1
|
Schaefer KG, Russell CM, Pyron RJ, Conley EA, Barrera FN, King GM. Polymerization mechanism of the Candida albicans virulence factor candidalysin. J Biol Chem 2024; 300:107370. [PMID: 38750794 PMCID: PMC11193009 DOI: 10.1016/j.jbc.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Candida albicans is a commensal fungus that can cause epithelial infections and life-threatening invasive candidiasis. The fungus secretes candidalysin (CL), a peptide that causes cell damage and immune activation by permeation of epithelial membranes. The mechanism of CL action involves strong peptide assembly into polymers in solution. The free ends of linear CL polymers can join, forming loops that become pores upon binding to membranes. CL polymers constitute a therapeutic target for candidiasis, but little is known about CL self-assembly in solution. Here, we examine the assembly mechanism of CL in the absence of membranes using complementary biophysical tools, including a new fluorescence polymerization assay, mass photometry, and atomic force microscopy. We observed that CL assembly is slow, as tracked with the fluorescent marker C-laurdan. Single-molecule methods showed that CL polymerization involves a convolution of four processes. Self-assembly begins with the formation of a basic subunit, thought to be a CL octamer that is the polymer seed. Polymerization proceeds via the addition of octamers, and as polymers grow they can curve and form loops. Alternatively, secondary polymerization can occur and cause branching. Interplay between the different rates determines the distribution of CL particle types, indicating a kinetic control mechanism. This work elucidates key physical attributes underlying CL self-assembly which may eventually evoke pharmaceutical development.
Collapse
Affiliation(s)
| | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, Tennessee
| | - Elizabeth A Conley
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee.
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri; Department of Biochemistry, University of Missouri, Columbia, Missouri.
| |
Collapse
|
2
|
Johnson S, Paul T, Sanford S, Schnable BL, Detwiler A, Thosar S, Van Houten B, Myong S, Opresko P. BG4 antibody can recognize telomeric G-quadruplexes harboring destabilizing base modifications and lesions. Nucleic Acids Res 2024; 52:1763-1778. [PMID: 38153143 PMCID: PMC10939409 DOI: 10.1093/nar/gkad1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
BG4 is a single-chain variable fragment antibody shown to bind various G-quadruplex (GQ) topologies with high affinity and specificity, and to detect GQ in cells, including GQ structures formed within telomeric TTAGGG repeats. Here, we used ELISA and single-molecule pull-down (SiMPull) detection to test how various lengths and GQ destabilizing base modifications in telomeric DNA constructs alter BG4 binding. We observed high-affinity BG4 binding to telomeric GQ independent of telomere length, although three telomeric repeat constructs that cannot form stable intramolecular GQ showed reduced affinity. A single guanine substitution with 8-aza-7-deaza-G, T, A, or C reduced affinity to varying degrees depending on the location and base type, whereas two G substitutions in the telomeric construct dramatically reduced or abolished binding. Substitution with damaged bases 8-oxoguanine and O6-methylguanine failed to prevent BG4 binding although affinity was reduced depending on lesion location. SiMPull combined with FRET revealed that BG4 binding promotes folding of telomeric GQ harboring a G to T substitution or 8-oxoguanine. Atomic force microscopy revealed that BG4 binds telomeric GQ with a 1:1 stoichiometry. Collectively, our data suggest that BG4 can recognize partially folded telomeric GQ structures and promote telomeric GQ stability.
Collapse
Affiliation(s)
- Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Brittani L Schnable
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15213, USA
| |
Collapse
|
3
|
Valbuena A, Strobl K, Gil-Redondo JC, Valiente L, de Pablo PJ, Mateu MG. Single-Molecule Analysis of Genome Uncoating from Individual Human Rhinovirus Particles, and Modulation by Antiviral Drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304722. [PMID: 37806749 DOI: 10.1002/smll.202304722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Infection of humans by many viruses is typically initiated by the internalization of a single virion in each of a few susceptible cells. Thus, the outcome of the infection process may depend on stochastic single-molecule events. A crucial process for viral infection, and thus a target for developing antiviral drugs, is the uncoating of the viral genome. Here a force spectroscopy procedure using an atomic force microscope is implemented to study uncoating for individual human rhinovirus particles. Application of an increasing mechanical force on a virion led to a high force-induced structural transition that facilitated extrusion of the viral RNA molecule without loss of capsid integrity. Application of force to virions that h ad previously extruded the RNA, or to RNA-free capsids, led to a lower force-induced event associated with capsid disruption. The kinetic parameters are determined for each reaction. The high-force event is a stochastic process governed by a moderate free energy barrier (≈20 kcal mol-1 ), which results in a heterogeneous population of structurally weakened virions in which different fractions of the RNA molecule are externalized. The effects of antiviral compounds or capsid mutation on the kinetics of this reaction reveal a correlation between the reaction rate and virus infectivity.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Klara Strobl
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
4
|
Pro-inflammatory protein S100A9 alters membrane organization by dispersing ordered domains. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184113. [PMID: 36567033 DOI: 10.1016/j.bbamem.2022.184113] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Pro-inflammatory, calcium-binding protein S100A9 is localized in the cytoplasm of many cells and regulates several intracellular and extracellular processes. S100A9 is involved in neuroinflammation associated with the pathogenesis of Alzheimer's disease (AD). The number of studies on the impact of S100A9 in co-aggregation processes with amyloid-like proteins is increasing. However, there is still a lack of data on how this protein interacts with lipid membranes. We employed atomic force microscopy (AFM), dynamic light scattering (DLS), and fluorescence measurements (Laurdan and Thioflavin-T) to study the interaction between protein and the membrane surface. We used lipid vesicles in bulk and planar tethered lipid bilayers as biomimetic membrane models. We demonstrated that the protein accumulates on negatively charged lipid bilayers but with no further loss of the bilayer's integrity. The most important result is that the initial adsorption and accumulation of apo-form of S100A9 on the lipid membrane surface is lipid phase-sensitive. The breaking down of raft-like and disappearance of gel-like domains indicate that protein incorporates into the hydrophobic part of the lipid bilayer. We observed the most noticeable loss of integrity in lipid bilayers constructed from a lipid mixture (brain total lipid extract). Understanding the function and interactions of these proteins in cellular environments might expand the development of new diagnostic and therapeutic approaches for AD or other related diseases.
Collapse
|
5
|
Vogel W, Hegde M, Keith AN, Sheiko SS, Dingemans TJ. Chemistry and Properties of Cross-Linked All-Aromatic Hyperbranched Polyaryletherketones. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wouter Vogel
- Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft 2629 HS, The Netherlands
- Dutch Polymer Institute (DPI), P.O. Box 902, Eindhoven 5600 AX, The Netherlands
| | - Maruti Hegde
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Murray Hall 1113, 121 South Road, Chapel Hill, North Carolina 27599-3050, United States
| | - Andrew N. Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Theo J. Dingemans
- Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, Delft 2629 HS, The Netherlands
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Murray Hall 1113, 121 South Road, Chapel Hill, North Carolina 27599-3050, United States
| |
Collapse
|
6
|
Marcuello C, Frempong GA, Balsera M, Medina M, Lostao A. Atomic Force Microscopy to Elicit Conformational Transitions of Ferredoxin-Dependent Flavin Thioredoxin Reductases. Antioxidants (Basel) 2021; 10:antiox10091437. [PMID: 34573070 PMCID: PMC8469568 DOI: 10.3390/antiox10091437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Flavin and redox-active disulfide domains of ferredoxin-dependent flavin thioredoxin reductase (FFTR) homodimers should pivot between flavin-oxidizing (FO) and flavin-reducing (FR) conformations during catalysis, but only FR conformations have been detected by X-ray diffraction and scattering techniques. Atomic force microscopy (AFM) is a single-molecule technique that allows the observation of individual biomolecules with sub-nm resolution in near-native conditions in real-time, providing sampling of molecular properties distributions and identification of existing subpopulations. Here, we show that AFM is suitable to evaluate FR and FO conformations. In agreement with imaging under oxidizing condition, only FR conformations are observed for Gloeobacter violaceus FFTR (GvFFTR) and isoform 2 of Clostridium acetobutylicum FFTR (CaFFTR2). Nonetheless, different relative dispositions of the redox-active disulfide and FAD-binding domains are detected for FR homodimers, indicating a dynamic disposition of disulfide domains regarding the central protein core in solution. This study also shows that AFM can detect morphological changes upon the interaction of FFTRs with their protein partners. In conclusion, this study paves way for using AFM to provide complementary insight into the FFTR catalytic cycle at pseudo-physiological conditions. However, future approaches for imaging of FO conformations will require technical developments with the capability of maintaining the FAD-reduced state within the protein during AFM scanning.
Collapse
Affiliation(s)
- Carlos Marcuello
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (C.M.); (G.A.F.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Gifty Animwaa Frempong
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (C.M.); (G.A.F.)
| | - Mónica Balsera
- Department of Abiotic Stress, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), 37008 Salamanca, Spain;
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Instituto de Biocomputación y Física de Sistemas Complejos (GBsC-CSIC Joint Unit), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Correspondence: (M.M.); (A.L.); Tel.: +34-97-676-2476 (M.M.); +34-87-655-5357 (A.L.)
