1
|
Jakobsen S, Pedersen M, Nielsen CU. Structure-activity relationship of amino acid analogs to probe the binding pocket of sodium-coupled neutral amino acid transporter SNAT2. Amino Acids 2024; 56:64. [PMID: 39427053 PMCID: PMC11490426 DOI: 10.1007/s00726-024-03424-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
The sodium-coupled neutral amino acid transporter SNAT2 (SLC38A2) has been shown to have important physiological functions and is implicated in various diseases like cancer. However, few compounds targeting this transporter have been identified and little is known about the structural requirements for SNAT2 binding. In this study, the aim was to establish the basic structure-activity relationship for SNAT2 using amino acid analogs. These analogs were first studied for their ability to inhibit SNAT2-mediated 3H-glycine uptake in hyperosmotically treated PC-3 cells. Then to identify substrates a FLIPR membrane potential assay and o-phthalaldehyde derivatization of intracellular amino with subsequent quantification using HPLC-Fl was used. The results showed that ester derivatives of the C-terminus maintained SNAT2 affinity, suggesting that the negative charge was less important. On the other hand, the positive charge at the N-terminus of the substrate and the ability to donate at least two hydrogen bonds to the binding site appeared important for SNAT2 recognition of the amine. Side chain charged amino acids generally had no affinity for SNAT2, but their non-charged derivatives were able to inhibit SNAT2-mediated 3H-glycine uptake, while also showing that amino acids of a notable length still had affinity for SNAT2. Several amino acid analogs appeared to be novel substrates of SNAT2, while γ-benzyl L-glutamate seemed to be inefficiently translocated by SNAT2. Elaborating on this structure could lead to the discovery of non-translocated inhibitors of SNAT2. Thus, the present study provides valuable insights into the basic structural binding requirements for SNAT2 and can aid the future discovery of compounds that target SNAT2.
Collapse
Affiliation(s)
- Sebastian Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark
| | - Maria Pedersen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark.
| |
Collapse
|
2
|
Zhang D, Liang G, Gui L, Zheng W, Zeng Y, Liu Y, Li X, Yang Y, Fan R, Lu Y, Hu X, Guan J, Li T, Yang H, Cheng J, Gong M. Nanometabolomics Elucidated Biological Prospective of Mo 4/3B 2-x Nanosheets: Toward Metabolic Reprogramming of Amino Acid Metabolism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30622-30635. [PMID: 38857197 DOI: 10.1021/acsami.4c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Mo4/3B2-x nanosheets are newly developed, and 2D transition metal borides (MBene) were reported in 2021, but there is no report on their further applications and modification; hence, this article sheds light on the significance of potential biological prospects for future biomedical applications. Therefore, elucidation of the biocompatibility, biotoxicology, and bioactivity of Mo4/3B2-x nanosheets has been an urgent need to be fulfilled. Nanometabolomics (also referred as nanomaterials-based metabolomics) was first proposed and utilized in our previous work, which specialized in interpreting nanomaterials-induced metabolic reprogramming through aqueous metabolomics and lipidomics approach. Hence, nanometabolomics could be considered as a novel concept combining nanoscience and metabolomics to provide bioinformation on nanomaterials' biomedical applications. In this work, the safe range of concentration (<50 mg/L) with good biosafety toward human umbilical vein endothelial cells (HUVECs) was discovered. The low concentration (5 mg/L) and high concentration (50 mg/L) of Mo4/3B2-x nanosheets were utilized for the in vitro Mo4/3B2-x-cell interaction. Nanometabolomics has elucidated the biological prospective of Mo4/3B2-x nanosheets via monitoring its biocompatibility and metabolic shift of HUVECs. The results revealed that 50 mg/L Mo4/3B2-x nanosheets could lead to a stronger alteration of amino acid metabolism with disturbance of the corresponding amino acid-related pathways (including amino acid metabolism, amino acid degradation, fatty acid biosynthesis, and lipid biosynthesis and metabolism). These interesting results were closely involved with the oxidative stress and production of excess ROS. This work could be regarded as a pathbreaking study on Mo4/3B2-x nanosheets at a biological level, which also designates their further biochemical, medical, and industrial application and development based on nanometabolomics bioinformation.
Collapse
Affiliation(s)
- Dingkun Zhang
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ge Liang
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luolan Gui
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Zeng
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yumeng Liu
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xin Li
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Yang
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rong Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR; Chengdu Research Institute, City University of Hong Kong, Hong Kong 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR; Chengdu Research Institute, City University of Hong Kong, Hong Kong 999077, China
| | - Xinyi Hu
- Metabolomics and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junwen Guan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Li
- Laboratory of Mitochondria and Metabolism, Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Yang
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingqiu Cheng
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Gong
- Department of Plastic and Burn Surgery, Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- NHC Key Laboratory of Transplant Engineering and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Jakobsen S, Nielsen CU. Exploring Amino Acid Transporters as Therapeutic Targets for Cancer: An Examination of Inhibitor Structures, Selectivity Issues, and Discovery Approaches. Pharmaceutics 2024; 16:197. [PMID: 38399253 PMCID: PMC10893028 DOI: 10.3390/pharmaceutics16020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/28/2024] [Indexed: 02/25/2024] Open
Abstract
Amino acid transporters are abundant amongst the solute carrier family and have an important role in facilitating the transfer of amino acids across cell membranes. Because of their impact on cell nutrient distribution, they also appear to have an important role in the growth and development of cancer. Naturally, this has made amino acid transporters a novel target of interest for the development of new anticancer drugs. Many attempts have been made to develop inhibitors of amino acid transporters to slow down cancer cell growth, and some have even reached clinical trials. The purpose of this review is to help organize the available information on the efforts to discover amino acid transporter inhibitors by focusing on the amino acid transporters ASCT2 (SLC1A5), LAT1 (SLC7A5), xCT (SLC7A11), SNAT1 (SLC38A1), SNAT2 (SLC38A2), and PAT1 (SLC36A1). We discuss the function of the transporters, their implication in cancer, their known inhibitors, issues regarding selective inhibitors, and the efforts and strategies of discovering inhibitors. The goal is to encourage researchers to continue the search and development within the field of cancer treatment research targeting amino acid transporters.
