1
|
Khot S, Krishnaveni A, Gharat S, Momin M, Bhavsar C, Omri A. Innovative drug delivery strategies for targeting glioblastoma: overcoming the challenges of the tumor microenvironment. Expert Opin Drug Deliv 2024; 21:1837-1857. [PMID: 39545622 DOI: 10.1080/17425247.2024.2429702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION Glioblastoma multiforme(GBM) presents a challenging endeavor in therapeutic management because of its highly aggressive tumor microenvironment(TME). This complex TME, characterized by hypoxia, nutrient deprivation, immunosuppression, stromal barriers, increased interstitial fluid pressure and the presence of the blood-brain barrier(BBB), frequently compromises the efficacy of promising therapeutic strategies. Consequently, a deeper understanding of the TME and the development of innovative methods to overcome its associated challenges are essential for improving treatment outcomes in GBM. AREAS COVERED This review critically evaluates the major obstacles within the GBM TME, focusing on the biological and structural barriers that limit therapeutic delivery and efficacy. Novel approaches designed to address these barriers, including advanced formulation strategies and precise targeting mechanisms, are explored in detail. Additionally, the review highlights the potential of emerging technologies such as 3D-printed models, scaffolds, Robotics and artificial intelligence(AI) techniques and machine learning, in tackling TME- associated hurdles. EXPERT OPINION The integration of these innovative methods presents a promising path for enhancing the specificity and efficacy of GBM therapies. By combining these advanced strategies, the potential for improving patient outcomes in GBM treatment can be significantly enhanced, offering hope for overcoming the limitations posed by the TME.
Collapse
Affiliation(s)
- Sidra Khot
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Anandha Krishnaveni
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Director, SVKM's Shri C. B. Patel Research Centre for Chemistry and Biological Science, Mumbai, India
| | - Chintan Bhavsar
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery System Facility, Department of Chemistry and Biochemistry, Laurentian University, Sandbury, Ontario, Canada
| |
Collapse
|
2
|
Huang C, Yu XB, Zhou YZ, Bao WQ. Identification and validation of ion channels-related mRNA prognostic signature for glioblastomas. Medicine (Baltimore) 2024; 103:e40736. [PMID: 39612412 DOI: 10.1097/md.0000000000040736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
Glioblastomas (GBM) is a kind of malignant brain tumor with poor prognosis. Identifying new biomarkers is promising for the treatment of GBM. The mRNA-seq and clinical data were obtained from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas databases. The differentially expressed genes were identified using limma R package. The prognosis-related genes were screened out and a risk model was constructed using univariate, least absolute shrinkage and selection operator, and multivariate Cox analysis. Receiver operating characteristic curve was used to assess the efficiency of model. Kaplan-Meier survival curve was applied for the survival analysis. Mutation analysis was conducted using maftools package. The effect of immunotherapy was analyzed according to TIDE score, and the drug sensitivity analysis was performed. The Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis enrichment analyses were performed for the functional analysis. The regulatory network was constructed by STRING and Cytoscape software. RT-qPCR was performed to validate the expression of 3 hub genes in vitro. A risk model was constructed based on 3 ion channels related genes (gap junction protein beta 2 [GJB2], potassium voltage-gated channel subfamily h member 6 [KCNH6], and potassium calcium-activated channel subfamily n member 4 [KCNN4]). The risk score and hub genes were positively correlated with the calcium signaling pathway. Patients were divided into 2 groups based on the risk score calculated by 3 signatures. The infiltration levels of T cell, B lineage, monocytic lineage, and neutrophils were increased in high risk group, while TIDE score was decreased. IC50 of potential drugs for GBM treatment was elevated in the high risk group. Furthermore, GJB2, KCNH6, and KCNN4 were oncogenic, and GJB2 and KCNN4 were upregulated, while KCNH6 was downregulated in high risk group and GBM cells. The regulatory network showed that KCNH6 was targeted by more miRNA and transcription factors and KCNN4 interacted with more drugs. We constructed a three-signature risk model, which could effectively predict the prognosis of GBM development. Besides, KCNH6 and KCNN4 were respectively considered as the targets of molecular targeted treatment and chemotherapy.