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain; (C.M.); (G.A.F.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Correspondence: (M.M.); (A.L.); Tel.: +34-97-676-2476 (M.M.); +34-87-655-5357 (A.L.)
| |
Collapse
|
7
|
Cicconi A, Micheli E, Raffa GD, Cacchione S. Atomic Force Microscopy Reveals that the Drosophila Telomere-Capping Protein Verrocchio Is a Single-Stranded DNA-Binding Protein. Methods Mol Biol 2021; 2281:241-263. [PMID: 33847963 DOI: 10.1007/978-1-0716-1290-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of biological samples with a nanometric resolution. Determination of the physical properties of biological molecules at a single-molecule level is achieved through topographic analysis of the sample adsorbed on a flat and smooth surface. AFM has been widely used for the structural analysis of nucleic acid-protein interactions, providing insights on binding specificity and stoichiometry of proteins forming complexes with DNA substrates. Analysis of single-stranded DNA-binding proteins by AFM requires specific single-stranded/double-stranded hybrid DNA molecules as substrates for protein binding. In this chapter we describe the protocol for AFM characterization of binding properties of Drosophila telomeric protein Ver using DNA constructs that mimic the structure of chromosome ends. We provide details on the methodology used, including the procedures for the generation of DNA substrates, the preparation of samples for AFM visualization, and the data analysis of AFM images. The presented procedure can be adapted for the structural studies of any single-stranded DNA-binding protein.
Collapse
Affiliation(s)
- Alessandro Cicconi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy.
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, Rome, Italy.
| |
Collapse
|
8
|
Naulin PA, Lozano B, Fuentes C, Liu Y, Schmidt C, Contreras JE, Barrera NP. Polydisperse molecular architecture of connexin 26/30 heteromeric hemichannels revealed by atomic force microscopy imaging. J Biol Chem 2020; 295:16499-16509. [PMID: 32887797 PMCID: PMC7864052 DOI: 10.1074/jbc.ra119.012128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Connexin (Cx) protein forms hemichannels and gap junctional channels, which play diverse and profound roles in human physiology and diseases. Gap junctions are arrays of intercellular channels formed by the docking of two hemichannels from adjacent cells. Each hexameric hemichannel contains the same or different Cx isoform. Although homomeric Cxs forms have been largely described functionally and structurally, the stoichiometry and arrangement of heteromeric Cx channels remain unknown. The latter, however, are widely expressed in human tissues and variation might have important implications on channel function. Investigating properties of heteromeric Cx channels is challenging considering the high number of potential subunit arrangements and stoichiometries, even when only combining two Cx isoforms. To tackle this problem, we engineered an HA tag onto Cx26 or Cx30 subunits and imaged hemichannels that were liganded by Fab-epitope antibody fragments via atomic force microscopy. For Cx26-HA/Cx30 or Cx30-HA/Cx26 heteromeric channels, the Fab-HA binding distribution was binomial with a maximum of three Fab-HA bound. Furthermore, imaged Cx26/Cx30-HA triple liganded by Fab-HA showed multiple arrangements that can be derived from the law of total probabilities. Atomic force microscopy imaging of ringlike structures of Cx26/Cx30-HA hemichannels confirmed these findings and also detected a polydisperse distribution of stoichiometries. Our results indicate a dominant subunit stoichiometry of 3Cx26:3Cx30 with the most abundant subunit arrangement of Cx26-Cx26-Cx30-Cx26-Cx30-Cx30. To our knowledge, this is the first time that the molecular architecture of heteromeric Cx channels has been revealed, thus providing the basis to explore the functional effect of these channels in biology.
Collapse
Affiliation(s)
- Pamela A Naulin
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamin Lozano
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christian Fuentes
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Yu Liu
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Carla Schmidt
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Jorge E Contreras
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Nelson P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Mela I, Vallejo‐Ramirez PP, Makarchuk S, Christie G, Bailey D, Henderson RM, Sugiyama H, Endo M, Kaminski CF. DNA Nanostructures for Targeted Antimicrobial Delivery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ioanna Mela
- Department of Chemical Engineering and Biotechnology University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Pedro P. Vallejo‐Ramirez
- Department of Chemical Engineering and Biotechnology University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Stanislaw Makarchuk
- Department of Chemical Engineering and Biotechnology University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - David Bailey
- Department of Chemical Engineering and Biotechnology University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Robert M. Henderson
- Department of Pharmacology University of Cambridge Tennis Court Road Cambridge CB2 1PD UK
| | - Hiroshi Sugiyama
- Department of Chemistry Graduate School of Science Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell Material Sciences Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Masayuki Endo
- Department of Chemistry Graduate School of Science Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell Material Sciences Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
10
|
Mela I, Vallejo‐Ramirez PP, Makarchuk S, Christie G, Bailey D, Henderson RM, Sugiyama H, Endo M, Kaminski CF. DNA Nanostructures for Targeted Antimicrobial Delivery. Angew Chem Int Ed Engl 2020; 59:12698-12702. [PMID: 32297692 PMCID: PMC7496991 DOI: 10.1002/anie.202002740] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/07/2020] [Indexed: 01/14/2023]
Abstract
We report the use of DNA origami nanostructures, functionalized with aptamers, as a vehicle for delivering the antibacterial enzyme lysozyme in a specific and efficient manner. We test the system against Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) targets. We use direct stochastic optical reconstruction microscopy (dSTORM) and atomic force microscopy (AFM) to characterize the DNA origami nanostructures and structured illumination microscopy (SIM) to assess the binding of the origami to the bacteria. We show that treatment with lysozyme-functionalized origami slows bacterial growth more effectively than treatment with free lysozyme. Our study introduces DNA origami as a tool in the fight against antibiotic resistance, and our results demonstrate the specificity and efficiency of the nanostructure as a drug delivery vehicle.
Collapse
Affiliation(s)
- Ioanna Mela
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Pedro P. Vallejo‐Ramirez
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Stanislaw Makarchuk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Graham Christie
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - David Bailey
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Robert M. Henderson
- Department of PharmacologyUniversity of CambridgeTennis Court RoadCambridgeCB2 1PDUK
| | - Hiroshi Sugiyama
- Department of ChemistryGraduate School of ScienceKyoto UniversityKitashirakawa-oiwakecho, Sakyo-kuKyoto606-8502Japan
- Institute for Integrated Cell Material SciencesKyoto UniversityYoshida-ushinomiyacho, Sakyo-kuKyoto606-8501Japan
| | - Masayuki Endo
- Department of ChemistryGraduate School of ScienceKyoto UniversityKitashirakawa-oiwakecho, Sakyo-kuKyoto606-8502Japan
- Institute for Integrated Cell Material SciencesKyoto UniversityYoshida-ushinomiyacho, Sakyo-kuKyoto606-8501Japan
| | - Clemens F. Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
11
|
Dinh H, Nakata E, Mutsuda-Zapater K, Saimura M, Kinoshita M, Morii T. Enhanced enzymatic activity exerted by a packed assembly of a single type of enzyme. Chem Sci 2020; 11:9088-9100. [PMID: 34094190 PMCID: PMC8161546 DOI: 10.1039/d0sc03498c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023] Open
Abstract
In contrast to the dilute conditions employed for in vitro biochemical studies, enzymes are spatially organized at high density in cellular micro-compartments. In spite of being crucial for cellular functions, enzymatic reactions in such highly packed states have not been fully addressed. Here, we applied a protein adaptor to assemble a single type of monomeric enzyme on a DNA scaffold in the packed or dispersed states for carbonic anhydrase. The enzymatic reactions proceeded faster in the packed than in the dispersed state. Acceleration of the reaction in the packed assembly was more prominent for substrates with higher hydrophobicity. In addition, carbonic anhydrase is more tolerant of inhibitors in the packed assembly. Such an acceleration of the reaction in the packed state over the dispersed state was also observed for xylose reductase. We propose that the entropic force of water increases local substrate or cofactor concentration within the domain confined between enzyme surfaces, thus accelerating the reaction. Our system provides a reasonable model of enzymes in a packed state; this would help in engineering artificial metabolic systems.
Collapse
Affiliation(s)
- Huyen Dinh
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | | | - Masayuki Saimura
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | | | - Takashi Morii
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
12
|
Barros M, Houlihan WJ, Paresi CJ, Brendel M, Rynearson KD, Lee CW, Prikhodko O, Cregger C, Chang G, Wagner SL, Gilchrist ML, Li YM. γ-Secretase Partitioning into Lipid Bilayers Remodels Membrane Microdomains after Direct Insertion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6569-6579. [PMID: 32432881 PMCID: PMC7887708 DOI: 10.1021/acs.langmuir.0c01178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
γ-Secretase is a multisubunit complex that catalyzes intramembranous cleavage of transmembrane proteins. The lipid environment forms membrane microdomains that serve as spatio-temporal platforms for proteins to function properly. Despite substantial advances in the regulation of γ-secretase, the effect of the local membrane lipid microenvironment on the regulation of γ-secretase is poorly understood. Here, we characterized and quantified the partitioning of γ-secretase and its substrates, the amyloid precursor protein (APP) and Notch, into lipid bilayers using solid-supported model membranes. Notch substrate is preferentially localized in the liquid-disordered (Ld) lipid domains, whereas APP and γ-secretase partition as single or higher complex in both phases but highly favor the ordered phase, especially after recruiting lipids from the ordered phase, indicating that the activity and specificity of γ-secretase against these two substrates are modulated by membrane lateral organization. Moreover, time-elapse measurements reveal that γ-secretase can recruit specific membrane components from the cholesterol-rich Lo phase and thus creates a favorable lipid environment for substrate recognition and therefore activity. This work offers insight into how γ-secretase and lipid modulate each other and control its activity and specificity.
