1
|
Alizadeh M, Ghasemi H, Bazhan D, Mohammadi Bolbanabad N, Rahdan F, Arianfar N, Vahedi F, Khatami SH, Taheri-Anganeh M, Aiiashi S, Armand N. MicroRNAs in disease States. Clin Chim Acta 2025; 569:120187. [PMID: 39938625 DOI: 10.1016/j.cca.2025.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This review highlights the role of miRNAs in various diseases affecting major organ systems. miRNAs are small, non-coding RNA molecules that regulate numerous genes. Dysregulation of miRNAs is linked to many pathological conditions due to their involvement in gene silencing and cellular pathways. We discuss miRNA expression patterns, their physiological and pathological roles, and how changes in miRNA levels contribute to disease. Notably, miRNAs like miR-499 and miR-21 are implicated in heart failure and atherosclerosis. miRNA dysregulation is also associated with colorectal and gastric cancers, influencing tumorigenesis and chemoresistance. In neurological diseases, miRNAs exhibit diverse profiles that affect neurodevelopment and degeneration. Additionally, miRNAs modulate cell function in reproductive organs, impacting fertility and cancer progression. miRNAs such as miR-192 and miR-204 serve as biomarkers for nephropathy and acute kidney injury. These miRNAs are involved in skeletal muscle diseases, contributing to conditions like osteoporosis and sarcopenia. miRNAs function as oncogenes or tumor suppressors in cancer, highlighting their potential in diagnostics and therapy. Further research is needed to develop miRNA-based diagnostics and treatments.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Donya Bazhan
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Arianfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Nezam Armand
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Nashtahosseini Z, Nejatollahi M, Fazilat A, Zarif Fakoor E, Emamvirdizadeh A, Bahadori K, Hadian NS, Valilo M. The crosstalk between exosomal miRNA and ferroptosis: A narrative review. Biol Cell 2025; 117:e2400077. [PMID: 39853758 DOI: 10.1111/boc.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
Ferroptosis is a type of cell death that multiple mechanisms and pathways contribute to the positive and negative regulation of it. For example, increased levels of reactive oxygen species (ROS) induce ferroptosis. ferroptosis unlike apoptosis, it is not dependent on caspases, but is dependent on iron. Exosomes are membrane-bound vesicles with a size of about 30 to 150 nm, contain various cellular components, including DNA, RNA, microRNAs (miRNAs), lipids, and proteins, which are genetically similar to their cells of origin. Exosomes are found in all bodily fluids, including blood, saliva, and urine. Cells often release exosomes after their fusion with the cell membrane. They play an important role in immune regulation and cell-cell communication. miRNAs, which are noncoding RNAs with a length of about 18 to 24 nucleotides, are involved in regulating gene expression after transcription. Emerging data suggests that exosomal miRNAs are implicated in various pathophysiological mechanisms of cells, including metastasis, drug resistance, and cell death. In addition, functional studies have indicated that exosomal miRNAs can play a key role in the modulation of cell death by regulating ferroptosis. Therefore, in this review, given the importance of exosomal miRNAs in ferroptosis, we decided to elucidate the relationship between exosomal miRNAs and ferroptosis in various diseases.
Collapse
Affiliation(s)
| | - Masoumeh Nejatollahi
- Research center for high school students, Education System Zanjan Province, Zanjan, Iran
| | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, Breast Cancer Research Center, ACECR, Tehran, Iran
| | | | - Alireza Emamvirdizadeh
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kamran Bahadori
- Health center of Bahar, Hamadan University of Medical Science& Health Services, Hamadan, Iran
| | | | - Mohammad Valilo
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
3
|
Yan K, Bian J, He L, Song B, Shen L, Zhen Y. Effects of KLF11 on Vascular Smooth Muscle Cells and its Underlying Mechanisms in Intracranial Aneurysm. Biochem Genet 2024; 62:4837-4850. [PMID: 38368567 DOI: 10.1007/s10528-024-10681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 02/19/2024]
Abstract
Vascular smooth muscle cells (VSMCs) affect the phenotypic changes in intracranial aneurysm (IA). They exhibit enhanced dissociation and migration and play a key role in IA pathogenesis. KLF transcription factor 11 (KLF11), a member of the KLF family, significantly affects the cancer cell proliferation, differentiation, and apoptosis. However, its expression, biological functions, and latent action mechanisms in IA remain unclear. This study aimed to analyze the effects of KLF11 on H2O2-induced human brain VSMCs (HBVSMCs) in IA. We determined the mRNA levels of KLF11 in 15 paired arterial wall tissues of patients with IA and healthy volunteers. HBVSMCs were stimulated with H2O2 for 6 h to establish an IA model in vitro. Cell viability, apoptosis, and inflammatory cytokine (interleukin [IL-1β, tumor necrosis factor-α, and IL-6) levels were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays, respectively. KLF11 expression was determined via quantitative reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence analyses. Furthermore, p-p38, p38, cleaved-caspase 3, and caspase 3 levels were determined via western blotting. KLF11 levels were downregulated in the arterial wall tissues of patients with IA than in those of the control group. KLF11 upregulation by KLF11-plasmid promoted the cell viability, reduced apoptosis, decreased cleaved-caspase 3 expression, and inhibited the secretion of inflammatory factors in H2O2-induced HBVSMCs. KLF11-plasmid remarkably reduced p-p38 expression and p-p38/p-38 ratio; however, these effects were reversed by P79350 treatment. Overall, KLF11 upregulation improved the HBVSMC functions and exerted protective effects against IA, suggesting its potential for IA treatment.
Collapse
Affiliation(s)
- Ke Yan
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Jiarong Bian
- Department of Respiratory Medicine, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Liang He
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Bingwei Song
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Linhai Shen
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Yong Zhen
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China.
| |
Collapse
|
4
|
Xiang T, Yang C, Deng Z, Sun D, Luo F, Chen Y. Krüppel-like factors family in health and disease. MedComm (Beijing) 2024; 5:e723. [PMID: 39263604 PMCID: PMC11387732 DOI: 10.1002/mco2.723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/19/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Krüppel-like factors (KLFs) are a family of basic transcription factors with three conserved Cys2/His2 zinc finger domains located in their C-terminal regions. It is acknowledged that KLFs exert complicated effects on cell proliferation, differentiation, survival, and responses to stimuli. Dysregulation of KLFs is associated with a range of diseases including cardiovascular disorders, metabolic diseases, autoimmune conditions, cancer, and neurodegenerative diseases. Their multidimensional roles in modulating critical pathways underscore the significance in both physiological and pathological contexts. Recent research also emphasizes their crucial involvement and complex interplay in the skeletal system. Despite the substantial progress in understanding KLFs and their roles in various cellular processes, several research gaps remain. Here, we elucidated the multifaceted capabilities of KLFs on body health and diseases via various compliable signaling pathways. The associations between KLFs and cellular energy metabolism and epigenetic modification during bone reconstruction have also been summarized. This review helps us better understand the coupling effects and their pivotal functions in multiple systems and detailed mechanisms of bone remodeling and develop potential therapeutic strategies for the clinical treatment of pathological diseases by targeting the KLF family.