Collapse
Affiliation(s)
- Chao Huang
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing, Zhejiang, China
| | | | | | | |
Collapse
|
3
|
Liu W, Xu Y, Hu W, Zhang L, Wang C, Wang F, Zai Z, Qian X, Peng X, Chen F. Succinate dehydrogenase mediated ROS production contributes to ASIC1a-induced chondrocyte pyroptosis in rheumatoid arthritis. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167585. [PMID: 39586503 DOI: 10.1016/j.bbadis.2024.167585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Our previous study showed that acidic stimuli activate acid-sensitive ion channel 1a (ASIC1a), resulting in chondrocyte destruction associated with rheumatoid arthritis (RA). However, the exact underlying processes remain unclear. Recent evidence suggests that the production of reactive oxygen species (ROS) mediated by succinate dehydrogenase (SDH), contributes to chondrocyte damage. The objective of this study was to investigate the involvement of SDH in ASIC1a-induced chondrocyte destruction in RA and to explore the associated mechanisms both in vivo and in vitro. Our findings revealed that the cartilage of mice with collagen-induced arthritis (CIA) and acid-treated chondrocytes exhibited a substantial increase in SDH expression. Furthermore, SDH inhibition attenuates acidosis-induced pyroptosis in chondrocytes. Notably, ASIC1a activation through acid stimuli increases SDH activity and pyroptosis through the Ca2+/CaMKK2/AMPK pathway in chondrocytes. Mechanistically, SDH assembly factor 2 (SDHAF2) was identified as a key modulator of SDH activity induced by ASIC1a in acid-stressed chondrocytes. Moreover, the expression of SDH in CIA mouse chondrocytes decreased and the histological characteristics of ankle joint damage were reduced by the ASIC1a-particular blocker PcTx-1. Overall, these observations suggest that ASIC1a activation under acidic conditions increases SDH activity and modulates SDHAF2, thereby promoting chondrocyte pyroptosis through the Ca2+/CaMKK2/AMPK pathway.
Collapse
Affiliation(s)
- Wenqiang Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Yayun Xu
- Department of Neurology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Weirong Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Longbiao Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Cheng Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Fengshuo Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Zhuoyan Zai
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Xuewen Qian
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China
| | - Xiaoqing Peng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
4
|
Wang Y, Hou X, Li Y, Sun X, Hu R, Lv Y, Jia R, Ding L. (B, N)-codoped carbon dots for sensitive luteolin detection and HepG2 cell imaging. Microchem J 2024; 206:111562. [DOI: 10.1016/j.microc.2024.111562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Adiguzel S, Karamese M, Kugu S, Kacar EA, Esen MF, Erdogan H, Tasoglu S, Bacanli MG, Altuntas S. Doxorubicin-loaded liposome-like particles embedded in chitosan/hyaluronic acid-based hydrogels as a controlled drug release model for local treatment of glioblastoma. Int J Biol Macromol 2024; 278:135054. [PMID: 39187114 DOI: 10.1016/j.ijbiomac.2024.135054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Glioblastoma (GBM) resection and medication treatment are limited, and local drug therapies are required. This study aims to create a hybrid system comprising liposome-like particles (LLP-DOX) encapsulated in chitosan/hyaluronic acid/polyethyleneimine (CHI/HA/PEI) hydrogels, enabling controlled local delivery of doxorubicin (DOX) into the resection cavity for treating GBM. CHI/HA/PEI hydrogels were characterized morphologically, physically, chemically, mechanically, and thermally. Findings revealed a high network and compact micro-network structure, along with enhanced physical and thermal stability compared to CHI/HA hydrogels. Simultaneously, drug release from CHI/HA/PEI/LLP-DOX hydrogels was assessed, revealing continuous and controlled release up to the 148th hour, with no significant burst release. Cell studies showed that CHI/HA/PEI hydrogels are biocompatible with low genotoxicity. Additionally, LLP-DOX-loaded CHI/HA/PEI hydrogels significantly decreased cell viability and gene expression levels compared to LLP-DOX alone. It was also observed that the viability of GBM spheroids decreased over time when interacting with CHI/HA/PEI/LLP-DOX hydrogels, accompanied by a reduction in total surface area and an increase in apoptotic tendencies. In this study, we hypothesized that creating a hybrid drug delivery system by encapsulating DOX-loaded LLPs within a CHI/HA/PEI hydrogel matrix could achieve sustained drug release, improve anticancer efficacy via localized treatment, and effectively mitigate GBM progression for 3D microtissues.