Collapse
Affiliation(s)
- Marilia Barros
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
| | - William J Houlihan
- Department of Chemical Engineering and the Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, United States
| | - Chelsea J Paresi
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
- Pharmacology Graduate Program, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, United States
| | - Matthew Brendel
- Molecular Cytology Core, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
| | - Kevin D Rynearson
- Department of Neurosciences, University of California, San Diego, California 92093, United States
| | | | - Olga Prikhodko
- Department of Neurosciences, University of California, San Diego, California 92093, United States
| | - Cristina Cregger
- Department of Neurosciences, University of California, San Diego, California 92093, United States
| | | | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, California 92093, United States
- Research Biologist, VA San Diego Healthcare System, La Jolla, California 92161, United States
| | - M Lane Gilchrist
- Department of Chemical Engineering and the Department of Biomedical Engineering, The City College of the City University of New York, New York, New York 10031, United States
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, United States
- Pharmacology Graduate Program, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10021, United States
| |
Collapse
|
13
|
Modes of action of the archaeal Mre11/Rad50 DNA-repair complex revealed by fast-scan atomic force microscopy. Proc Natl Acad Sci U S A 2020; 117:14936-14947. [PMID: 32541055 PMCID: PMC7334584 DOI: 10.1073/pnas.1915598117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mre11/Rad50 (M/R) complex forms the core of an essential DNA-repair complex, conserved in all divisions of life. Here we investigate this complex from the thermophilic archaeon Sulfolobus acidocaldarius using real-time atomic force microscopy. We demonstrate that the coiled-coil regions of Rad50 facilitate M/R interaction with DNA and permit substrate translocation until a free end is encountered. We also observe that the M/R complex drives unprecedented unwinding of the DNA duplexes. Taking these findings together, we provide a model for how the M/R complex can identify DNA double-strand breaks and orchestrate repair events. Mre11 and Rad50 (M/R) proteins are part of an evolutionarily conserved macromolecular apparatus that maintains genomic integrity through repair pathways. Prior structural studies have revealed that this apparatus is extremely dynamic, displaying flexibility in the long coiled-coil regions of Rad50, a member of the structural maintenance of chromosome (SMC) superfamily of ATPases. However, many details of the mechanics of M/R chromosomal manipulation during DNA-repair events remain unclear. Here, we investigate the properties of the thermostable M/R complex from the archaeon Sulfolobus acidocaldarius using atomic force microscopy (AFM) to understand how this macromolecular machinery orchestrates DNA repair. While previous studies have observed canonical interactions between the globular domains of M/R and DNA, we observe transient interactions between DNA substrates and the Rad50 coiled coils. Fast-scan AFM videos (at 1–2 frames per second) of M/R complexes reveal that these interactions result in manipulation and translocation of the DNA substrates. Our study also shows dramatic and unprecedented ATP-dependent DNA unwinding events by the M/R complex, which extend hundreds of base pairs in length. Supported by molecular dynamic simulations, we propose a model for M/R recognition at DNA breaks in which the Rad50 coiled coils aid movement along DNA substrates until a DNA end is encountered, after which the DNA unwinding activity potentiates the downstream homologous recombination (HR)-mediated DNA repair.
Collapse
|
14
|
Heenan PR, Wang X, Gooding AR, Cech TR, Perkins TT. Bending and looping of long DNA by Polycomb repressive complex 2 revealed by AFM imaging in liquid. Nucleic Acids Res 2020; 48:2969-2981. [PMID: 32043141 DOI: 10.1093/nar/gkaa073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/20/2020] [Accepted: 01/25/2020] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) is a histone methyltransferase that methylates histone H3 at Lysine 27. PRC2 is critical for epigenetic gene silencing, cellular differentiation and the formation of facultative heterochromatin. It can also promote or inhibit oncogenesis. Despite this importance, the molecular mechanisms by which PRC2 compacts chromatin are relatively understudied. Here, we visualized the binding of PRC2 to naked DNA in liquid at the single-molecule level using atomic force microscopy. Analysis of the resulting images showed PRC2, consisting of five subunits (EZH2, EED, SUZ12, AEBP2 and RBBP4), bound to a 2.5-kb DNA with an apparent dissociation constant ($K_{\rm{D}}^{{\rm{app}}}$) of 150 ± 12 nM. PRC2 did not show sequence-specific binding to a region of high GC content (76%) derived from a CpG island embedded in such a long DNA substrate. At higher concentrations, PRC2 compacted DNA by forming DNA loops typically anchored by two or more PRC2 molecules. Additionally, PRC2 binding led to a 3-fold increase in the local bending of DNA's helical backbone without evidence of DNA wrapping around the protein. We suggest that the bending and looping of DNA by PRC2, independent of PRC2's methylation activity, may contribute to heterochromatin formation and therefore epigenetic gene silencing.
Collapse
Affiliation(s)
- Patrick R Heenan
- Department of Physics, University of Colorado, Boulder, CO 80309, USA.,JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA
| | - Xueyin Wang
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Anne R Gooding
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA.,Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Thomas R Cech
- Department of Biochemistry & BioFrontiers Institute, University of Colorado, Boulder, CO, 80309, USA.,Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO 80309, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
15
|
Beckwitt EC, Jang S, Carnaval Detweiler I, Kuper J, Sauer F, Simon N, Bretzler J, Watkins SC, Carell T, Kisker C, Van Houten B. Single molecule analysis reveals monomeric XPA bends DNA and undergoes episodic linear diffusion during damage search. Nat Commun 2020; 11:1356. [PMID: 32170071 PMCID: PMC7069974 DOI: 10.1038/s41467-020-15168-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 02/16/2020] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) removes a wide range of DNA lesions, including UV-induced photoproducts and bulky base adducts. XPA is an essential protein in eukaryotic NER, although reports about its stoichiometry and role in damage recognition are controversial. Here, by PeakForce Tapping atomic force microscopy, we show that human XPA binds and bends DNA by ∼60° as a monomer. Furthermore, we observe XPA specificity for the helix-distorting base adduct N-(2'-deoxyguanosin-8-yl)-2-acetylaminofluorene over non-damaged dsDNA. Moreover, single molecule fluorescence microscopy reveals that DNA-bound XPA exhibits multiple modes of linear diffusion between paused phases. The presence of DNA damage increases the frequency of pausing. Truncated XPA, lacking the intrinsically disordered N- and C-termini, loses specificity for DNA lesions and shows less pausing on damaged DNA. Our data are consistent with a working model in which monomeric XPA bends DNA, displays episodic phases of linear diffusion along DNA, and pauses in response to DNA damage.
Collapse
Affiliation(s)
- Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | - Sunbok Jang
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Florian Sauer
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Nina Simon
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig Maximillian University of Munich, 81377, Munich, Germany
| | - Johanna Bretzler
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig Maximillian University of Munich, 81377, Munich, Germany
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig Maximillian University of Munich, 81377, Munich, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, 97080, Würzburg, Germany
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
16
|
Acharya S, Jiang A, Kuo C, Nazarian R, Li K, Ma A, Siegal B, Toh C, Schmidt JJ. Improved Measurement of Proteins Using a Solid-State Nanopore Coupled with a Hydrogel. ACS Sens 2020; 5:370-376. [PMID: 31965788 DOI: 10.1021/acssensors.9b01928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although resistive pulse sensing using solid-state nanopores is capable of single-molecule sensitivity, previous work has shown that nanoparticles, such as proteins, pass through nanopores too quickly for accurate detection with typical measurement apparatus. As a result, nanopore measurements of these particles significantly deviate from theoretically estimated current amplitudes and detection rates. Here, we show that a hydrogel placed on the distal side of a nanopore can increase the residence time of nanoparticles within the nanopore, significantly increasing the detection rate and allowing improved resolution of blockage currents. The method is simple and inexpensive to implement while being label-free and applicable to a wide range of nanoparticle targets. Using hydrogel-backed nanopores, we detected the protein IgG with event frequencies several orders of magnitude higher than those in the absence of the hydrogel and with larger measured currents that agree well with theoretical models. We also show that the improved measurement also enables discrimination of IgG and bovine serum albumin in a mixed solution. Finally, we show that measurements of IgG with the hydrogel-backed nanopores can also yield current amplitude distributions that can be analyzed to infer its approximate shape.
Collapse
Affiliation(s)
- Shiv Acharya
- Department of Bioengineering, UCLA, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Ann Jiang
- Department of Bioengineering, UCLA, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Chance Kuo
- Department of Bioengineering, UCLA, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Reyhaneh Nazarian
- Department of Bioengineering, UCLA, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Katharine Li
- Department of Bioengineering, UCLA, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Anthony Ma
- Department of Bioengineering, UCLA, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Brian Siegal
- Department of Bioengineering, UCLA, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Christopher Toh
- Department of Bioengineering, UCLA, 420 Westwood Plaza, Los Angeles, California 90095, United States
| | - Jacob J. Schmidt
- Department of Bioengineering, UCLA, 420 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Sim MFM, Persiani E, Talukder MMU, Mcilroy GD, Roumane A, Edwardson JM, Rochford JJ. Oligomers of the lipodystrophy protein seipin may co-ordinate GPAT3 and AGPAT2 enzymes to facilitate adipocyte differentiation. Sci Rep 2020; 10:3259. [PMID: 32094408 PMCID: PMC7039881 DOI: 10.1038/s41598-020-59982-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Seipin deficiency causes severe congenital generalized lipodystrophy (CGL) and metabolic disease. However, how seipin regulates adipocyte development and function remains incompletely understood. We previously showed that seipin acts as a scaffold protein for AGPAT2, whose disruption also causes CGL. More recently, seipin has been reported to promote adipogenesis by directly inhibiting GPAT3, leading to the suggestion that GPAT inhibitors could offer novel treatments for CGL. Here we investigated the interactions between seipin, GPAT3 and AGPAT2. We reveal that seipin and GPAT3 associate via direct interaction and that seipin can simultaneously bind GPAT3 and AGPAT2. Inhibiting the expression of seipin, AGPAT2 or GPAT3 led to impaired induction of early markers of adipocyte differentiation in cultured cells. However, consistent with normal adipose mass in GPAT3-null mice, GPAT3 inhibition did not prevent the formation of mature adipocytes. Nonetheless, loss of GPAT3 in seipin-deficient preadipocytes exacerbated the failure of adipogenesis in these cells. Thus, our data indicate that GPAT3 plays a modest positive role in adipogenesis and argue against the potential of GPAT inhibitors to rescue white adipose tissue mass in CGL2. Overall, our study reveals novel mechanistic insights regarding the molecular pathogenesis of severe lipodystrophy caused by mutations in either seipin or AGPAT2.