Collapse
Affiliation(s)
- Tingwen Xiang
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Chuan Yang
- Department of Biomedical Materials Science Third Military Medical University (Army Medical University) Chongqing China
| | - Zihan Deng
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Dong Sun
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Fei Luo
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
| | - Yueqi Chen
- Department of Orthopedics Southwest Hospital Third Military Medical University (Army Medical University) Chongqing China
- Department of Orthopedics Chinese PLA 76th Army Corps Hospital Xining China
| |
Collapse
|
5
|
Wang S, Duan H, Wang S, Guo Z, Lin Q. miR-141-3p Regulates the Proliferation and Apoptosis of Endometrial-Myometrial Interface Smooth Muscle Cells in Adenomyosis Via JAK2/STAT3 Pathway. Biochem Genet 2024; 62:2049-2065. [PMID: 37828348 DOI: 10.1007/s10528-023-10508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023]
Abstract
Adenomyosis (ADS) is a common benign gynecological disease. Abnormal proliferation at the endometrial-myometrial interface (EMI) plays a crucial role in the occurrence and progression of ADS. miR-141-3p is associated with cell proliferation and apoptosis. However, the specific mechanism of miR-141-3p in the etiology of ADS is still unknown. In this study, we explored the effects of miR-141-3p on the proliferation and apoptosis of ADS EMI smooth muscle cells (SMCs). We collected EMI tissues for the primary culture of SMCs from 25 patients diagnosed with ADS and 20 without ADS. Real-time quantitative polymerase chain reaction and western blot were used to measure the mRNA and protein expression levels of miR-141-3p, JAK2, STAT3, phospho-JAK2, and phospho-STAT3 in ADS EMI SMCs. The cell counting kit 8 assay and flow cytometry analysis were used to evaluate the proliferation and apoptosis of EMI SMCs. The miR-141-3p mimic/inhibitor was used to increase or decrease the expression level of miR-141-3p. We added WP1066 to block the phosphorylation of JAK2/STAT3 pathway components. The miR-141-3p levels were decreased, while JAK2 and STAT3 levels were increased in ADS EMI SMCs. miR-141-3p overexpression significantly inhibited the proliferation and enhanced the apoptosis of EMI SMCs, whereas a decrease in miR-141-3p expression level was connected to the opposite results. Meanwhile, inactivated JAK2/STAT3 pathway decreased proliferation and enhanced apoptosis of EMI SMCs after WP1066 treatment. Furthermore, rescue experiments confirmed that the JAK2/STAT3 pathway was the downstream pathway of miR-141-3p and reduced the effect of miR-141-3p on the proliferation and apoptosis of EMI SMCs. These results demonstrate that miR-141-3p regulates the proliferation and apoptosis of ADS EMI SMCs by modulating the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Sirui Wang
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China
| | - Hua Duan
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China.
| | - Sha Wang
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China
| | - Zhengchen Guo
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China
| | - Qi Lin
- Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100006, China
| |
Collapse
|
6
|
Bagheri M, Khansarinejad B, Mondanizadeh M, Azimi M, Alavi S. MiRNAs related in signaling pathways of women's reproductive diseases: an overview. Mol Biol Rep 2024; 51:414. [PMID: 38472662 DOI: 10.1007/s11033-024-09357-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND One of the main health issues that can affect women's health is reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis (EMs), uterine leiomyomas (ULs), and ovarian cancer (OC). Although these diseases are very common, we do not have a complete understanding of their underlying cellular and molecular mechanisms. It is important to mention that the majority of patients are diagnosed with these diseases at later stages because of the absence of early diagnostic techniques and dependable molecular indicators. Hence, it is crucial to discover novel and non-invasive biomarkers that have prognostic, diagnostic and therapeutic capabilities. MiRNAs, also known as microRNAs, are small non-coding RNAs that play a crucial role in regulating gene expression at the post-transcriptional level. They are short in length, typically consisting of around 22 nucleotides, and are highly conserved across species. Numerous studies have shown that miRNAs are expressed differently in various diseases and can act as either oncogenes or tumor suppressors. METHODS The author conducted a comprehensive review of all the pertinent papers available in web of science, PubMed, Google Scholar, and Scopus databases. RESULTS We achieved three goals: providing readers with better information, enhancing search results, and making peer review easier. CONCLUSIONS This review focuses on the investigation of miRNAs and their involvement in various reproductive disorders in women, including their molecular targets. Additionally, it explores the role of miRNAs in the development and progression of these disorders.
Collapse
Affiliation(s)
- Malihe Bagheri
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Behzad Khansarinejad
- Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran
| | - Mahdieh Mondanizadeh
- Department of Biotechnology and Molecular Medicine, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mohadeseh Azimi
- Department of Biochemistry and Genetics, Arak University of Medical Sciences, Arak, Iran
| | - Shima Alavi
- Department of Obstetrics and Gynecology, Ghods Hospital, Arak, Iran
| |
Collapse
|
7
|
Zeng P, Lu L, Zhang H, Li Y, Tan S, Yu T, Zhou H. Therapeutic targets for endometriosis: Genome-wide Mendelian randomization and colocalization analyses. Gene 2024; 893:147970. [PMID: 37931855 DOI: 10.1016/j.gene.2023.147970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Endometriosis (EM) greatly affects women's reproductive health, identifying new drug targets for EM is urgently needed. This study utilizes comprehensive genome-wide Mendelian randomization (MR) and colocalization analyses, using genomic data, to identify potential therapeutic approaches for EM. METHODS Genome-wide cis-expression quantitative trait loci (cis-eQTL) data were obtained from GTEx V8, which included 838 participants across 49 tissues or cells, and the eQTLGen consortium, which included 31,684 participants. Genome-wide association analysis (GWAS) data for EM were sourced from the FinnGen study, which consisted of 8,288 cases and 68,969 controls, as well as the UK Biobank study, which included 1,496 cases and 359,698 controls. This study utilized MR analysis to assess the correlation between genes and the risk of EM. Subsequently, colocalization analysis was conducted to investigate potential shared causal variants between the identified genes and EM. RESULTS After conducting MR and colocalization analyses, we identified a total of 13 genes that showed significant evidence of colocalization. These genes are considered promising therapeutic candidates for treating EM. Among them, inner membrane mitochondrial protein (IMMT), src kinase associated phosphoprotein 1 (SKAP1), lysine methyltransferase 5A (KMT5A), KLF transcription factor 12 (KLF12), GRB10 interacting GYF protein 1 (GIGYF1), Wnt family member 7A (WNT7A), Sad1 and UNC84 domain containing 1 (SUN1), and poly (ADP-ribose) polymerase family member 3 (PARP3) were found to have positive associations with the risk of EM. On the other hand, progestin and adipoQ receptor family member 8 (PAQR8), adaptor related protein complex 3 subunit mu 1 (AP3M1), surfeit 6 (SURF6), TUB bipartite transcription factor (TUB), and DNA polymerase delta interacting protein 2 (POLDIP2) were found to have inverse relationships with the risk of EM. CONCLUSIONS Through genome-wide MR studies, a comprehensive set of genes associated with EM has been identified. Among them, IMMT, PAQR8, SKAP1, KMT5A, AP3M1, SURF6, KLF12, GIGYF1, TUB, WNT7A, SUN1, POLDIP2, and PARP3 show potential as therapeutic targets for EM treatment. Nonetheless, it is crucial to conduct further rigorous investigations to validate these prospects.
Collapse
Affiliation(s)
- Pengfei Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liyue Lu
- School of Shuguang Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanxiao Zhang
- Faculty of Medicine, Université Paris-Saclay, Villejuif, France
| | - Yanting Li
- School of Acu-Mox and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shufa Tan
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, Sichuan, China
| | - Tong Yu
- Department of Gynecology, Guangan Hospital of Traditional Chinese Medicine, Guangan, Sichuan, China.
| | - Hang Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Begum MIA, Chuan L, Hong ST, Chae HS. The Pathological Role of miRNAs in Endometriosis. Biomedicines 2023; 11:3087. [PMID: 38002087 PMCID: PMC10669455 DOI: 10.3390/biomedicines11113087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Association studies investigating miRNA in relation to diseases have consistently shown significant alterations in miRNA expression, particularly within inflammatory pathways, where they regulate inflammatory cytokines, transcription factors (such as NF-κB, STAT3, HIF1α), and inflammatory proteins (including COX-2 and iNOS). Given that endometriosis (EMS) is characterized as an inflammatory disease, albeit one influenced by estrogen levels, it is natural to speculate about the connection between EMS and miRNA. Recent research has indeed confirmed alterations in the expression levels of numerous microRNAs (miRNAs) in both endometriotic lesions and the eutopic endometrium of women with EMS, when compared to healthy controls. The undeniable association of miRNAs with EMS hints at the emergence of a new era in the study of miRNA in the context of EMS. This article reviews the advancements made in understanding the pathological role of miRNA in EMS and its association with EMS-associated infertility. These findings contribute to the ongoing pursuit of developing miRNA-based therapeutics and diagnostic markers for EMS.