Collapse
Affiliation(s)
- Seyfure Adiguzel
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Molecular Biology and Genetics, Department of Molecular Biology and Genetics, University of Health Sciences, Istanbul 34668, Turkiye
| | - Miray Karamese
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Senanur Kugu
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Elif Ayse Kacar
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Muhammed Fevzi Esen
- Department of Health Information Systems, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye.
| | - Hakan Erdogan
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Turkiye.
| | - Savas Tasoglu
- Department of Mechanical Engineering, Faculty of Science, Koc University, Istanbul, Turkiye.
| | - Merve Güdül Bacanli
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Turkiye.
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye.
| |
Collapse
|
6
|
Balboni A, D'Angelo C, Collura N, Brusco S, Di Berardino C, Targa A, Massoti B, Mastrangelo E, Milani M, Seneci P, Broccoli V, Muzio L, Galli R, Menegon A. Acid-sensing ion channel 3 is a new potential therapeutic target for the control of glioblastoma cancer stem cells growth. Sci Rep 2024; 14:20421. [PMID: 39227705 PMCID: PMC11372124 DOI: 10.1038/s41598-024-71623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer that, despite recent advances in the understanding of its pathogenesis, remains incurable. GBM contains a subpopulation of cells with stem cell-like properties called cancer stem cells (CSCs). Several studies have demonstrated that CSCs are resistant to conventional chemotherapy and radiation thus representing important targets for novel anti-cancer therapies. Proton sensing receptors expressed by CSCs could represent important factors involved in the adaptation of tumours to the extracellular environment. Accordingly, the expression of acid-sensing ion channels (ASICs), proton-gated sodium channels mainly expressed in the neurons of peripheral (PNS) and central nervous system (CNS), has been demonstrated in several tumours and linked to an increase in cell migration and proliferation. In this paper we report that the ASIC3 isoform, usually absent in the CNS and present in the PNS, is enriched in human GBM CSCs while poorly expressed in the healthy human brain. We propose here a novel therapeutic strategy based on the pharmacological activation of ASIC3, which induces a significant GBM CSCs damage while being non-toxic for neurons. This approach might offer a promising and appealing new translational pathway for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Andrea Balboni
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Camilla D'Angelo
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Nicoletta Collura
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Simone Brusco
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
- Electrophysiology Unit, Axxam S.P.A., Via Meucci 3, Bresso, 20091, Milan, Italy
| | - Claudia Di Berardino
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Altea Targa
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Beatrice Massoti
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | | | | | | | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Luca Muzio
- INsPE, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Menegon
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy.
| |
Collapse
|
7
|
Wan X, Li F, Li Z, Zhou L. ASIC3-activated key enzymes of de novo lipid synthesis supports lactate-driven EMT and the metastasis of colorectal cancer cells. Cell Commun Signal 2024; 22:388. [PMID: 39095886 PMCID: PMC11295509 DOI: 10.1186/s12964-024-01762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Acidic microenvironments is a cancer progression driver, unclear core mechanism hinders the discovery of new diagnostic or therapeutic targets. ASIC3 is an extracellular proton sensor and acid-sensitive, but its role in acidic tumor microenvironment of colorectal cancer is not reported. Functional analysis data show that colorectal cancer cells respond to specific concentration of lactate to accelerate invasion and metastasis, and ASIC3 is the main actor in this process. Mechanism reveal de novo lipid synthesis is a regulatory process of ASIC3, down-regulated ASIC3 increases and interacts with ACC1 and SCD1, which are key enzymes in de novo lipid synthesis pathway, this interaction results in increased unsaturated fatty acids, which in turn induce EMT to promote metastasis, and overexpression of ASIC3 reduces acidic TME-enhanced colorectal cancer metastasis. Clinical samples of colorectal cancer also exhibit decreased ASIC3 expression, and low ASIC3 expression is associated with metastasis and stage of colorectal cancer. This study is the first to identify the role of the ASIC3-ACC1/SCD1 axis in acid-enhanced colorectal cancer metastasis. The expression pattern of ASIC3 in colorectal cancer differs significantly from that in other types of cancers, ASIC3 may serve as a novel and reliable marker for acidic microenvironmental in colorectal cancer, and potentially a therapeutic target.