Collapse
Affiliation(s)
- M F Michelle Sim
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Elisa Persiani
- Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | - George D Mcilroy
- Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Ahlima Roumane
- Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | | | - Justin J Rochford
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK. .,Rowett Institute and the Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
18
|
Mohapatra S, Lin CT, Feng XA, Basu A, Ha T. Single-Molecule Analysis and Engineering of DNA Motors. Chem Rev 2019; 120:36-78. [DOI: 10.1021/acs.chemrev.9b00361] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | | | | | | | - Taekjip Ha
- Howard Hughes Medical Institute, Baltimore, Maryland 21205, United States
| |
Collapse
|
19
|
Sukhanova MV, Hamon L, Kutuzov MM, Joshi V, Abrakhi S, Dobra I, Curmi PA, Pastre D, Lavrik OI. A Single-Molecule Atomic Force Microscopy Study of PARP1 and PARP2 Recognition of Base Excision Repair DNA Intermediates. J Mol Biol 2019; 431:2655-2673. [PMID: 31129062 DOI: 10.1016/j.jmb.2019.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/15/2019] [Accepted: 05/16/2019] [Indexed: 01/07/2023]
Abstract
Nuclear poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) catalyze the synthesis of poly(ADP-ribose) (PAR) and use NAD+ as a substrate for the polymer synthesis. Both PARP1 and PARP2 are involved in DNA damage response pathways and function as sensors of DNA breaks, including temporary single-strand breaks formed during DNA repair. Consistently, with a role in DNA repair, PARP activation requires its binding to a damaged DNA site, which initiates PAR synthesis. Here we use atomic force microscopy to characterize at the single-molecule level the interaction of PARP1 and PARP2 with long DNA substrates containing a single damage site and representing intermediates of the short-patch base excision repair (BER) pathway. We demonstrated that PARP1 has higher affinity for early intermediates of BER than PARP2, whereas both PARPs efficiently interact with the nick and may contribute to regulation of the final ligation step. The binding of a DNA repair intermediate by PARPs involved a PARP monomer or dimer depending on the type of DNA damage. PARP dimerization influences the affinity of these proteins to DNA and affects their enzymatic activity: the dimeric form is more effective in PAR synthesis in the case of PARP2 but is less effective in the case of PARP1. PARP2 suppresses PAR synthesis catalyzed by PARP1 after single-strand breaks formation. Our study suggests that the functions of PARP1 and PARP2 overlap in BER after a site cleavage and provides evidence for a role of PARP2 in the regulation of PARP1 activity.
Collapse
Affiliation(s)
- Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Loic Hamon
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vandana Joshi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Sanae Abrakhi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ioana Dobra
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Patrick A Curmi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - David Pastre
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia.
| |
Collapse
|
20
|
Pleshakova TO, Kaysheva AL, Shumov ID, Ziborov VS, Bayzyanova JM, Konev VA, Uchaikin VF, Archakov AI, Ivanov YD. Detection of Hepatitis C Virus Core Protein in Serum Using Aptamer-Functionalized AFM Chips. MICROMACHINES 2019; 10:E129. [PMID: 30781415 PMCID: PMC6413090 DOI: 10.3390/mi10020129] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022]
Abstract
In the present study, we demonstrate atomic force microscopy (AFM)-based detection of hepatitis C virus (HCV) particles in serum samples using a chip with aptamer-functionalized surface (apta-based AFM chip). The target particles, containing core antigen of HCV (HCVcoreAg protein), were biospecifically captured onto the chip surface from 1 mL of test solution containing 10 µL of serum collected from a hepatitis C patient. The registration of aptamer/antigen complexes on the chip surface was performed by AFM. The aptamers used in the present study were initially developed for therapeutic purposes; herein, these aptamers have been successfully utilized as probe molecules for HCVcoreAg detection in the presence of a complex protein matrix (human serum). The results obtained herein can be used for the development of detection systems that employ affine enrichment for protein detection.
Collapse
Affiliation(s)
| | | | - Ivan D Shumov
- Institute of Biomedical Chemistry, Moscow 119121, Russia.
| | - Vadim S Ziborov
- Institute of Biomedical Chemistry, Moscow 119121, Russia.
- Joint Institute for High Temperatures of Russian Academy of Sciences, Moscow 125412, Russia.
| | - Jana M Bayzyanova
- Pirogov Russian National Research Medical University (RNRMU), Moscow 117997, Russia.
| | - Vladimir A Konev
- Pirogov Russian National Research Medical University (RNRMU), Moscow 117997, Russia.
| | - Vasiliy F Uchaikin
- Pirogov Russian National Research Medical University (RNRMU), Moscow 117997, Russia.
| | | | - Yuri D Ivanov
- Institute of Biomedical Chemistry, Moscow 119121, Russia.
| |
Collapse
|
21
|
Pisano S, Gilson E. Analysis of DNA-Protein Complexes by Atomic Force Microscopy Imaging: The Case of TRF2-Telomeric DNA Wrapping. Methods Mol Biol 2019; 1886:75-97. [PMID: 30374863 DOI: 10.1007/978-1-4939-8894-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy (AFM) is a non-optical microscopy that enables the acquisition at the nanoscale level of a 3D topographical image of the sample. For 30 years, AFM has been a valuable tool in life sciences to study biological samples in the field of tissue, cellular and molecular imaging, of mechanical properties and of force spectroscopy. Since the early beginnings of the technique, AFM has been extensively exploited as an imaging tool for structural studies of nucleic acids and nucleoprotein complexes. The morphometric analysis performed on the images can unveil specific structural and functional aspects of the sample, such as the multimerization state of proteins bound to DNA, or DNA conformational changes led by the DNA-binding proteins. Herein, a method for analyzing a complex formed by a telomeric DNA sequence wrapped around the TRF2 binding protein is presented. The described procedure could be applied to the study of any type of DNA-protein complex.
Collapse
Affiliation(s)
- Sabrina Pisano
- Université Côte d'Azur, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging, Nice (IRCAN), Medical School, Nice, France.
| | - Eric Gilson
- Université Côte d'Azur, CNRS UMR 7284/INSERM U108, Institute for Research on Cancer and Aging, Nice (IRCAN), Medical School, Nice, France
- International Laboratory in Hematology and Cancer, Pôle Sino-Français de Recherche en Sciences du Vivant et Génomique, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital/CNRS/INSERM/Nice University, Shanghai, China
- Department of Genetics, CHU Nice, Université Côte d'Azur, Nice, France
| |
Collapse
|
22
|
Ying C, Houghtaling J, Eggenberger OM, Guha A, Nirmalraj P, Awasthi S, Tian J, Mayer M. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown. ACS NANO 2018; 12:11458-11470. [PMID: 30335956 DOI: 10.1021/acsnano.8b06489] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanopores with diameters from 20 to 50 nm in silicon nitride (SiN x) windows are useful for single-molecule studies of globular macromolecules. While controlled breakdown (CBD) is gaining popularity as a method for fabricating nanopores with reproducible size control and broad accessibility, attempts to fabricate large nanopores with diameters exceeding ∼20 nm via breakdown often result in undesirable formation of multiple nanopores in SiN x membranes. To reduce the probability of producing multiple pores, we combined two strategies: laser-assisted breakdown and controlled pore enlargement by limiting the applied voltage. Based on laser power-dependent increases in nanopore conductance upon illumination and on the absence of an effect of ionic strength on the ratio between the nanopore conductance before and after laser illumination, we suggest that the increased rate of controlled breakdown results from laser-induced heating. Moreover, we demonstrate that conductance values before and after coating the nanopores with a fluid lipid bilayer can indicate fabrication of a single nanopore versus multiple nanopores. Complementary flux measurements of Ca2+ through the nanopore typically confirmed assessments of single or multiple nanopores that we obtained using the coating method. Finally, we show that thermal annealing of CBD pores significantly increased the success rate of coating and reduced the current noise before and after lipid coating. We characterize the geometry of these nanopores by analyzing individual resistive pulses produced by translocations of spherical proteins and demonstrate the usefulness of these nanopores for estimating the approximate molecular shape of IgG proteins.