Collapse
Affiliation(s)
- Mst Ismat Ara Begum
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Lin Chuan
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea; (M.I.A.B.); (L.C.)
| | - Hee-Suk Chae
- Department of Obstetrics and Gynecology, Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
- Biomedical Research Institute, Jeonbuk National University Hospital, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| |
Collapse
|
9
|
Zhang CX, Lin YL, Lu FF, Yu LN, Liu Y, Zhou JD, Kong N, Li D, Yan GJ, Sun HX, Cao GY. Krüppel-like factor 12 regulates aging ovarian granulosa cell apoptosis by repressing SPHK1 transcription and sphingosine-1-phosphate (S1P) production. J Biol Chem 2023; 299:105126. [PMID: 37543362 PMCID: PMC10463260 DOI: 10.1016/j.jbc.2023.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023] Open
Abstract
Oxidative stress triggered by aging, radiation, or inflammation impairs ovarian function by inducing granulosa cell (GC) apoptosis. However, the mechanism inducing GC apoptosis has not been characterized. Here, we found that ovarian GCs from aging patients showed increased oxidative stress, enhanced reactive oxygen species activity, and significantly decreased expression of the known antiapoptotic factor sphingosine-1-phosphate/sphingosine kinase 1 (SPHK1) in GCs. Interestingly, the expression of Krüppel-like factor 12 (KLF12) was significantly increased in the ovarian GCs of aging patients. Furthermore, we determined that KLF12 was significantly upregulated in hydrogen peroxide-treated GCs and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. This phenotype was further confirmed to result from inhibition of SPHK1 by KLF12. Interestingly, when endogenous KLF12 was knocked down, it rescued oxidative stress-induced apoptosis. Meanwhile, supplementation with SPHK1 partially reversed oxidative stress-induced apoptosis. However, this function was lost in SPHK1 with deletion of the binding region to the KLF12 promoter. SPHK1 reversed apoptosis caused by hydrogen peroxide-KLF12 overexpression, a result further confirmed in an in vitro ovarian culture model and an in vivo 3-nitropropionic acid-induced ovarian oxidative stress model. Overall, our study reveals that KLF12 is involved in regulating apoptosis induced by oxidative stress in aging ovarian GCs and that sphingosine-1-phosphate/SPHK1 can rescue GC apoptosis by interacting with KLF12 in negative feedback.
Collapse
Affiliation(s)
- Chun-Xue Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yu-Ling Lin
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Fei-Fei Lu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Li-Na Yu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yang Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ji-Dong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Na Kong
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Dong Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Gui-Jun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
| | - Hai-Xiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
| | - Guang-Yi Cao
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Yang X, Tao Y, Jin O, Lai J, Yang X. MiR-17-5p promoter methylation regulated by DNA methyltransferase 3 beta (DNMT3B) expedites endometriosis via the Krüppel-like factor 12 (KLF12)/Wnt/β-catenin axis. J Reprod Immunol 2023; 158:103974. [PMID: 37290172 DOI: 10.1016/j.jri.2023.103974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Endometriosis (EM) is a common chronic disease in women with a high incidence, and aberrant DNA methylation and circulating endometrial cells (CECs) have been reported to be involved in the development of EM. However, the underlying mechanisms by which DNA methylation regulates EM progression have not been fully elucidated. In our study, we demonstrated that the DNA methyltransferase 3 beta (DNMT3B)-mediated DNA methylation modification enhanced EM progression through regulating miR-17-5p/KLF12/Wnt/β-catenin axis. In detail, expression levels of miR-17-5p were significantly downregulated in EM tissues and serums, and we found that DNMT3B elevated the methylation modification of the miR-17-5p promoter, thereby suppressing the expression of miR-17-5p. Subsequently, functional experiments showed that silencing DNMT3B inhibited cell viability and epithelial-mesenchymal transition (EMT) and promoted cell apoptosis in CECs, whereas this effect could be reversed by knocking down miR-17-5p. Besides, overexpression of miR-17-5p repressed EM progression in vivo. Moreover, we found that miR-17-5p could target negative regulation of Krüppel-like factor 12 (KLF12) and KLF12 overexpression could rescue the effect of over-miR-17-5p. Besides, miR-17-5p was able to suppress the Wnt/β-catenin signaling pathway, and blocked Wnt/β-catenin pathway by XAV-939 reversed the influence of knockdown of miR-17-5p. Overall, our data indicated that DNMT3B-mediated DNA methylation leading to miR-17-5p inhibition exacerbated the process of EM by targeting KLF12/Wnt/β-catenin axis, which provided a new perspective on targeted therapies for EM.
Collapse
Affiliation(s)
- Xiaomin Yang
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215031, China.
| | - Yueping Tao
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Jiaxing University Affiliated TCM Hospital, Jiaxing, Zhejiang Province 314000, China.
| | - Ou Jin
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Jiaxing University Affiliated TCM Hospital, Jiaxing, Zhejiang Province 314000, China.
| | - Juan Lai
- Department of Gynecology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Zhejiang Chinese Medical University Affiliated Jiaxing TCM Hospital, Jiaxing, Zhejiang Province 314000, China; Department of Gynecology, Jiaxing University Affiliated TCM Hospital, Jiaxing, Zhejiang Province 314000, China.
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215031, China.
| |
Collapse
|
11
|
Artemova D, Vishnyakova P, Gantsova E, Elchaninov A, Fatkhudinov T, Sukhikh G. The prospects of cell therapy for endometriosis. J Assist Reprod Genet 2023; 40:955-967. [PMID: 36964451 PMCID: PMC10239410 DOI: 10.1007/s10815-023-02772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/26/2023] Open
Abstract
Endometriosis is a chronic inflammatory estrogen-dependent disease characterized by the growth of endometrial-like tissue outside the physiological region. Despite the fact that this disease is common, laparoscopic surgery is currently the gold standard in the treatment of endometriosis. In this regard, it is necessary to develop new effective methods of minimally invasive therapy for endometriosis. One of the promising areas in the treatment of endometriosis is cell therapy. Cellular therapy is a vast branch of therapeutic methods with various agents. Potential cell therapies for endometriosis may be based on the principle of targeting aspects of the pathogenesis of the disease: suppression of estrogen receptor activity, angiogenesis, fibrosis, and a decrease in the content of stem cells in endometriosis foci. In addition, immune cells such as NK cells and macrophages may be promising agents for cell therapy of endometriosis. Standing apart in the methods of cell therapy is the replacement therapy of endometriosis. Thus, many studies in the field of the pathogenesis of endometriosis can shed light not only on the causes of the disease and may contribute to the development of new methods for personalized cell therapy of endometriosis.
Collapse
Affiliation(s)
- Daria Artemova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Elena Gantsova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Andrey Elchaninov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia.