Collapse
Affiliation(s)
- Xing Wan
- Department of Pharmacology, Sichuan University West China School of Basic Medical Sciences & Forensic Medicine, Chengdu, 610041, China
- Department of Pharmacology, Hubei Minzu University Health Science Center, Enshi, 445000, China
| | - Feng Li
- Department of Pharmacology, Sichuan University West China School of Basic Medical Sciences & Forensic Medicine, Chengdu, 610041, China
| | - Zhigui Li
- Department of General Surgery, Colorectal Cancer Center, Sichuan University West China Hospital, Chengdu, 610041, China
| | - Liming Zhou
- Department of Pharmacology, Sichuan University West China School of Basic Medical Sciences & Forensic Medicine, Chengdu, 610041, China.
| |
Collapse
|
8
|
Stock C. pH-regulated single cell migration. Pflugers Arch 2024; 476:639-658. [PMID: 38214759 PMCID: PMC11006768 DOI: 10.1007/s00424-024-02907-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024]
Abstract
Over the last two decades, extra- and intracellular pH have emerged as fundamental regulators of cell motility. Fundamental physiological and pathological processes relying on appropriate cell migration, such as embryonic development, wound healing, and a proper immune defense on the one hand, and autoimmune diseases, metastatic cancer, and the progression of certain parasitic diseases on the other, depend on surrounding pH. In addition, migrating single cells create their own localized pH nanodomains at their surface and in the cytosol. By this means, the migrating cells locally modulate their adhesion to, and the re-arrangement and digestion of, the extracellular matrix. At the same time, the cytosolic nanodomains tune cytoskeletal dynamics along the direction of movement resulting in concerted lamellipodia protrusion and rear end retraction. Extracellular pH gradients as found in wounds, inflamed tissues, or the periphery of tumors stimulate directed cell migration, and long-term exposure to acidic conditions can engender a more migratory and invasive phenotype persisting for hours up to several generations of cells after they have left the acidic milieu. In the present review, the different variants of pH-dependent single cell migration are described. The underlying pH-dependent molecular mechanisms such as conformational changes of adhesion molecules, matrix protease activity, actin (de-)polymerization, and signaling events are explained, and molecular pH sensors stimulated by H+ signaling are presented.
Collapse
Affiliation(s)
- Christian Stock
- Department of Gastroenterology, Hepatology, Infectiology & Endocrinology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
9
|
Gründer S, Vanek J, Pissas KP. Acid-sensing ion channels and downstream signalling in cancer cells: is there a mechanistic link? Pflugers Arch 2024; 476:659-672. [PMID: 38175291 PMCID: PMC11006730 DOI: 10.1007/s00424-023-02902-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
It is increasingly appreciated that the acidic microenvironment of a tumour contributes to its evolution and clinical outcomes. However, our understanding of the mechanisms by which tumour cells detect acidosis and the signalling cascades that it induces is still limited. Acid-sensing ion channels (ASICs) are sensitive receptors for protons; therefore, they are also candidates for proton sensors in tumour cells. Although in non-transformed tissue, their expression is mainly restricted to neurons, an increasing number of studies have reported ectopic expression of ASICs not only in brain cancer but also in different carcinomas, such as breast and pancreatic cancer. However, because ASICs are best known as desensitizing ionotropic receptors that mediate rapid but transient signalling, how they trigger intracellular signalling cascades is not well understood. In this review, we introduce the acidic microenvironment of tumours and the functional properties of ASICs, point out some conceptual problems, summarize reported roles of ASICs in different cancers, and highlight open questions on the mechanisms of their action in cancer cells. Finally, we propose guidelines to keep ASIC research in cancer on solid ground.
