinal epithelial and M cells and to accumulate on these cells. The predicted B-cell epitopes are likely to be capable of inducing a mucosal antibody response in the human intestine against Shigella IpaB. This study also showed that the higher binding affinities of CPE184–319 and CPE194–319 to claudin molecules than those of CPE290–319 is the result of preserving the 3D structures of CPE184–319 and CPE194–319 when they are linked to the C-termini of other proteins.
Collapse
Affiliation(s)
- Sina Arabshahi
- a Department of Pathobiology , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Bahar Nayeri Fasaei
- b Department of Microbiology and Immunology, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - Abdollah Derakhshandeh
- a Department of Pathobiology , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Aytak Novinrooz
- a Department of Pathobiology , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| |
Collapse
|
21
|
Watari A, Kodaka M, Matsuhisa K, Sakamoto Y, Hisaie K, Kawashita N, Takagi T, Yamagishi Y, Suzuki H, Tsujino H, Yagi K, Kondoh M. Identification of claudin-4 binder that attenuates tight junction barrier function by TR-FRET-based screening assay. Sci Rep 2017; 7:14514. [PMID: 29109448 PMCID: PMC5674027 DOI: 10.1038/s41598-017-15108-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
Claudins are key functional and structural components of tight junctions (TJs) in epithelial cell sheets. The C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) binds to claudin-4 and reversibly modulates intestinal TJ seals, thereby enhancing paracellular transport of solutes. However, the use of C-CPE as an absorption enhancer is limited by the molecule’s immunogenicity and manufacturing cost. Here, we developed a high-throughput screening system based on the Time-Resolved Fluorescence Resonance Energy Transfer (TR-FRET) method to identify claudin-4 binders in a library collection of 32,560 compounds. Thiostrepton, identified from the screen, decreased transepithelial electrical resistance and increased flux of 4-kDa fluorescein isothiocyanate–labelled dextran (FD-4) in Caco-2 cell monolayers, a model of intestinal epithelium. Thiostrepton changed the expression, but not the localisation, of TJ components. Treatment of rat jejunum with thiostrepton increased the absorption of FD-4 without tissue toxicity, indicating that thiostrepton is a novel claudin-4 binder that enhances intestinal permeability. The screening system may therefore be a useful tool for identifying claudin-4 binders to enhance drug absorption in mucosa.
Collapse
Affiliation(s)
- Akihiro Watari
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Miki Kodaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Matsuhisa
- Department of Stress Protein Processing, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuta Sakamoto
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kota Hisaie
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norihito Kawashita
- Faculty of Science and Engineering, Kindai University 3-4-1 Kowakae, Higashiosaka City, Osaka, 577-8502, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshiaki Yamagishi
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo, 202-8585, Japan
| | - Hidehiko Suzuki
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, 567-0085, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
22
|
Angiogenesis and cancer stem cells: New perspectives on therapy of ovarian cancer. Eur J Med Chem 2017; 142:87-94. [PMID: 28651817 DOI: 10.1016/j.ejmech.2017.06.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022]
Abstract
Failure in ovarian cancer therapy, following cytoreduction and chemotherapy, is related to the presence of cancer stem cells - a small subpopulation of cells resistant to chemotherapy and irradiation - in the tumour which may cause cancer relapse and manifestation of metastases. Therapies targeted at Cancer Stem Cells (CSCs), such as those employing metformin (a drug used in the treatment of diabetes type II) and salinomycin, an antibiotic isolated from Streptococcus albus bacteria, seem promising. Anti-angiogenic therapy with bevacizumab was found to be effective in all phases of ovarian cancer treatment. The presence of CSCs has been associated with angiogenesis. Several CSC biomarkers correlate with the markers of angiogenesis and some signalling pathways, e.g. Notch, and are used by both CSCs and by pro-angiogenic factors.
Collapse
|
23
|
Hashimoto Y, Fukasawa M, Kuniyasu H, Yagi K, Kondoh M. Claudin-targeted drug development using anti-claudin monoclonal antibodies to treat hepatitis and cancer. Ann N Y Acad Sci 2017; 1397:5-16. [PMID: 28415141 DOI: 10.1111/nyas.13337] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 12/26/2022]
Abstract
The 27-member family of tetraspan membrane proteins known as claudins (CLDNs) is a major component of tight junctions. A series of studies elucidating the relationship between CLDNs and various pathological conditions has provided new insights into drug development. For instance, CLDN-1 may be a potent target for epidermal absorption of drugs and for treating hepatitis C virus (HCV) infection. CLDN-4 may be a target for treating cancer. Because CLDNs are also expressed in various normal tissues, safety and efficacy evaluations are critical for translational research. We previously developed several anti-CLDN antibodies and have established proof of concept for CLDN-targeted drug development using these reagents. Here, we provide an overview of CLDN-1 as a target for improving epidermal drug absorption and preventing HCV infection and of CLDN-4 as a target for anticancer therapeutics.
Collapse
Affiliation(s)
- Yosuke Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Nara, Japan
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
24
|
Günzel D. Claudins: vital partners in transcellular and paracellular transport coupling. Pflugers Arch 2016; 469:35-44. [DOI: 10.1007/s00424-016-1909-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 12/28/2022]
|