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Ghasemi F, Alemzadeh E, Allahqoli L, Alemzadeh E, Mazidimoradi A, Salehiniya H, Alkatout I. MicroRNAs Dysregulation as Potential Biomarkers for Early Diagnosis of Endometriosis. Biomedicines 2022; 10:biomedicines10102558. [PMID: 36289820 PMCID: PMC9599310 DOI: 10.3390/biomedicines10102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Endometriosis is a benign chronic disease in women that is characterized by the presence of active foci of the endometrium or endometrial tissue occurring outside of the uterus. The disease causes disabling symptoms such as pelvic pain and infertility, which negatively affect a patient's quality of life. In addition, endometriosis imposes an immense financial burden on the healthcare system. At present, laparoscopy is the gold standard for diagnosing the disease because other non-invasive diagnostic tests have less accuracy. In addition, other diagnostic tests have low accuracy. Therefore, there is an urgent need for the development of a highly sensitive, more specific, and non-invasive test for the early diagnosis of endometriosis. Numerous researchers have suggested miRNAs as potential biomarkers for endometriosis diagnosis due to their specificity and stability. However, the greatest prognostic force is the determination of several miRNAs, the expression of which varies in a given disease. Despite the identification of several miRNAs, the studies are investigatory in nature, and there is no consensus on them. In the present review, we first provide an introduction to the dysregulation of miRNAs in patients with endometriosis and the potential use of miRNAs as biomarkers in the detection of endometriosis. Then we will describe the role of the mir-200 family in endometriosis. Several studies have shown that the expression of the mir-200 family changes in endometriosis patients, suggesting that they could be used as a diagnostic biomarker and therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Fahimeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Effat Alemzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Leila Allahqoli
- Midwifery Department, Ministry of Health and Medical Education, Tehran 1467664961, Iran
| | - Esmat Alemzadeh
- Department of Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand 9717853577, Iran
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Afrooz Mazidimoradi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Hamid Salehiniya
- Social Determinants of Health Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Ibrahim Alkatout
- Kiel School of Gynaecological Endoscopy, Campus Kiel, University Hospitals Schleswig-Holstein, Ar-nold-Heller-Str. 3, Haus 24, 24105 Kiel, Germany
- Correspondence:
| |
Collapse
|
13
|
Roles of microRNAs in Regulating Apoptosis in the Pathogenesis of Endometriosis. Life (Basel) 2022; 12:life12091321. [PMID: 36143357 PMCID: PMC9500848 DOI: 10.3390/life12091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Endometriosis is a gynecologic disorder characterized by the presence of endometrial tissues outside the uterine cavity affecting reproductive-aged women. Previous studies have shown that microRNAs and their target mRNAs are expressed differently in endometriosis, suggesting that this molecule may play a role in the development and persistence of endometriotic lesions. microRNA (miRNA), a small non-coding RNA fragment, regulates cellular functions such as cell proliferation, differentiation, and apoptosis by the post-transcriptional modulation of gene expression. In this review, we focused on the dysregulated miRNAs in women with endometriosis and their roles in the regulation of apoptosis. The dysregulated miRNAs and their target genes in this pathophysiology were highlighted. Circulating miRNAs as potential biomarkers for the diagnosis of endometriosis have also been identified. As shown by various studies, miRNAs were reported to be a potent regulator of gene expression in endometriosis; thus, identifying the dysregulated miRNAs and their target genes could help discover new therapeutic targets for treating this disease. The goal of this review is to draw attention to the functions that miRNAs play in the pathophysiology of endometriosis, particularly those that govern cell death.
Collapse
|
14
|
Li D, Lu L, Liu M, Sun J. Inhibition of long noncoding RNA cancer susceptibility candidate 7 attenuates hepatocellular carcinoma development by targeting microRNA-30a-5p. Bioengineered 2022; 13:11296-11308. [PMID: 35484972 PMCID: PMC9208517 DOI: 10.1080/21655979.2022.2068289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNA (lncRNA) cancer susceptibility candidate 7 (CASC7) was reported to be participated in tumor development. This study was carried out to investigate the functions of CASC7 in hepatocellular carcinoma (HCC) progression. The expression of CASC7 and microRNA-30a-5p (miR-30a-5p) in HCC tissues and cells were detected by quantitative Real-time PCR (qRT-PCR). The expression of Krueppel-like factor 10 (KLF10), transforming growth factor-β (TGF-β), and SMAD3 were detected by Western Blot analysis. Transwell assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate the effects of CASC7, KLF10 and miR-30a-5p on cell function. The relationship among CASC7, KLF10 and miR-30a-5p was evaluated by luciferase reporter assay and bioinformatics analyses. Tumor growth was detected in nude mice. The expression levels of CASC7 were increased and the expression levels of miR-30a-5p were reduced in HCC cells and tissues. Knockdown of CASC7 and overexpression of miR-30a-5p reduced tumor growth as well as HCC cell proliferation, invasion and migration. In HCC tumor tissues, the expression of miR-30a-5p was negatively correlated with the expression of CASC7. Moreover, as a target of miR-30a-5p, KLF10 was regulated by CASC7 and miR-30a-5p, and CASC7 regulated the KLF10/TGF-β/SMAD3 pathway via binding to miR-30a-5p, thereby promoting HCC cell progression.
Collapse
Affiliation(s)
- Dongsheng Li
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lin Lu
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Miaomiao Liu
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jufeng Sun
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
15
|
Zakeri S, Aminian H, Sadeghi S, Esmaeilzadeh-Gharehdaghi E, Razmara E. Krüppel-like factors in bone biology. Cell Signal 2022; 93:110308. [PMID: 35301064 DOI: 10.1016/j.cellsig.2022.110308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022]
Abstract
The krüppel-like factor (KLF) family is a group of zinc finger transcription factors and contributes to different cellular processes such as differentiation, proliferation, migration, and apoptosis. While different studies show the roles of this family in skeletal development-specifically in chondrocyte and osteocyte development and bone homeostasis-there are few reviews summarizing their importance. To fill this gap, this review discusses current knowledge on different functions of the KLF family during skeletal development, including their roles in stem cell maintenance and differentiation, cell apoptosis, and cell cycle. To understand the importance of the KLF family, we also review genotype-phenotype correlations in different animal models. We also discuss how KLF proteins function through different signaling pathways and display their paramount importance in skeletal development. To highlight their roles in cartilage- or bone-related cells, we also use single-cell RNA sequencing publicly available data on mouse hindlimb. We also challenge our knowledge of how the KLF family is epigenetically regulated-e.g., using DNA methylation, histone modifications, and noncoding RNAs-during chondrocyte and osteocyte development.
Collapse
Affiliation(s)
- Sina Zakeri
- Department of Veterinary Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Hesam Aminian
- Department of Biology, Faculty of Sciences, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Soheila Sadeghi
- Department of Biology, Faculty of Basic Sciences, Sanandaj Branch, Islamic Azad University, Kurdistan, Iran
| | | | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Zhang X, Zhang R, Hao J, Huang X, Liu M, Lv M, Su C, Mu YL. miRNA-122-5p in POI ovarian-derived exosomes promotes granulosa cell apoptosis by regulating BCL9. Cancer Med 2022; 11:2414-2426. [PMID: 35229987 PMCID: PMC9189466 DOI: 10.1002/cam4.4615] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/26/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
This study is to explore the therapeutic effect and potential mechanisms of exosomal microRNAs (miRNAs) derived from the ovaries with primary ovarian insufficiency (POI). The POI mouse model was established by intraperitoneal injection of cyclophosphamide (CTX) and busulfan. The apoptosis of granulosa cells (GCs) incubated with exosomes extracted from ovarian tissues of control and POI groups was analyzed by flow cytometry. Then, high-throughput sequencing was performed to detect the difference of miRNAs profile in ovarian tissue-derived exosomes between the control and POI mice. The effect of differential miRNA on the apoptosis of CTX-induced ovarian GCs was analyzed by flow cytometry. The results showed that POI mouse model was successfully established. Exosomes extracted from ovarian of normal and POI group have different effects on apoptosis of GCs induced by CTX. miRNA-seq found that exosomal miR-122-5p in POI group increased significantly. miR-122-5p as the dominant miRNA targeting BCL9 was significantly upregulated in ovarian tissues of chemotherapy-induced POI group. Exosomes derived from the ovaries in the control group and miR-122-5p inhibitor group attenuated the apoptosis of primary cultured ovarian GCs. In conclusion, exosomal miR-122-5p promoted the apoptosis of ovarian GCs by targeting BCL9, suggested that miR-122-5p may function as a potential target to restore ovarian function.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ruihong Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Jing Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, School of Medicine, Shandong University, Jinan, China
| | - Xiaoyan Huang
- Shandong Maternal and Child Health Care Hospital, Jinan, China
| | - Ming Liu
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mengxiao Lv
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chan Su
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu-Lan Mu
- Department of Gynecology and Obstetrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Nasu K, Aoyagi Y, Zhu R, Okamoto M, Yano M, Kai K, Kawano Y. Role of repressed microRNAs in endometriosis. Med Mol Morphol 2022; 55:1-7. [PMID: 34463829 DOI: 10.1007/s00795-021-00303-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Endometriosis is a common, estrogen-dependent benign tumor that affect 3-10% women of reproductive age, and is characterized by the ectopic growth of endometrial tissue, which is found primarily in the rectovaginal septum, ovaries, and pelvic peritoneum. To date, accumulating evidence suggests that various epigenetic aberrations, including the expression of aberrant microRNAs (miRNAs), play definite roles in the pathogenesis of endometriosis. This review summarizes the recent findings on the aberrantly repressed miRNAs, as well as their potential roles regarding the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan.
- Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Oita, Japan.