Collapse
Affiliation(s)
- Cuifeng Ying
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
- Department of Biomedical Engineering , University of Michigan , 2200 Bonisteel Boulevard , Ann Arbor , Michigan 48109 , United States
| | - Olivia M Eggenberger
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Anirvan Guha
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Peter Nirmalraj
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Saurabh Awasthi
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Jianguo Tian
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics , Nankai University , Tianjin 300071 , China
| | - Michael Mayer
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| |
Collapse
|
23
|
Morozova OV, Pavlova ER, Bagrov DV, Barinov NA, Prusakov KA, Isaeva EI, Podgorsky VV, Basmanov DV, Klinov DV. Protein nanoparticles with ligand-binding and enzymatic activities. Int J Nanomedicine 2018; 13:6637-6646. [PMID: 30425479 PMCID: PMC6202000 DOI: 10.2147/ijn.s177627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose To develop a general method for NP fabrication from various proteins with maintenance of biological activity. Methods A novel general approach for producing protein nanoparticles (NP) by nanoprecipitation of the protein solutions in 1,1,1,3,3,3-hexafluoroisopropanol is described. Protein NP sizes and shapes were analyzed by dynamic light scattering, scanning electron and atomic force microscopy (SEM and AFM). Chemical composition of the NP was confirmed using ultraviolet (UV) spectroscopy, energy-dispersive X-ray spectroscopy (EDX) and circular dichroism (CD). Biological properties of the NP were analyzed in ELISA, immunofluorescent analysis and lysozyme activity assay. Results Water-insoluble NP were constructed from globular (bovine serum albumin (BSA), lysozyme, immunoglobulins), fibrillar (fibrinogen) proteins and linear polylysines by means of nanoprecipitation of protein solutions in fluoroalcohols. AFM and SEM revealed NP sizes of 20–250 nm. The NP chemical structure was confirmed by UV spectroscopy, protease digestion and EDX spectroscopy. CD spectra revealed a stable secondary structure of proteins in NP. The UV spectra, microscopy and SDS-PAA gel electrophoresis (PAGE) proved the NP stability at +4°C for 7 months. Co-precipitation of proteins with fluorophores or nanoprecipitation of pre-labeled BSA resulted in fluorescent NP that retained antigenic structures as shown by their binding with specific antibodies. Moreover, NP from monoclonal antibodies could bind with the hepatitis B virus antigen S. Besides that, lysozyme NP could digest bacterial cellular walls. Conclusion Thus, the water-insoluble, stable protein NP were produced by nanoprecipitation without cross-linking and retained ligand-binding and enzymatic activities.
Collapse
Affiliation(s)
- Olga V Morozova
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency (FRCC PCM), Moscow, Russia, .,Ivanovsky Institute of Virology of the National Research Center of Epidemiology and Microbiology of N.F. Gamaleya of the Russian Ministry of Health, Moscow, Russia,
| | - Elizaveta R Pavlova
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency (FRCC PCM), Moscow, Russia, .,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Dmitry V Bagrov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency (FRCC PCM), Moscow, Russia, .,Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay A Barinov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency (FRCC PCM), Moscow, Russia,
| | - Kirill A Prusakov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency (FRCC PCM), Moscow, Russia, .,Moscow Institute of Physics and Technology, Moscow, Russia
| | - Elena I Isaeva
- Ivanovsky Institute of Virology of the National Research Center of Epidemiology and Microbiology of N.F. Gamaleya of the Russian Ministry of Health, Moscow, Russia,
| | - Victor V Podgorsky
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency (FRCC PCM), Moscow, Russia,
| | - Dmitry V Basmanov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency (FRCC PCM), Moscow, Russia,
| | - Dmitry V Klinov
- Department of Biophysics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency (FRCC PCM), Moscow, Russia,
| |
Collapse
|
24
|
Lal S, Scarinci N, Perez PL, Cantero MDR, Cantiello HF. Lipid bilayer-atomic force microscopy combined platform records simultaneous electrical and topological changes of the TRP channel polycystin-2 (TRPP2). PLoS One 2018; 13:e0202029. [PMID: 30133487 PMCID: PMC6104948 DOI: 10.1371/journal.pone.0202029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/26/2018] [Indexed: 11/30/2022] Open
Abstract
Ion channels are transmembrane proteins that mediate ion transport across biological membranes. Ion channel function is traditionally characterized by electrical parameters acquired with techniques such as patch-clamping and reconstitution in lipid bilayer membranes (BLM) that provide relevant information such as ionic conductance, selectivity, and gating properties. High resolution structural information of ion channels however, requires independent technologies, of which atomic force microscopy (AFM) is the only one that provides topological features of single functional channel proteins in their native environments. To date practically no data exist on direct correlations between electrical features and topological parameters from functional single channel complexes. Here, we report the design and construction of a BLM reconstitution microchamber that supports the simultaneous recording of electrical currents and AFM imaging from single channel complexes. As proof-of-principle, we tested the technique on polycystin-2 (PC2, TRPP2), a TRP channel family member from which we had previously elucidated its tetrameric topology by AFM imaging, and single channel currents by the BLM technique. The experimental setup provided direct structural-functional correlates from PC2 single channel complexes that disclosed novel topological changes between the closed and open sub-conductance states of the functional channel, namely, an inverse correlation between conductance and height of the channel. Unexpectedly, we also disclosed intrinsic PC2 mechanosensitivity in response to external forces. The platform provides a suitable means of accessing topological information to correlate with ion channel electrical parameters essential to understand the physiology of these transmembrane proteins.
Collapse
Affiliation(s)
- Sumit Lal
- Nephrology Division and Electrophysiology Core, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Noelia Scarinci
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
| | - Paula L. Perez
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
| | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
| | - Horacio F. Cantiello
- Nephrology Division and Electrophysiology Core, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Laboratorio de Canales Iónicos, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo, IMSaTeD (UNSE-CONICET), Santiago del Estero, Argentina
- Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
25
|
Pleshakova TO, Bukharina NS, Archakov AI, Ivanov YD. Atomic Force Microscopy for Protein Detection and Their Physicoсhemical Characterization. Int J Mol Sci 2018; 19:E1142. [PMID: 29642632 PMCID: PMC5979402 DOI: 10.3390/ijms19041142] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/30/2018] [Accepted: 04/05/2018] [Indexed: 11/18/2022] Open
Abstract
This review is focused on the atomic force microscopy (AFM) capabilities to study the properties of protein biomolecules and to detect the proteins in solution. The possibilities of application of a wide range of measuring techniques and modes for visualization of proteins, determination of their stoichiometric characteristics and physicochemical properties, are analyzed. Particular attention is paid to the use of AFM as a molecular detector for detection of proteins in solutions at low concentrations, and also for determination of functional properties of single biomolecules, including the activity of individual molecules of enzymes. Prospects for the development of AFM in combination with other methods for studying biomacromolecules are discussed.
Collapse
Affiliation(s)
| | - Natalia S Bukharina
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
| | | | - Yuri D Ivanov
- Institute of Biomedical Chemistry, 10, Pogodinskaya St., 119121 Moscow, Russia.
| |
Collapse
|
26
|
Direct visualization of the oligomeric state of hemagglutinins of influenza virus by high-resolution atomic force microscopy. Biochimie 2018; 146:148-155. [DOI: 10.1016/j.biochi.2017.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/28/2017] [Indexed: 12/16/2022]
|
27
|
Mohan Bangalore D, Tessmer I. Unique insight into protein-DNA interactions from single molecule atomic force microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
28
|
Chaves R, Dahmane S, Odorico M, Nicolaes G, Pellequer JL. Factor Va alternative conformation reconstruction using atomic force microscopy. Thromb Haemost 2017; 112:1167-73. [DOI: 10.1160/th14-06-0481] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 07/15/2014] [Indexed: 01/15/2023]
Abstract
SummaryProtein conformational variability (or dynamics) for large macromolecules and its implication for their biological function attracts more and more attention. Collective motions of domains increase the ability of a protein to bind to partner molecules. Using atomic force microscopy (AFM) topographic images, it is possible to take snapshots of large multi-component macromolecules at the single molecule level and to reconstruct complete molecular conformations. Here, we report the application of a reconstruction protocol, named AFM-assembly, to characterise the conformational variability of the two C domains of human coagulation factor Va (FVa). Using AFM topographic surfaces obtained in liquid environment, it is shown that the angle between C1 and C2 domains of FVa can vary between 40° and 166°. Such dynamical variation in C1 and C2 domain arrangement may have important implications regarding the binding of FVa to phospholipid membranes.
Collapse
|
29
|
Cicconi A, Micheli E, Vernì F, Jackson A, Gradilla AC, Cipressa F, Raimondo D, Bosso G, Wakefield JG, Ciapponi L, Cenci G, Gatti M, Cacchione S, Raffa GD. The Drosophila telomere-capping protein Verrocchio binds single-stranded DNA and protects telomeres from DNA damage response. Nucleic Acids Res 2017; 45:3068-3085. [PMID: 27940556 PMCID: PMC5389638 DOI: 10.1093/nar/gkw1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Drosophila telomeres are sequence-independent structures maintained by transposition to chromosome ends of three specialized retroelements rather than by telomerase activity. Fly telomeres are protected by the terminin complex that includes the HOAP, HipHop, Moi and Ver proteins. These are fast evolving, non-conserved proteins that localize and function exclusively at telomeres, protecting them from fusion events. We have previously suggested that terminin is the functional analogue of shelterin, the multi-protein complex that protects human telomeres. Here, we use electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM) to show that Ver preferentially binds single-stranded DNA (ssDNA) with no sequence specificity. We also show that Moi and Ver form a complex in vivo. Although these two proteins are mutually dependent for their localization at telomeres, Moi neither binds ssDNA nor facilitates Ver binding to ssDNA. Consistent with these results, we found that Ver-depleted telomeres form RPA and γH2AX foci, like the human telomeres lacking the ssDNA-binding POT1 protein. Collectively, our findings suggest that Drosophila telomeres possess a ssDNA overhang like the other eukaryotes, and that the terminin complex is architecturally and functionally similar to shelterin.
Collapse
Affiliation(s)
- Alessandro Cicconi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Fiammetta Vernì
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy
| | - Alison Jackson
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Ana Citlali Gradilla
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy.,Centro Fermi, Piazza del Viminale 1, 00184 Roma, Italy
| | - Domenico Raimondo
- Dipartimento di Medicina Molecolare, Sapienza, Università di Roma, 00185 Roma, Italy
| | - Giuseppe Bosso
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, 00185 Roma, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie 'C. Darwin', Sapienza, Università di Roma, 00185 Roma, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00185 Roma, Italy
| |
Collapse
|
30
|
Beckwitt EC, Kong M, Van Houten B. Studying protein-DNA interactions using atomic force microscopy. Semin Cell Dev Biol 2017; 73:220-230. [PMID: 28673677 DOI: 10.1016/j.semcdb.2017.06.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
Abstract
Atomic force microscopy (AFM) has made significant contributions to the study of protein-DNA interactions by making it possible to topographically image biological samples. A single protein-DNA binding reaction imaged by AFM can reveal protein binding specificity and affinity, protein-induced DNA bending, and protein binding stoichiometry. Changes in DNA structure, complex conformation, and cooperativity, can also be analyzed. In this review we highlight some important examples in the literature and discuss the advantages and limitations of these measurements. We also discuss important advances in technology that will facilitate the progress of AFM in the future.