Collapse
Affiliation(s)
- Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Jakob Vanek
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | | |
Collapse
|
10
|
Blanchard R, Adjei I. Engineering the glioblastoma microenvironment with bioactive nanoparticles for effective immunotherapy. RSC Adv 2023; 13:31411-31425. [PMID: 37901257 PMCID: PMC10603567 DOI: 10.1039/d3ra01153d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
While immunotherapies have revolutionized treatment for other cancers, glioblastoma multiforme (GBM) patients have not shown similar positive responses. The limited response to immunotherapies is partly due to the unique challenges associated with the GBM tumor microenvironment (TME), which promotes resistance to immunotherapies, causing many promising therapies to fail. There is, therefore, an urgent need to develop strategies that make the TME immune permissive to promote treatment efficacy. Bioactive nano-delivery systems, in which the nanoparticle, due to its chemical composition, provides the pharmacological function, have recently emerged as an encouraging option for enhancing the efficacy of immunotherapeutics. These systems are designed to overcome immunosuppressive mechanisms in the TME to improve the efficacy of a therapy. This review will discuss different aspects of the TME and how they impede therapy success. Then, we will summarize recent developments in TME-modifying nanotherapeutics and the in vitro models utilized to facilitate these advances.
Collapse
Affiliation(s)
- Ryan Blanchard
- Department of Biomedical Engineering, Texas A&M University TX USA
| | - Isaac Adjei
- Department of Biomedical Engineering, Texas A&M University TX USA
| |
Collapse
|
11
|
Wang H, Wei Z, Zhao Y, Wang S, Cao L, Wang F, Liu K, Sun Y. Engineered rare-earth nanomaterials for fluorescence imaging and therapy. RSC Adv 2023; 13:27512-27519. [PMID: 37720837 PMCID: PMC10500252 DOI: 10.1039/d3ra02503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Early diagnosis and treatment are of great significance for hindering the progression of brain disease. The limited effects of available treatments and poor prognosis are currently the most pressing problems faced by clinicians and their patients. Therefore, developing new diagnosis and treatment programs for brain diseases is urgently needed. Near-infrared (NIR)-light-responsive, lanthanide-doped upconversion nanoparticles (UCNPs) provide great advantages both in diagnosis and therapy. Hence, we synthesised nanoparticles comprised of a UCNPs core with surface functionalization. UCNPs@Au was used for NIR fluorescence imaging in the brain and inhibiting the growth of mouse glioma 261 (GL261) cells depending on photothermal properties. In addition, a UCNPs core and a mesoporous silica layer as the outer shell with a tannic acid-Al3+ ions (TA-Al) complex as a "gatekeeper" were used for pH-triggered doxorubicin/small interfering ribonucleic acid delivery in vitro. Based on our preliminary results, we expect to develop more multifunctional nanoscale diagnostic and therapeutic agents based on UCNPs for the diagnosis and treatment of brain diseases, including Alzheimer's disease, Parkinson's disease, and brain tumours.
Collapse
Affiliation(s)
- Hongru Wang
- Department of Neurology, Liaocheng People's Hospital Liaocheng Shandong 252000 China
- Department of Neurology, Qilu Hospital of Shandong University Jinan Shandong 250012 China
| | - Zheng Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Yangyang Zhao
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital Beijing 100044 China
| | - Lili Cao
- Department of Neurology, Qilu Hospital of Shandong University Jinan Shandong 250012 China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yanfei Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 China
| |
Collapse
|
12
|
Zhang Z, Chen M, Zhan W, Chen Y, Wang T, Chen Z, Fu Y, Zhao G, Mao D, Ruan J, Yuan FL. Acid-sensing ion channel 1a modulation of apoptosis in acidosis-related diseases: implications for therapeutic intervention. Cell Death Discov 2023; 9:330. [PMID: 37666823 PMCID: PMC10477349 DOI: 10.1038/s41420-023-01624-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a), a prominent member of the acid-sensing ion channel (ASIC) superfamily activated by extracellular protons, is ubiquitously expressed throughout the human body, including the nervous system and peripheral tissues. Excessive accumulation of Ca2+ ions via ASIC1a activation may occur in the acidified microenvironment of blood or local tissues. ASIC1a-mediated Ca2+‑induced apoptosis has been implicated in numerous pathologies, including neurological disorders, cancer, and rheumatoid arthritis. This review summarizes the role of ASIC1a in the modulation of apoptosis via various signaling pathways across different disease states to provide insights for future studies on the underlying mechanisms and development of therapeutic strategies.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Minnan Chen
- Nantong First People's Hospital, Nantong, 226001, China
| | - Wenjing Zhan
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, 230032, China
| | - Yuechun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Tongtong Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Zhonghua Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Yifei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China
| | - Gang Zhao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, 214062, China.
| | - Jingjing Ruan
- Nantong First People's Hospital, Nantong, 226001, China.