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Ruofei Zhu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Mamiko Okamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Mitsutake Yano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Kentaro Kai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Yasushi Kawano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| |
Collapse
|
18
|
Bahmyari S, Jamali Z, Khatami SH, Vakili O, Roozitalab M, Savardashtaki A, Solati A, Mousavi P, Shabaninejad Z, Vakili S, Behrouj H, Ghasemi H, Movahedpour A. microRNAs in female infertility: An overview. Cell Biochem Funct 2021; 39:955-969. [PMID: 34708430 DOI: 10.1002/cbf.3671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Infertility impacts a considerable number of women worldwide, and it affects different aspects of family life and society. Although female infertility is known as a multifactorial disorder, there are strong genetic and epigenetic bases. Studies revealed that miRNAs play critical roles in initiation and development of female infertility related disorders. Early diagnosis and control of these diseases is an essential key for improving disease prognosis and reducing the possibility of infertility and other side effects. Investigating the possible use of miRNAs as biomarkers and therapeutic options is valuable, and it merits attention. Thus, in this article, we reviewed research associated with female diseases and highlighted microRNAs that are related to the polycystic ovary syndrome (up to 30 miRNAs), premature ovarian failure (10 miRNAs), endometriosis (up to 15 miRNAs), uterine fibroids (up to 15 miRNAs), endometrial polyp (3 miRNAs), and pelvic inflammatory (6 miRNAs), which are involved in one or more ovarian or uterine disease-causing processes.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Roozitalab
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Behrouj
- Department of Clinical Biochemistry, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Liu D, Liang Y, Chen M, Yang F, Yao S. Knockdown of circ_0075503 suppresses cell migration and invasion by regulating miR-15a-5p and KLF12 in endometriosis. Mol Cell Biochem 2021; 476:3845-3856. [PMID: 34117589 DOI: 10.1007/s11010-021-04202-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2020] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
Endometriosis is an estrogen-dependent disease. Several researches have reported the dysregulated circular RNAs (circRNAs) in endometriosis, whereas the functions of circRNAs are largely unknown. This study aims to explore the role and mechanism of circ_0075503 in migration and invasion of eutopic endometrial stromal cells. 30 paired ectopic and eutopic endometrium tissues were collected from patients with endometriosis. And primary endometrial stromal cells (ESCs) were stimulated with estradiol (E2) to establish the in vitro cellular model of endometriosis. The levels of circ_0075503, miR-15a-5p and Krüppel-like factor 12 (KLF12) were measured by quantitative reverse transcription polymerase chain reaction or western blot assays. Cell viability, migration and invasion were examined via 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide, transwell assay or western blot assays. The target relationship between miR-15a-5p and circ_0075503 or KLF12 was analyzed by dual-luciferase reporter assay and RNA Immunoprecipitation (RIP) assay. Circ_0075503 expression was elevated in ectopic endometrium and ectopic ESCs. Down-regulation of circ_0075503 suppressed E2-induced promotion of cell viability, migration and invasion in eutopic ESCs. Circ_0075503 could act as a sponge for miR-15a-5p, and KLF12 was targeted by miR-15a-5p. Inhibition of miR-15a-5p reversed the effects of circ_0075503 knockdown on E2-treated ESCs migration and invasion. Besides, miR-15a-5p repressed E2-induced promotion effects on cell migration and invasion via targeting KLF12. Circ_0075503 could regulate KLF12 expression by sponging miR-15a-5p. Knockdown of circ_0075503 inhibited E2-induced enhancement of cell migration and invasion in eutopic ESCs by regulating miR-15a-5p/KLF12 axis, indicating a novel target for the treatment of endometriosis.
Collapse
Affiliation(s)
- Duo Liu
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, No. 1 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Yanchun Liang
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, No. 1 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Ming Chen
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, No. 1 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Fan Yang
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, No. 1 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Shuzhong Yao
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, No. 1 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
20
|
Jin Z, Zhang Y, Li J, Lv S, Zhang L, Feng Y. Endometriosis stem cell sources and potential therapeutic targets: literature review and bioinformatics analysis. Regen Med 2021; 16:949-962. [PMID: 34585967 DOI: 10.2217/rme-2021-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022] Open
Abstract
The stem cell origin theory of endometriosis (EMS) is a significant area of new research but the sources of this have yet to be adequately summarized. Existing treatments for EMS are commonly associated with a high recurrence rate; consequently, there is an urgent need to develop new therapeutic measures for the future treatment of this disease from the view of stem cells and gene therapy. Recently, we described the evidence for the potential sources of EMS stem cells and other key molecules participating in the establishment of lesions, and predict the miRNAs that target these key genes via bioinformatics analysis for further research. This review highlights the origin of EMS stem cells and potential therapy targets.
Collapse
Affiliation(s)
- Zhe Jin
- The Second Affiliated Hospital of Nanchang University, Jiangxi, 330006, China.,The Second Clinical Medical School of Nanchang University, Jiangxi, 330031, China
| | - Yize Zhang
- The Second Affiliated Hospital of Nanchang University, Jiangxi, 330006, China.,The Second Clinical Medical School of Nanchang University, Jiangxi, 330031, China
| | - Jingyi Li
- School of Public Health of Nanchang University, Jiangxi, 330031, China
| | - Sidi Lv
- The Second Affiliated Hospital of Nanchang University, Jiangxi, 330006, China.,The Second Clinical Medical School of Nanchang University, Jiangxi, 330031, China
| | - Lixia Zhang
- The First Hospital of Handan City, Hebei, 056004, China
| | - Ying Feng
- The Second Affiliated Hospital of Nanchang University, Jiangxi, 330006, China
| |
Collapse
|
21
|
Li Q, Li B, Lu CL, Wang JY, Gao M, Gao W. LncRNA LINC01857 promotes cell growth and diminishes apoptosis via PI3K/mTOR pathway and EMT process by regulating miR-141-3p/MAP4K4 axis in diffuse large B-cell lymphoma. Cancer Gene Ther 2021; 28:1046-1057. [PMID: 33311569 DOI: 10.1038/s41417-020-00267-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2020] [Accepted: 11/18/2020] [Indexed: 01/30/2023]
Abstract
LINC01857 has been proven to be involved in glioma and breast cancer. However, the biological function of LINC01857 in diffuse large B-cell lymphoma (DLBCL) is poorly investigated. By accessing to the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEX), LINC01857 expression was found upregulated in both DLBCL tissues and cells. Cell proliferation and flow cytometry assays showed that LINC01857 promoted proliferation and cell cycle, but suppressed apoptosis in DLBCL cells. Bioinformatics analysis and luciferase reporter assay confirmed that LINC01857 may serve as a sponge for miR-141-3p and miR-141-3p may target MAP4K4. Mechanically, the regulatory action of miR-141-3p/MAP4K4 on DLBCL cellular behaviors was regulated by LINC01857. In addition, LINC01857 could increase the activity of PI3K/mTOR pathway and facilitate the EMT process in a miR-141-3p-mediated manner in DLBCL. Our data illustrated that the LINC01857/miR-141-3p/MAP4K4 might function as a promising therapeutic avenue for DLBCL treatment.
Collapse
Affiliation(s)
- Qian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Bao Li
- Department of Urology, Weifang People's Hospital, Weifang, Shandong, 261000, PR China
| | - Chang-Liang Lu
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Jing-Ye Wang
- Department of Pathology, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong, 261011, PR China
| | - Min Gao
- Department of Otolaryngology, Weifang People's Hospital, Weifang, Shandong, 261000, PR China
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|
22
|
Kolanska K, Bendifallah S, Canlorbe G, Mekinian A, Touboul C, Aractingi S, Chabbert-Buffet N, Daraï E. Role of miRNAs in Normal Endometrium and in Endometrial Disorders: Comprehensive Review. J Clin Med 2021; 10:jcm10163457. [PMID: 34441754 PMCID: PMC8396961 DOI: 10.3390/jcm10163457] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
The molecular responses to hormonal stimuli in the endometrium are modulated at the transcriptional and post-transcriptional stages. Any imbalance in cellular and molecular endometrial homeostasis may lead to gynecological disorders. MicroRNAs (miRNAs) are involved in a wide variety of physiological mechanisms and their expression patterns in the endometrium are currently attracting a lot of interest. miRNA regulation could be hormone dependent. Conversely, miRNAs could regulate the action of sexual hormones. Modifications to miRNA expression in pathological situations could either be a cause or a result of the existing pathology. The complexity of miRNA actions and the diversity of signaling pathways controlled by numerous miRNAs require rigorous analysis and findings need to be interpreted with caution. Alteration of miRNA expression in women with endometriosis has been reported. Thus, a potential diagnostic test supported by a specific miRNA signature could contribute to early diagnosis and a change in the therapeutic paradigm. Similarly, specific miRNA profile signatures are expected for RIF and endometrial cancer, with direct implications for associated therapies for RIF and adjuvant therapies for endometrial cancer. Advances in targeted therapies based on the regulation of miRNA expression are under evaluation.