Collapse
Affiliation(s)
- Emily C Beckwitt
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Muwen Kong
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- Program in Molecular Biophysics and Structural Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA; The University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
31
|
Kong M, Beckwitt EC, Springall L, Kad NM, Van Houten B. Single-Molecule Methods for Nucleotide Excision Repair: Building a System to Watch Repair in Real Time. Methods Enzymol 2017; 592:213-257. [PMID: 28668122 DOI: 10.1016/bs.mie.2017.03.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Single-molecule approaches to solving biophysical problems are powerful tools that allow static and dynamic real-time observations of specific molecular interactions of interest in the absence of ensemble-averaging effects. Here, we provide detailed protocols for building an experimental system that employs atomic force microscopy and a single-molecule DNA tightrope assay based on oblique angle illumination fluorescence microscopy. Together with approaches for engineering site-specific lesions into DNA substrates, these complementary biophysical techniques are well suited for investigating protein-DNA interactions that involve target-specific DNA-binding proteins, such as those engaged in a variety of DNA repair pathways. In this chapter, we demonstrate the utility of the platform by applying these techniques in the studies of proteins participating in nucleotide excision repair.
Collapse
Affiliation(s)
- Muwen Kong
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Emily C Beckwitt
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States
| | - Luke Springall
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Bennett Van Houten
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; University of Pittsburgh Cancer Institute, Pittsburgh, PA, United States.
| |
Collapse
|
32
|
Claeys Bouuaert C, Keeney S. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair. PLoS Genet 2017; 13:e1006722. [PMID: 28505149 PMCID: PMC5448812 DOI: 10.1371/journal.pgen.1006722] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/30/2017] [Accepted: 03/29/2017] [Indexed: 11/18/2022] Open
Abstract
Mlh1-Mlh3 (MutLγ) is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ) and, surprisingly, single-stranded DNA (ssDNA), which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced formation of crossovers. Taken together, our results offer insights into the structure-function relationships of the MutLγ complex and reveal unanticipated genetic relationships between components of the meiotic recombination machinery.
Collapse
Affiliation(s)
- Corentin Claeys Bouuaert
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail: (C.C.B.); (S.K.)
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center and Howard Hughes Medical Institute, New York, New York, United States of America
- * E-mail: (C.C.B.); (S.K.)
| |
Collapse
|
33
|
Youell J, Sikora AE, Vejsadová Š, Weiserova M, Smith JR, Firman K. Cofactor induced dissociation of the multifunctional multisubunit EcoR124I investigated using electromobility shift assays, AFM and SPR. RSC Adv 2017. [DOI: 10.1039/c7ra07505g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have applied three techniques to the study of subunit assembly of the Type IC Restriction–Modification enzyme EcoR124I.
Collapse
Affiliation(s)
- James Youell
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Aneta E. Sikora
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Štěpánka Vejsadová
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| | - Marie Weiserova
- Institute of Microbiology
- ASCR, v.v.i
- 142 20 Prague 4
- Czech Republic
| | - James R. Smith
- School of Pharmacy and Biomedical Sciences
- University of Portsmouth
- Portsmouth PO1 2DT
- UK
| | - Keith Firman
- School of Biological Sciences
- University of Portsmouth
- Portsmouth PO1 2DY
- UK
| |
Collapse
|
34
|
Rodriguez-Ramos J, Perrino AP, Garcia R. Dependence of the volume of an antibody on the force applied in a force microscopy experiment in liquid. Ultramicroscopy 2016; 171:153-157. [PMID: 27686276 DOI: 10.1016/j.ultramic.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/16/2016] [Indexed: 11/26/2022]
Abstract
The volume of a protein can be estimated from its molecular weight. This approach has also been applied in force microscopy experiments. Two factors contribute to the determination of the volume from a force microscope image, the applied force and the tip radius. Those factors act in opposite directions. Here, we demonstrate that in the optimum conditions to image a protein, the apparent volume deduced from an AFM image overestimates the real protein volume. The lateral broadening due to the tip finite size, makes the simulated volume to exceed the real protein volume value, while the force applied by the tip tends to decrease the measured volume. The measured volume could coincide with the real volume for either a point-size tip at zero force or when the compression exerted by the tip compensates its dilation effects. The interplay between the above factors make unsuitable to apply the molecular weight method to determine the volume of a protein from AFM data.
Collapse
Affiliation(s)
- Jorge Rodriguez-Ramos
- Centro de Estudios Avanzados de Cuba, Carretera de San Antonio de los Baños, km 1 1/2, Valle Grande, La Habana, Cuba.
| | - Alma P Perrino
- Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
35
|
Feinstein HE, Benbow SJ, LaPointe NE, Patel N, Ramachandran S, Do TD, Gaylord MR, Huskey NE, Dressler N, Korff M, Quon B, Cantrell KL, Bowers MT, Lal R, Feinstein SC. Oligomerization of the microtubule-associated protein tau is mediated by its N-terminal sequences: implications for normal and pathological tau action. J Neurochem 2016; 137:939-54. [PMID: 26953146 PMCID: PMC4899250 DOI: 10.1111/jnc.13604] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/10/2016] [Accepted: 03/06/2016] [Indexed: 11/28/2022]
Abstract
Despite extensive structure-function analyses, the molecular mechanisms of normal and pathological tau action remain poorly understood. How does the C-terminal microtubule-binding region regulate microtubule dynamics and bundling? In what biophysical form does tau transfer trans-synaptically from one neuron to another, promoting neurodegeneration and dementia? Previous biochemical/biophysical work led to the hypothesis that tau can dimerize via electrostatic interactions between two N-terminal 'projection domains' aligned in an anti-parallel fashion, generating a multivalent complex capable of interacting with multiple tubulin subunits. We sought to test this dimerization model directly. Native gel analyses of full-length tau and deletion constructs demonstrate that the N-terminal region leads to multiple bands, consistent with oligomerization. Ferguson analyses of native gels indicate that an N-terminal fragment (tau(45-230) ) assembles into heptamers/octamers. Ferguson analyses of denaturing gels demonstrates that tau(45-230) can dimerize even in sodium dodecyl sulfate. Atomic force microscopy reveals multiple levels of oligomerization by both full-length tau and tau(45-230) . Finally, ion mobility-mass spectrometric analyses of tau(106-144) , a small peptide containing the core of the hypothesized dimerization region, also demonstrate oligomerization. Thus, multiple independent strategies demonstrate that the N-terminal region of tau can mediate higher order oligomerization, which may have important implications for both normal and pathological tau action. The microtubule-associated protein tau is essential for neuronal development and maintenance, but is also central to Alzheimer's and related dementias. Unfortunately, the molecular mechanisms underlying normal and pathological tau action remain poorly understood. Here, we demonstrate that tau can homo-oligomerize, providing novel mechanistic models for normal tau action (promoting microtubule growth and bundling, suppressing microtubule shortening) and pathological tau action (poisoning of oligomeric complexes).
Collapse
Affiliation(s)
- H Eric Feinstein
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Sarah J Benbow
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Nichole E LaPointe
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
| | - Nirav Patel
- Department of Bioengineering, Department of Mechanical Engineering and Materials Science Graduate Program, University of California, San Diego, California, USA
| | - Srinivasan Ramachandran
- Department of Bioengineering, Department of Mechanical Engineering and Materials Science Graduate Program, University of California, San Diego, California, USA
| | - Thanh D Do
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Michelle R Gaylord
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Noelle E Huskey
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| | - Nicolette Dressler
- Department of Chemistry, Westmont College, Santa Barbara, California, USA
| | - Megan Korff
- Department of Chemistry, Westmont College, Santa Barbara, California, USA
| | - Brady Quon
- Department of Chemistry, Westmont College, Santa Barbara, California, USA
| | | | - Michael T Bowers
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Ratnesh Lal
- Department of Bioengineering, Department of Mechanical Engineering and Materials Science Graduate Program, University of California, San Diego, California, USA
| | - Stuart C Feinstein
- Neuroscience Research Institute, University of California, Santa Barbara, California, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California, USA
| |
Collapse
|
36
|
Walski T, Dyrda A, Dzik M, Chludzińska L, Tomków T, Mehl J, Detyna J, Gałecka K, Witkiewicz W, Komorowska M. Near infrared light induces post-translational modifications of human red blood cell proteins. Photochem Photobiol Sci 2016; 14:2035-45. [PMID: 26329012 DOI: 10.1039/c5pp00203f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is a growing body of evidence that near infrared (NIR) light exerts beneficial effects on cells. Its usefulness in the treatment of cancer, acute brain injuries, strokes and neurodegenerative disorders has been proposed. The mechanism of the NIR action is probably of photochemical nature, however it is not fully understood. Here, using a relatively simple biological model, human red blood cells (RBCs), and a polychromatic non-polarized light source, we investigate the impact of NIR radiation on the oxygen carrier, hemoglobin (Hb), and anion exchanger (AE1, Band 3). The exposure of intact RBCs to NIR light causes quaternary transitions in Hb, dehydration of proteins and decreases the amount of physiologically inactive methemoglobin, as detected by Raman spectroscopy. These effects are accompanied by a lowering of the intracellular pH (pHi) and changes in the cell membrane topography, as documented by atomic force microscopy (AFM). All those changes are in line with our previous studies where alterations of the membrane fluidity and membrane potential were attributed to NIR action on RBCs. The rate of the above listed changes depends strictly on the dose of NIR light that the cells receive, nonetheless it should not be considered as a thermal effect.