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, Jiangsu, 214041, China.
| |
Collapse
|
13
|
Pissas KP, Schilling M, Tian Y, Gründer S. Functional characterization of acid-sensing ion channels in the cerebellum-originating medulloblastoma cell line DAOY and in cerebellar granule neurons. Pflugers Arch 2023; 475:1073-1087. [PMID: 37474775 PMCID: PMC10409673 DOI: 10.1007/s00424-023-02839-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023]
Abstract
Acid-sensing ion channels (ASICs) are Na+ channels that are almost ubiquitously expressed in neurons of the brain. Functional ASIC1a is also expressed in glioblastoma stem cells, where it might sense the acidic tumor microenvironment. Prolonged acidosis induces cell death in neurons and reduces tumor sphere formation in glioblastoma via activation of ASIC1a. It is currently unknown whether ASICs are expressed and involved in acid-induced cell death in other types of brain tumors. In this study, we investigated ASICs in medulloblastoma, using two established cell lines, DAOY and UW228, as in vitro models. In addition, we characterized ASICs in the most numerous neuron of the brain, the cerebellar granule cell, which shares the progenitor cell with some forms of medulloblastoma. We report compelling evidence using RT-qPCR, western blot and whole-cell patch clamp that DAOY and cerebellar granule cells, but not UW228 cells, functionally express homomeric ASIC1a. Additionally, Ca2+-imaging revealed that extracellular acidification elevated intracellular Ca2+-levels in DAOY cells independently of ASICs. Finally, we show that overexpression of RIPK3, a key component of the necroptosis pathway, renders DAOY cells susceptible to acid-induced cell death via activation of ASIC1a. Our data support the idea that ASIC1a is an important acid sensor in brain tumors and that its activation has potential to induce cell death in tumor cells.
Collapse
Affiliation(s)
| | - Maria Schilling
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Yuemin Tian
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Stefan Gründer
- Institute of Physiology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
| |
Collapse
|
14
|
Lobo V, Rocha A, Castro TG, Carvalho MA. Synthesis of Novel 2,9-Disubstituted-6-morpholino Purine Derivatives Assisted by Virtual Screening and Modelling of Class I PI3K Isoforms. Polymers (Basel) 2023; 15:polym15071703. [PMID: 37050317 PMCID: PMC10096987 DOI: 10.3390/polym15071703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
The phosphatidylinositol-3 kinase (PI3K) pathway is one of the most frequently activated pathogenic signalling cascades in a wide variety of cancers. In the last 15 years, there has been an increase in the search for selective inhibitors of the four class I isoforms of PI3K, as they demonstrate better specificity and reduced toxicity in comparison to existing inhibitors. A ligand-based and target-based rational drug design strategy was employed to build a virtual library of 105 new compounds. Through this strategy, the four isoforms were compared regarding their activity pocket availability, amino acid sequences, and prone interactions. Additionally, a known active scaffold was used as a molecular base to design new derivatives. The virtual screening of the resultant library toward the four isoforms points to the obtention of 19 selective inhibitors for the PI3Kα and PI3Kγ targets. Three selective ligands, one for α-isoform and two for γ-isoform, present a ∆ (∆Gbinding) equal or greater than 1.5 Kcal/mol and were identified as the most promising candidates. A principal component analysis was used to establish correlations between the affinity data and some of the physicochemical and structural properties of the ligands. The binding modes and interactions established by the selective ligands in the active centre of the α and γ isoforms of PI3K were also investigated. After modelling studies, a synthetic approach to generate selective ligands was developed and applied in synthesising a set of derivatives that were obtained in good to excellent yield.
Collapse
|