Collapse
Affiliation(s)
- Kamila Kolanska
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
- Correspondence:
| | - Sofiane Bendifallah
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Geoffroy Canlorbe
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Service de Chirurgie et Cancérologie Gynécologique et Mammaire, Hôpitaux Universitaires Pitié-Salpêtrière, Charles-Foix, Sorbonne Université, 47/83, Boulevard de l’Hôpital, 75013 Paris, France
| | - Arsène Mekinian
- Service de Médecine Interne, Hôpital Saint Antoine, AP-HP, 184 Rue du Faubourg Saint Antoine, Sorbonne Université, 75012 Paris, France;
| | - Cyril Touboul
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Selim Aractingi
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Faculté de Médecine Paris 5 Descartes, 12 Rue de l’Ecole de Médecine, 75006 Paris, France
| | - Nathalie Chabbert-Buffet
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Emile Daraï
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
23
|
Abstract
With the gradual recognition of the side effects of local anesthetics, the nerve injury caused by local anesthetics has received growing attention. This research intended to delve into miR-183-5p changes in mepivacaine-mediated SH-SY5Y cell injury, as well as its modulatory mechanism on cell apoptosis. RT-qPCR was adopted for assaying miR-183-5p and PDCD4 mRNA expression. Our team respectively transfected miR-183-5p mimic and inhibitor to enhance or inhibit miR-183-5p function. We employed Western blot for detecting PDCD4 protein levels, as well as flow cytometry and Hoechst 33342/PI double staining for determining cell apoptosis rate. Additionally, our crew applied an ELISA kit for measuring TNF-α, IL-1β, IL-6, and IL-8 contents. The level of reactive oxygen species (ROS) production was examined by the Image-iT LIVE Green ROS detection Kit. As well as dual-luciferase reporter experiment for verifying the targeting link of miR-183-5p with PDCD4. In mepivacaine-induced cell apoptosis in SH-SY5Y cells, miR-183-5p expression was down-regulated. TNF-α, IL-1β, IL-6, and IL-8 contents were elevated. The rate of apoptosis increased visibly, cleaved caspase-3 and Bax levels waxed, whereas Bcl-2 level waned. MiR-183-5p could alleviate the damaging impact of mepivacaine. Dual-luciferase reporter experiments demonstrated that miR-183-5p directly targeted PDCD4. Collectively, we concluded that a high concentration of mepivacaine can cause SH-SY5Y cell damage, miR-183-5p functions crucially in mepivacaine-mediated cell damage. This study provides a theoretical basis for elucidating the mechanism of mepivacaine-induced nerve cell damage, and overexpressed miR-183-5p likely become a novel strategy to combat mepivacaine-induced nerve damage.Abbreviations:miRNA: Micro RNA; PDCD4: Programmed Cell Death 4; MDA: Malondialdehyde; SOD: Superoxide Dismutase; ROS: Reactive Oxygen Species; WT: Wild Type; Mut: Mutant; UTR: Untranslated Region; IL-6: Interleukin-6; IL-1β: Interleukin-1β; TNF-α: Tumor Necrosis Factor-α; IL-8: Interleukin-8; COX-2: Cyclooxygenase-2; iNOS: inducible NOS; MEP: Mepivacaine.
Collapse
Affiliation(s)
- Qian Zhou
- Department of Anesthesiology, Jingzhou Central Hospital, Jinzhou, Hubei, China
| | - Ling Zhang
- Department of Anesthesiology, Jingzhou Central Hospital, Jinzhou, Hubei, China
| |
Collapse
|
24
|
Zhou X, Chen Z, Pei L, Sun J. MicroRNA miR-106a-5p targets forkhead box transcription factor FOXC1 to suppress the cell proliferation, migration, and invasion of ectopic endometrial stromal cells via the PI3K/Akt/mTOR signaling pathway. Bioengineered 2021; 12:2203-2213. [PMID: 34082653 PMCID: PMC8806537 DOI: 10.1080/21655979.2021.1933679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence has exhibited an obvious decreased expression of miR-106a-5p in the ectopic endometrial tissue of endometriosis (EMS) patients. Thus far, the pathophysiological function of miR-106a-5p in EMS is unknown. A previous study showed an increased FOXC1 expression in the ectopic endometrial tissue of patients with EMS. Moreover, we found that there was a binding site of miR-106a-5p on the 3'UTR of FOXC1 through bioinformatics predictions. Hence, we speculated that miR-106a-5p might affect the development of EMS via targeting FOXC1. We first showed a decreased level of miR-106a-5p and an increased level of FOXC1 mRNA in ectopic endometrial tissues compared with normal tissues. Functionally, we transfected ectopic endometrial stromal cells (ESCs) with miR-106a-5p mimics or NC mimics and indicated an inhibitory role of miR-106a-5p on ESC proliferation, invasion, and migration. Mechanistically, FOXC1 was found to be a target gene of miR-106a-5p. To confirm whether miR-106a-5p exerted an inhibitory activity in ESCs via targeting FOXC1, miR-106a-5p mimic was co-transfected into ESCs with the FOXC1-plasmid or vector. We found that FOXC1 overexpression evidently reversed the results caused by a miR-106a-5p mimic in ESCs. Additionally, our results demonstrated that miR-106a-5p mimic inhibited the expression of p-Akt and p-PI3K. Collectively, these results revealed that miR-106a-5p inhibited the proliferative, migratory, and invasive ability of ESCs via directly binding to FOXC1, likely through the suppression of the PI3K and its downstream signaling pathway, which offered a potential and novel therapeutic strategy for EMS treatment.
Collapse
Affiliation(s)
- Xinyue Zhou
- Department of Obstetrics and Gynecology, The General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Zhenyu Chen
- Department of Obstetrics and Gynecology, The General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Lipeng Pei
- Department of Obstetrics and Gynecology, The General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Jingli Sun
- Department of Obstetrics and Gynecology, The General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| |
Collapse
|
25
|
Zhu R, Nasu K, Hijiya N, Yoshihashi M, Hirakawa T, Aoyagi Y, Narahara H. hsa-miR-199a-3p Inhibits Motility, Invasiveness, and Contractility of Ovarian Endometriotic Stromal Cells. REPRODUCTIVE SCIENCES (THOUSAND OAKS, CALIF.) 2021; 28:3498-3507. [PMID: 33987822 DOI: 10.1007/s43032-021-00604-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 01/15/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
It is suggested that aberrantly expressed microRNAs are involved in the pathogenesis of endometriosis. Our previous study demonstrated that expression of the microRNA hsa-miR-199a-3p is attenuated in human endometriotic cyst stromal cells (ECSCs). The current study aimed to define the roles of hsa-miR-199a-3p in the development of endometriosis. ECSCs and normal endometrial stromal cells (NESCs) were isolated from ovarian endometrioma and normal endometrial tissues, respectively. We evaluated the effect of transfected hsa-miR-199a-3p on the migration, invasion, and contractility of ECSCs using Transwell migration assays, in vitro wound healing assays, Transwell invasion assays, and collagen gel contraction assays. We also examined the downstream target of hsa-miR-199a-3p with an online public database search and luciferase reporter assay. Expression of hsa-miR-199a-3p in ECSCs was significantly lower than that in NESCs, whereas the expression of p21-activated kinase 4 (PAK4) mRNA was significantly higher. Transfection of hsa-miR-199a-3p inhibited the migration, invasion, and contractility of ECSCs via inhibition of PAK4 mRNA expression. PAK4 was confirmed to be the direct target of hsa-miR-199a-3p. Transfection of PAK4 small interfering RNA and the PAK4 inhibitor PF-3758309 also inhibited ECSC migration, invasion, and contractility. These findings suggest that hsa-miR-199a-3p may act as a tumor suppressor in endometriosis development. Attenuation of hsa-miR-199a-3p expression was favorable for ECSCs to acquire the highly invasive, motile, and contractile characteristics of endometriotic cells and is involved in the development of endometriosis. Accordingly, PAK4 inhibitors may be promising for the treatment of endometriosis.