Collapse
Affiliation(s)
- Sebastian Jakobsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| |
Collapse
|
4
|
Jakobsen S, Petersen EF, Nielsen CU. Investigations of potential non-amino acid SNAT2 inhibitors. Front Pharmacol 2024; 14:1302445. [PMID: 38239202 PMCID: PMC10794626 DOI: 10.3389/fphar.2023.1302445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/12/2023] [Indexed: 01/22/2024] Open
Abstract
The sodium-coupled neutral amino acid transporter 2 (SNAT2, SLC38A2) has been implicated in cancer for its ability to supply cancer cells with glutamine and sarcosine. A recent high-throughput screen published by Gauthier-Coles et al. identified the non-amino acid 3-(N-methyl (4-methylphenyl)sulfonamido)-N-(2-trifluoromethylbenzyl)thiophene-2-carboxamide (MMTC or 57E) as a potent and selective SNAT2 inhibitor. Here we have investigated the ability of MMTC and four other compounds selected from the screen by Gauthier-Coles et al. to decrease 3H-Gly uptake in hyperosmotically treated human prostate cancer PC-3 cells. In these cells, SNAT2 is highly upregulated when the cells are hyperosmotically stressed for 24 h and is the primary contributor to glycine uptake. The five compounds were investigated at concentrations of 1-50 µM based on their equilibrium solubility. At 37°C the equilibrium solubility in HEPES buffered HBSS at pH 7.4 was measured to be 24.9 (53B), 56.1 (54F), 13.3 (55B), and 27.5 (57B) µM, respectively. The equilibrium solubility of MMTC was below the detection limit of the HPLC-UV method, thus less than 1.8 µM. However, a kinetic solubility of approximately 2.5-10 µM could be achieved during the course of the uptake study. In contrast to the previous publication, MMTC showed no inhibition of SNAT2-mediated 3H-Gly uptake in PC-3 cells at a concentration of 1 or 5 μM, despite a published IC50 of 0.8 µM. Similarly, 53B, 55B, and 57B showed no inhibition at soluble conditions, whereas 54F showed approximately 20% inhibition at 50 µM. In our experimental setup, the investigated compounds showed limited potential as SNAT2 inhibitors.
Collapse
Affiliation(s)
| | | | - Carsten Uhd Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Ni R, Li Z, Li L, Peng D, Ming Y, Li L, Liu Y. Rethinking glutamine metabolism and the regulation of glutamine addiction by oncogenes in cancer. Front Oncol 2023; 13:1143798. [PMID: 36959802 PMCID: PMC10029103 DOI: 10.3389/fonc.2023.1143798] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Glutamine, the most abundant non-essential amino acid in human blood, is crucial for cancer cell growth and cancer progression. Glutamine mainly functions as a carbon and nitrogen source for biosynthesis, energy metabolism, and redox homeostasis maintenance in cancer cells. Dysregulated glutamine metabolism is a notable metabolic characteristic of cancer cells. Some carcinogen-driven cancers exhibit a marked dependence on glutamine, also known as glutamine addiction, which has rendered the glutamine metabolic pathway a breakpoint in cancer therapeutics. However, some cancer cells can adapt to the glutamine unavailability by reprogramming metabolism, thus limiting the success of this therapeutic approach. Given the complexity of metabolic networks and the limited impact of inhibiting glutamine metabolism alone, the combination of glutamine metabolism inhibition and other therapeutic methods may outperform corresponding monotherapies in the treatment of cancers. This review summarizes the uptake, transport, and metabolic characteristics of glutamine, as well as the regulation of glutamine dependence by some important oncogenes in various cancers to emphasize the therapeutic potential of targeting glutamine metabolism. Furthermore, we discuss a glutamine metabolic pathway, the glutaminase II pathway, that has been substantially overlooked. Finally, we discuss the applicability of polytherapeutic strategies targeting glutamine metabolism to provide a new perspective on cancer therapeutics.
Collapse
Affiliation(s)
- Rui Ni
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dan Peng
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lin Li
- Department of pharmacy, Women and Children’s Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Lin Li, ; Yao Liu,
| | - Yao Liu
- Department of pharmacy, Daping Hospital, Army Medical University, Chongqing, China
- *Correspondence: Lin Li, ; Yao Liu,
| |
Collapse
|