Collapse
Affiliation(s)
- Tomasz Walski
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland. and Regional Specialist Hospital in Wrocław, Research and Development Centre, Kamieńskiego 73a, 51-124 Wrocław, Poland
| | - Agnieszka Dyrda
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland. and Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Andrés Bello University, Santiago, Chile
| | - Małgorzata Dzik
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Ludmiła Chludzińska
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Tomasz Tomków
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Joanna Mehl
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Jerzy Detyna
- Institute of Materials Science and Applied Mechanics, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Gałecka
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland. and Regional Specialist Hospital in Wrocław, Research and Development Centre, Kamieńskiego 73a, 51-124 Wrocław, Poland
| | - Wojciech Witkiewicz
- Regional Specialist Hospital in Wrocław, Research and Development Centre, Kamieńskiego 73a, 51-124 Wrocław, Poland
| | - Małgorzata Komorowska
- Institute of Biomedical Engineering and Instrumentation, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland. and Regional Specialist Hospital in Wrocław, Research and Development Centre, Kamieńskiego 73a, 51-124 Wrocław, Poland
| |
Collapse
|
37
|
Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore. Biosci Rep 2016; 36:BSR20160046. [PMID: 26934982 PMCID: PMC4847171 DOI: 10.1042/bsr20160046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 01/23/2023] Open
Abstract
The bacterial ferrous iron acquisition protein FeoB assembles as a homotrimer that is predicted to form a central pore lined by conserved cysteine residues. Structure-function analysis of FeoB indicates a putative mechanism more akin to a GTP-gated channel than a transporter. Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel.
Collapse
|
38
|
Hansma HG, Pietrasanta LI, Golan R, Sitko JC, Viani MB, Paloczi GT, Smith BL, Thrower D, Hansma PK. Recent highlights from atomic force microscopy of DNA. J Biomol Struct Dyn 2016; 17 Suppl 1:271-5. [PMID: 22607434 DOI: 10.1080/07391102.2000.10506631] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Abstract Seven recent highlights are presented from atomic force microscopy (AFM) of DNA in this lab. The first two involve advances in the observation of enzymatic reactions in near-physiological solutions. E. coli RNA polymerase was observed to process along its DNA template in a series of time-lapse images [S. Kasas, et al., Biochemistry 36, 461 (1997)], and a new small-cantilever atomic force microscope (AFM) imaged DNA degradation by DNase I at rates as fast as two seconds per image. The next five highlights involve structural observations of DNA and DNA-protein complexes, including DNA condensed for gene delivery, sequence-dependent DNA condensation, an AFM assay for RNA polymerase, and AFM evidence for a yeast kinetochore complex that may be involved in holding together sister chromatids during cell division.
Collapse
Affiliation(s)
- H G Hansma
- a Department of Physics , University of California , Santa Barbara , CA , 93106
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Natalello A, Mangione PP, Giorgetti S, Porcari R, Marchese L, Zorzoli I, Relini A, Ami D, Faravelli G, Valli M, Stoppini M, Doglia SM, Bellotti V, Raimondi S. Co-fibrillogenesis of Wild-type and D76N β2-Microglobulin: THE CRUCIAL ROLE OF FIBRILLAR SEEDS. J Biol Chem 2016; 291:9678-89. [PMID: 26921323 PMCID: PMC4850305 DOI: 10.1074/jbc.m116.720573] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Indexed: 11/28/2022] Open
Abstract
The amyloidogenic variant of β2-microglobulin, D76N, can readily convert into genuine fibrils under physiological conditions and primes in vitro the fibrillogenesis of the wild-type β2-microglobulin. By Fourier transformed infrared spectroscopy, we have demonstrated that the amyloid transformation of wild-type β2-microglobulin can be induced by the variant only after its complete fibrillar conversion. Our current findings are consistent with preliminary data in which we have shown a seeding effect of fibrils formed from D76N or the natural truncated form of β2-microglobulin lacking the first six N-terminal residues. Interestingly, the hybrid wild-type/variant fibrillar material acquired a thermodynamic stability similar to that of homogenous D76N β2-microglobulin fibrils and significantly higher than the wild-type homogeneous fibrils prepared at neutral pH in the presence of 20% trifluoroethanol. These results suggest that the surface of D76N β2-microglobulin fibrils can favor the transition of the wild-type protein into an amyloid conformation leading to a rapid integration into fibrils. The chaperone crystallin, which is a mild modulator of the lag phase of the variant fibrillogenesis, potently inhibits fibril elongation of the wild-type even once it is absorbed on D76N β2-microglobulin fibrils.
Collapse
Affiliation(s)
- Antonino Natalello
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, the Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR Milano-Bicocca, 20126 Milan, Italy
| | - P Patrizia Mangione
- the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom, the Departments of Molecular Medicine, Institute of Biochemistry, and
| | - Sofia Giorgetti
- the Departments of Molecular Medicine, Institute of Biochemistry, and
| | - Riccardo Porcari
- the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom
| | - Loredana Marchese
- the Departments of Molecular Medicine, Institute of Biochemistry, and
| | - Irene Zorzoli
- the Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy, and
| | - Annalisa Relini
- the Department of Physics, University of Genoa, 16146 Genoa, Italy
| | - Diletta Ami
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, the Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR Milano-Bicocca, 20126 Milan, Italy
| | - Giulia Faravelli
- the Departments of Molecular Medicine, Institute of Biochemistry, and
| | - Maurizia Valli
- the Departments of Molecular Medicine, Institute of Biochemistry, and
| | - Monica Stoppini
- the Departments of Molecular Medicine, Institute of Biochemistry, and
| | - Silvia M Doglia
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy, the Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR Milano-Bicocca, 20126 Milan, Italy
| | - Vittorio Bellotti
- the Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London NW3 2PF, United Kingdom, the Departments of Molecular Medicine, Institute of Biochemistry, and
| | - Sara Raimondi
- the Departments of Molecular Medicine, Institute of Biochemistry, and
| |
Collapse
|
40
|
Herrera MG, Benedini LA, Lonez C, Schilardi PL, Hellweg T, Ruysschaert JM, Dodero VI. Self-assembly of 33-mer gliadin peptide oligomers. SOFT MATTER 2015; 11:8648-60. [PMID: 26376290 DOI: 10.1039/c5sm01619c] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The 33-mer gliadin peptide, LQLQPF(PQPQLPY)3PQPQPF, is a highly immunogenic peptide involved in celiac disease and probably in other immunopathologies associated with gliadin. Herein, dynamic light scattering measurements showed that 33-mer, in the micromolar concentration range, forms polydisperse nano- and micrometer range particles in aqueous media. This behaviour is reminiscent of classical association of colloids and we hypothesized that the 33-mer peptide self-assembles into micelles that could be the precursors of 33-mer oligomers in water. Deposition of 33-mer peptide aqueous solution on bare mica generated nano- and microstructures with different morphologies as revealed by atomic force microscopy. At 6 μM, the 33-mer is organised in isolated and clusters of spherical nanostructures. In the 60 to 250 μM concentration range, the spherical oligomers associated mainly in linear and annular arrangements and structures adopting a "sheet" type morphology appeared. At higher concentrations (610 μM), mainly filaments and plaques immersed in a background of nanospherical structures were detected. The occurrence of different morphologies of oligomers and finally the filaments suggests that the unique specific geometry of the 33-mer oligomers has a crucial role in the subsequent condensation and organization of their fractal structures into the final filaments. The self-assembly process on mica is described qualitatively and quantitatively by a fractal diffusion limited aggregation (DLA) behaviour with the fractal dimension in the range of 1.62 ± 0.02 to 1.73 ± 0.03. Secondary structure evaluation of the oligomers by Attenuated Total Reflection FTIR spectroscopy (ATR-FTIR) revealed the existence of a conformational equilibrium of self-assembled structures, from an extended conformation to a more folded parallel beta elongated structures. Altogether, these findings provide structural and morphological information about supramolecular organization of the 33-mer peptide, which might offer new perspectives for the understanding and treatment of gliadin intolerance disorders.
Collapse
Affiliation(s)
- M G Herrera
- Departamento de Química-INQUISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| | - L A Benedini
- Departamento de Química-INQUISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| | - C Lonez
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, CB30ES, UK.
| | - P L Schilardi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET - Departamento de Química, Facultad de Ciencias Exactas, UNLP, CC16, Suc. 4(1900) La Plata, Buenos Aires, Argentina.
| | - T Hellweg
- Universität Bielefeld, Fakultät für Chemie, Physikalische und Biophysikalische Chemie, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - J-M Ruysschaert
- Structure and Function of Biological Membranes, Université Libre de Bruxelles, Belgium.
| | - V I Dodero
- Departamento de Química-INQUISUR, Universidad Nacional del Sur-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
41
|
Takahashi H, Mayers JR, Wang L, Edwardson JM, Audhya A. Hrs and STAM function synergistically to bind ubiquitin-modified cargoes in vitro. Biophys J 2015; 108:76-84. [PMID: 25564854 DOI: 10.1016/j.bpj.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 10/24/2022] Open
Abstract
The turnover of integral membrane proteins requires a specialized transport pathway mediated by components of the endosomal sorting complex required for transport (ESCRT) machinery. In most cases, entry into this pathway requires that cargoes undergo ubiquitin-modification, thereby facilitating their sequestration on endosomal membranes by specific, ubiquitin-binding ESCRT subunits. However, requirements underlying initial cargo recognition of mono-ubiquitinated cargos remain poorly defined. In this study, we determine the capability of each ESCRT complex that harbors a ubiquitin-binding domain to bind a reconstituted integral membrane cargo (VAMP2), which has been covalently linked to mono-ubiquitin. We demonstrate that ESCRT-0, but not ESCRT-I or ESCRT-II, is able to associate stably with the mono-ubiquitinated cargo within a lipid bilayer. Moreover, we show that the ubiquitin-binding domains in both Hrs and STAM must be intact to enable cargo binding. These results indicate that the two subunits of ESCRT-0 function together to bind and sequester cargoes for downstream sorting into intralumenal vesicles.