Collapse
Affiliation(s)
- Ruofei Zhu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan.
- Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Oita, Yufu-shi, Japan.
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Yufu-shi, Japan
| | - Masato Yoshihashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Tomoko Hirakawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| |
Collapse
|
26
|
Tu J, Yang H, Chen Y, Chen Y, Chen H, Li Z, Li L, Zhang Y, Chen X, Yu Z. Current and Future Roles of Circular RNAs in Normal and Pathological Endometrium. Front Endocrinol (Lausanne) 2021; 12:668073. [PMID: 34122342 PMCID: PMC8187767 DOI: 10.3389/fendo.2021.668073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/15/2021] [Accepted: 05/11/2021] [Indexed: 01/20/2023] Open
Abstract
The uterine endometrium, which lines the mammalian uterus, is essential for embryo implantation. This lining undergoes significant changes during sexual and menstrual cycles. The endometrium is also associated with hormone-related diseases such as endometriosis and endometrial cancer. Circular RNAs (circRNAs) play a role in various biological processes. Recent studies have determined that circRNAs function in both normal and pathological endometrial environments. Here, we review high-throughput studies pertaining to circRNAs as well as individual circRNAs active in the endometrium, in order to explore the myriad functions of circRNAs in the endometrium and mechanisms underlying these functions, from panoramic and individual perspectives. Owing to their abundant expression, stability, and small size, circRNAs have displayed potential usefulness as diagnostic markers and treatment targets for endometrial-related diseases. Therefore, the specific role of circRNAs in the endometrium warrants systematic investigation in the future.
Collapse
Affiliation(s)
- Jiajie Tu
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- *Correspondence: Jiajie Tu, ; Zhiying Yu,
| | - Huan Yang
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Chen
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - He Chen
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhe Li
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yuanyuan Zhang
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaochun Chen
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Jiajie Tu, ; Zhiying Yu,
| |
Collapse
|
27
|
Brunty S, Mitchell B, Bou-Zgheib N, Santanam N. Endometriosis and ovarian cancer risk, an epigenetic connection. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1715. [PMID: 33490227 PMCID: PMC7812227 DOI: 10.21037/atm-20-2449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
Endometriosis is a gynecological disorder that affects 176 million women worldwide and 1 in 10 females in the United States. Endometriosis most often affects women of child-bearing age, with most going undiagnosed. Endometriosis also shares many characteristics common to invasive cancer and has been known to be associated with epithelial ovarian cancer. Ovarian cancer is the 11th most common cancer among women and over 22,000 new cases will be diagnosed within the next year. Women most commonly diagnosed with this cancer are between the ages of 55–64 years, outside the range of the age of women affected with endometriosis. While no known cause of either disease has been established, epigenetic regulation is thought to play a major role in both. This review focuses on epigenetic changes that occur within each individual disease as well as those that are similar in both, suggesting a possible etiological link between the two diseases.
Collapse
Affiliation(s)
- Sarah Brunty
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Brenda Mitchell
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Nadim Bou-Zgheib
- Department of Obstetrics and Gynecology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
28
|
Xu Q, Xing H, Wu J, Chen W, Zhang N. miRNA-141 Induced Pyroptosis in Intervertebral Disk Degeneration by Targeting ROS Generation and Activating TXNIP/NLRP3 Signaling in Nucleus Pulpous Cells. Front Cell Dev Biol 2020; 8:871. [PMID: 32984347 PMCID: PMC7487322 DOI: 10.3389/fcell.2020.00871] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The role and mechanism of pyroptosis in intervertebral disk (IVD) degeneration are unclear. MicroRNAs (miRNAs) regulate the viability and function of nucleus pulposus cells (NPCs) in IVDs and are related to pyroptosis. We performed microarray analyses of normal and degenerated nucleus pulposus (NP) to assess the role of pyroptosis and identify key miRNAs in IVD degeneration. We also evaluated the underlying mechanism of miRNA-mediated pyroptosis in NPCs. In addition, we demonstrated the preventative effects of miRNAs on IVD degeneration in a rat model. The levels of the pyroptosis-related proteins cleaved caspase-1, N-terminal gasdermin D (GSDMD), interleukin (IL)-1β, and IL-18 in the degenerative NP were significantly higher than those in the normal NP. miRNA-141 was significantly upregulated in the degenerated NP. miR-141 mimic suppressed the matrix synthesis function of NPCs. By contrast, reactive oxygen species (ROS) generation, and the expression of TXNIP and NLRP3 were significantly downregulated by an miR-141 inhibitor. Furthermore, the miRNA-141 inhibitor prevented the degeneration of IVDs in vivo. Our findings suggest that miRNA-141 induces pyroptosis and extracellular matrix (ECM) catabolism in NPCs by increasing ROS generation and activating TXNIP/NLRP3 signaling. miRNA-141-regulated pyroptosis may be a novel therapeutic target for IVD degeneration.
Collapse
Affiliation(s)
- Qiaolong Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Orthopaedics, The People's Hospital of Cixi, Cixi, China
| | - Hongyuan Xing
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaqi Wu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weishan Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ning Zhang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Ghafouri-Fard S, Shoorei H, Taheri M. Role of Non-coding RNAs in the Pathogenesis of Endometriosis. Front Oncol 2020; 10:1370. [PMID: 32850438 PMCID: PMC7417625 DOI: 10.3389/fonc.2020.01370] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022] Open
Abstract
Endometriosis is a disorder characterized by the presence of endometrial glands and stroma like lesions outside of the uterus. Although several hypothesis have tried to explain the underlying cause of endometriosis, yet the main cause remained obscure. Recent studies have shown contribution of non-coding RNAs in the pathogenesis of endometriosis. Two classes of these transcripts namely long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have mostly attracted attention of researchers. Several studies have reported aberrant expression of these transcripts in affected tissues from patients as well as animal models. Modulation of important signaling pathways such as PI3K/AKT, P38-MAPK, ERK1/2-MAPK and Wnt-β catenin by miRNAs and lncRNAs have potentiated these molecules as biomarkers or therapeutic agents in endometriosis. Single nucleotide polymorphisms with miR-126, miR-143 and miR-146b have been associated with risk of endometriosis. Moreover, miRNAs and lncRNAs control inflammatory responses, cell proliferation, angiogenesis and tissue remodeling, thus understanding the role of these transcripts in endometriosis is a possible way to develop novel diagnostic tests and therapeutic targets for this disorder.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Wang X, Ren R, Shao M, Lan J. MicroRNA‑16 inhibits endometrial stromal cell migration and invasion through suppression of the inhibitor of nuclear factor‑κB kinase subunit β/nuclear factor‑κB pathway. Int J Mol Med 2020; 46:740-750. [PMID: 32626910 PMCID: PMC7307865 DOI: 10.3892/ijmm.2020.4620] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence has demonstrated that endometrial stromal cells (ESCs) are responsible for the pathogenesis of endometriosis (Ems), which is characterized by the presence of functional endometrial-like tissues outside the uterine cavity. Abnormal expression of microRNAs (miRNAs) in ESCs may be implicated in the etiology of Ems; however, the exact mechanisms have yet to be fully elucidated. The aim of the present study was to investigate the effects of miRNAs on ESCs and the underlying mechanisms. Using a microarray assay, microRNA-16 (miR-16) was found to be significantly downregulated in the ectopic endometrial tissues in patients with Ems, compared with that in eutopic endometrial tissues. Overexpression of miR-16 significantly suppressed the migration and invasion of ESCs, whereas miR-16 inhibition exerted the opposite effects. Furthermore, dual luciferase reporter assay demonstrated that miR-16 directly targeted the inhibitor of nuclear factor (NF)-κB kinase subunit β (IKKβ) and suppressed its translation. It was observed that the expression of IKKβ was upregulated and inversely correlated with miR-16 levels in the ectopic endometrial tissues in patients with Ems. Additionally, knockdown of IKKβ by si-IKKβ mimicked the effects of miR-16 overexpression on ESCs, while the promoting effects of IKKβ overexpression on the migration and invasion of ESCs were attenuated by miR-16 overexpression. Finally, miR-16 inhibited the activation of the NF-κB pathway by targeting IKKβ. Collectively, these results demonstrated that miR-16 may suppress Ems by inhibiting the IKKβ/NF-κB pathway, suggesting that miR-16 may be a useful target in the treatment of Ems.
Collapse
Affiliation(s)
- Xiaoping Wang
- Department of Reproductive Medicine, The Second Hospital Affiliated to Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Rui Ren
- Department of Obstetrics and Gynecology, The People's Hospital of Gansu, Lanzhou, Gansu 730000, P.R. China
| | - Meili Shao
- Department of Obstetrics and Gynecology, The Women and Children Hospital of Shaanxi Province, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Lan
- Department of Gynecology, The Maternal and Child Care Service Center of Dongguan City Guangdong Province, Dongguan, Guangdong 523120, P.R. China
| |
Collapse
|
31
|
Tian L, Sun S, Li W, Yuan L, Wang X. Down-regulated microRNA-141 facilitates osteoblast activity and inhibits osteoclast activity to ameliorate osteonecrosis of the femoral head via up-regulating TGF-β2. Cell Cycle 2020; 19:772-786. [PMID: 32089067 DOI: 10.1080/15384101.2020.1731053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a pathological process that initially occurs in the weight-bearing field of the femoral head. Due to the unknown pathogenesis, this study was for the investigation of the effect of microRNA-141 (miR-141) targeting transforming growth factor-β2 (TGF-β2) on regulating osteoblast activity and osteoclast activity in steroid-induced ONFH.Tissues of ONFH and normal femoral head were collected for detecting the expression of miR-141 and TGF-β2. A rat model of ONFH was constructed by injection of hormones, and transfected with miR-141 inhibitors and overexpressed TGF-β2. The apoptosis of bone cells was detected by TUNEL staining. The expression of osteoprotegerin (OPG), osteoprotegerin ligand (OPGL), Bcl-2, Bax, Runx2, BMP2 and RANK were detected.Highly expressed miR-141 and lowly expressed TGF-β2 existed in femoral head tissues in ONFH. Inhibited miR-141 resulted in elevated TGF-β2 in femoral head tissues in ONFH of rats. Depressed miR-141 or overexpressed TGF-β2 inhibited the apoptosis of bone cells of rats with ONFH and induced elevated OPG, Bcl-2, BMP2, Runx2 and declined OPGL, Bax and RANK expression in the femoral head tissues of rats with ONFH.Altogether, we find that down-regulated miR-141 promotes osteoblast activity and inhibits osteoclast activity to ameliorate ONFH via up-regulated TGF-β2 expression.
Collapse
Affiliation(s)
- Lei Tian
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Shui Sun
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Wei Li
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Lin Yuan
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| | - Xianquan Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan city, Shandong, China
| |
Collapse
|
32
|
Apoptotic functions of microRNAs in pathogenesis, diagnosis, and treatment of endometriosis. Cell Biosci 2020; 10:12. [PMID: 32082539 PMCID: PMC7014775 DOI: 10.1186/s13578-020-0381-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs or miRNAs are a component of the non-coding RNAs family which is engaged in many cellular functions such as cell proliferation, apoptosis, gene expression, signaling pathways, angiogenesis, and etc. Endometriosis is a malignant gynecologic disorder occurring in women before menopausal age. Pathogenesis of this illness is still a discussion subject between the scientists but in our knowledge, microRNAs can be one of the possible involved factors. The purpose of this paper is to investigate the role of apoptotic activities of miRNAs in endometriosis. Accumulative evidence has demonstrated the role of cell proliferation, apoptosis, and invasion in the progression of these diseases. In this review, we looked into the specific role of apoptosis and its related genes and pathways in endometriosis and tied to present an explanation of how miRNAs can affect endometriosis by their apoptotic activities. What we found is that a great extent of miRNAs is involved in this illness and they are responsible for repressing apoptosis and progression of the disease. As a result, miRNAs have two different usages in endometriosis: biomarkers and potential therapeutic targets. In this review we gathered a great amount of evidence to inquire into the role of micro RNAs in inducing apoptosis and how this mechanism can be exerted for therapeutic purposes for endometriosis.
Collapse
|
33
|
Vashisht A, Alali Z, Nothnick WB. Deciphering the Role of miRNAs in Endometriosis Pathophysiology Using Experimental Endometriosis Mouse Models. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2020; 232:79-97. [PMID: 33278008 DOI: 10.1007/978-3-030-51856-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022]
Abstract
Endometriosis is an enigmatic disease for which we still have a poor understanding on how and why the disease develops. In recent years, miRNAs, small noncoding RNAs which regulate gene expression posttranscriptionally, have been evaluated for their role in endometriosis pathophysiology. This review will provide a brief summary on the role of miRNAs in endometrial physiology and pathophysiology as related to endometriosis. We will then discuss mouse models used in endometriosis research and the incorporation of some of these models in studies which examined the role of miRNAs in endometriosis pathophysiology. We conclude with providing future prospective on the role of mouse models in dissecting the role of miRNAs in endometriosis pathophysiology.
Collapse
Affiliation(s)
- Ayushi Vashisht
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Zahraa Alali
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Warren B Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA. .,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA. .,Center for Reproductive Sciences, Institute for Reproductive and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
34
|
Marí-Alexandre J, Carcelén AP, Agababyan C, Moreno-Manuel A, García-Oms J, Calabuig-Fariñas S, Gilabert-Estellés J. Interplay Between MicroRNAs and Oxidative Stress in Ovarian Conditions with a Focus on Ovarian Cancer and Endometriosis. Int J Mol Sci 2019; 20:ijms20215322. [PMID: 31731537 PMCID: PMC6862266 DOI: 10.3390/ijms20215322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer and endometriosis are two distinct gynaecological conditions that share many biological aspects incuding proliferation, invasion of surrounding tissue, inflammation, inhibition of apoptosis, deregulation of angiogenesis and the ability to spread at a distance. miRNAs are small non-coding RNAs (19–22 nt) that act as post-transcriptional modulators of gene expression and are involved in several of the aforementioned processes. In addition, a growing body of evidence supports the contribution of oxidative stress (OS) to these gynaecological diseases: increased peritoneal OS due to the decomposition of retrograde menstruation blood facilitates both endometriotic lesion development and fallopian tube malignant transformation leading to high-grade serous ovarian cancer (HGSOC). Furthermore, as HGSOC develops, increased OS levels are associated with chemoresistance. Finally, continued bleeding within ovarian endometrioma raises OS levels and contributes to the development of endometriosis-associated ovarian cancer (EAOC). Therefore, this review aims to address the need for a better understanding of the dialogue between miRNAs and oxidative stress in the pathophysiology of ovarian conditions: endometriosis, EAOC and HGSOC.
Collapse
Affiliation(s)
- Josep Marí-Alexandre
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Correspondence: ; Tel.: +34-96-313-1893 (ext. 437211)
| | | | - Cristina Agababyan
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Andrea Moreno-Manuel
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
| | - Javier García-Oms
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación para la Investigación del Hospital General Universitario de València, 46014, València, Spain; (A.M.-M.); (S.C.-F.)
- TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de València, 46014 València, Spain
- Department of Pathology, Universitat de València, 46010 València, Spain
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), 46014 València, Spain
| | - Juan Gilabert-Estellés
- Research Laboratory in Biomarkers in Reproduction, Gynaecology and Obstetrics, Fundación Hospital General Universitario de Valencia, 46014 València, Spain; (C.A.); (J.G.-O.); (J.G.-E.)
- Comprehensive Multidisciplinary Endometriosis Unit, Consorcio Hospital General Universitario de València, 46014 València, Spain
- Department of Paediatrics, Obstetrics and Gynaecology, University of València, 46010 València, Spain
| |
Collapse
|