Collapse
Affiliation(s)
- Hirohide Takahashi
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Jonathan R Mayers
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Lei Wang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
42
|
Jeggle P, Smith ESJ, Stewart AP, Haerteis S, Korbmacher C, Edwardson JM. Atomic force microscopy imaging reveals the formation of ASIC/ENaC cross-clade ion channels. Biochem Biophys Res Commun 2015; 464:38-44. [PMID: 26032502 DOI: 10.1016/j.bbrc.2015.05.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/28/2015] [Indexed: 01/02/2023]
Abstract
ASIC and ENaC are co-expressed in various cell types, and there is evidence for a close association between them. Here, we used atomic force microscopy (AFM) to determine whether ASIC1a and ENaC subunits are able to form cross-clade hybrid ion channels. ASIC1a and ENaC could be co-isolated from detergent extracts of tsA 201 cells co-expressing the two subunits. Isolated proteins were incubated with antibodies against ENaC and Fab fragments against ASIC1a. AFM imaging revealed proteins that were decorated by both an antibody and a Fab fragment with an angle of ∼120° between them, indicating the formation of ASIC1a/ENaC heterotrimers.
Collapse
Affiliation(s)
- Pia Jeggle
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Andrew P Stewart
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstrasse 6, 91054 Erlangen, Germany
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstrasse 6, 91054 Erlangen, Germany
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
43
|
Talukder MMU, Sim MFM, O'Rahilly S, Edwardson JM, Rochford JJ. Seipin oligomers can interact directly with AGPAT2 and lipin 1, physically scaffolding critical regulators of adipogenesis. Mol Metab 2015; 4:199-209. [PMID: 25737955 PMCID: PMC4338318 DOI: 10.1016/j.molmet.2014.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 12/21/2014] [Accepted: 12/27/2014] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE Disruption of the genes encoding either seipin or 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) causes severe congenital generalized lipodystrophy (CGL) in humans. However, the function of seipin in adipogenesis remains poorly defined. We demonstrated recently that seipin can bind the key adipogenic phosphatidic acid (PA) phosphatase lipin 1 and that seipin forms stable dodecamers. As AGPAT2 generates PA, the substrate for lipin 1, we investigated whether seipin might bind both enzymes of this lipid biosynthetic pathway, which is required for adipogenesis to occur. METHODS We employed co-immunoprecipitation and immunofluorescence methods to determine whether seipin can interact with AGPAT2 and the consequences of this in developing adipocytes. Atomic force microscopy was used to determine whether these interactions involved direct association of the proteins and to define the molecular architecture of these complexes. RESULTS Our data reveal that seipin can bind AGPAT2 during adipogenesis and that stabilizing this interaction during adipogenesis can increase the nuclear accumulation of PPARγ. Both AGPAT2 and lipin 1 can directly associate with seipin dodecamers, and a single seipin complex can simultaneously bind both AGPAT2 and lipin with a defined orientation. CONCLUSIONS Our study provides the first direct molecular link between seipin and AGPAT2, two proteins whose disruption causes CGL. Moreover, it provides the first example of an interaction between seipin and another protein that causally influences a key aspect of adipogenesis. Together our data suggest that the critical role of seipin in adipogenesis may involve its capacity to juxtapose important regulators of this process in a multi-protein complex.
Collapse
Affiliation(s)
| | - M F Michelle Sim
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Stephen O'Rahilly
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Justin J Rochford
- Rowett Institute of Nutrition and Health, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
44
|
Erkizan HV, Schneider JA, Sajwan K, Graham GT, Griffin B, Chasovskikh S, Youbi SE, Kallarakal A, Chruszcz M, Padmanabhan R, Casey JL, Üren A, Toretsky JA. RNA helicase A activity is inhibited by oncogenic transcription factor EWS-FLI1. Nucleic Acids Res 2015; 43:1069-80. [PMID: 25564528 PMCID: PMC4333382 DOI: 10.1093/nar/gku1328] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
RNA helicases impact RNA structure and metabolism from transcription through translation, in part through protein interactions with transcription factors. However, there is limited knowledge on the role of transcription factor influence upon helicase activity. RNA helicase A (RHA) is a DExH-box RNA helicase that plays multiple roles in cellular biology, some functions requiring its activity as a helicase while others as a protein scaffold. The oncogenic transcription factor EWS-FLI1 requires RHA to enable Ewing sarcoma (ES) oncogenesis and growth; a small molecule, YK-4-279 disrupts this complex in cells. Our current study investigates the effect of EWS-FLI1 upon RHA helicase activity. We found that EWS-FLI1 reduces RHA helicase activity in a dose-dependent manner without affecting intrinsic ATPase activity; however, the RHA kinetics indicated a complex model. Using separated enantiomers, only (S)-YK-4-279 reverses the EWS-FLI1 inhibition of RHA helicase activity. We report a novel RNA binding property of EWS-FLI1 leading us to discover that YK-4-279 inhibition of RHA binding to EWS-FLI1 altered the RNA binding profile of both proteins. We conclude that EWS-FLI1 modulates RHA helicase activity causing changes in overall transcriptome processing. These findings could lead to both enhanced understanding of oncogenesis and provide targets for therapy.
Collapse
Affiliation(s)
- Hayriye Verda Erkizan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Jeffrey A Schneider
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Kamal Sajwan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Garrett T Graham
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Brittany Griffin
- Department of Microbiology and Immunology, Georgetown University Medical Center, SW 309 Med-Dent, Washington, DC 20007, USA
| | - Sergey Chasovskikh
- Department of Radiation Medicine, Georgetown University Medical Center, 3970 Reservoir Road NW, New Research Building E220, Washington, DC 20007, USA
| | - Sarah E Youbi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Abraham Kallarakal
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | - Radhakrishnan Padmanabhan
- Department of Microbiology and Immunology, Georgetown University Medical Center, SW 309 Med-Dent, Washington, DC 20007, USA
| | - John L Casey
- Department of Microbiology and Immunology, Georgetown University Medical Center, SW 309 Med-Dent, Washington, DC 20007, USA
| | - Aykut Üren
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| | - Jeffrey A Toretsky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, New Research Building E316, Washington, DC 20007, USA
| |
Collapse
|
45
|
Balasuriya D, D'Sa L, Talker R, Dupuis E, Maurin F, Martin P, Borgese F, Soriani O, Edwardson JM. A direct interaction between the sigma-1 receptor and the hERG voltage-gated K+ channel revealed by atomic force microscopy and homogeneous time-resolved fluorescence (HTRF®). J Biol Chem 2014; 289:32353-32363. [PMID: 25266722 PMCID: PMC4231707 DOI: 10.1074/jbc.m114.603506] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/17/2014] [Indexed: 01/29/2023] Open
Abstract
The sigma-1 receptor is an endoplasmic reticulum chaperone protein, widely expressed in central and peripheral tissues, which can translocate to the plasma membrane and modulate the function of various ion channels. The human ether-à-go-go-related gene encodes hERG, a cardiac voltage-gated K(+) channel that is abnormally expressed in many human cancers and is known to interact functionally with the sigma-1 receptor. Our aim was to investigate the nature of the interaction between the sigma-1 receptor and hERG. We show that the two proteins can be co-isolated from a detergent extract of stably transfected HEK-293 cells, consistent with a direct interaction between them. Atomic force microscopy imaging of the isolated protein confirmed the direct binding of the sigma-1 receptor to hERG monomers, dimers, and tetramers. hERG dimers and tetramers became both singly and doubly decorated by sigma-1 receptors; however, hERG monomers were only singly decorated. The distribution of angles between pairs of sigma-1 receptors bound to hERG tetramers had two peaks, at ∼90 and ∼180° in a ratio of ∼2:1, indicating that the sigma-1 receptor interacts with hERG with 4-fold symmetry. Homogeneous time-resolved fluorescence (HTRF®) allowed the detection of the interaction between the sigma-1 receptor and hERG within the plane of the plasma membrane. This interaction was resistant to sigma ligands, but was decreased in response to cholesterol depletion of the membrane. We suggest that the sigma-1 receptor may bind to hERG in the endoplasmic reticulum, aiding its assembly and trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Dilshan Balasuriya
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Lauren D'Sa
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Ronel Talker
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Elodie Dupuis
- CisBio Bioassays, Parc Marcel Boiteux BP 84175, 30200 Codolet, France, and
| | - Fabrice Maurin
- CisBio Bioassays, Parc Marcel Boiteux BP 84175, 30200 Codolet, France, and
| | - Patrick Martin
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Franck Borgese
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France
| | - Olivier Soriani
- Institut de Biologie de Valrose (iBV), CNRS UMR 7277, INSERM U1091 UNS, Faculté des Sciences, Université de Nice Sophia Antipolis, 06108 Nice Cedex 2, France.
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom,.
| |
Collapse
|
46
|
Thomson NH, Santos S, Mitchenall LA, Stuchinskaya T, Taylor JA, Maxwell A. DNA G-segment bending is not the sole determinant of topology simplification by type II DNA topoisomerases. Sci Rep 2014; 4:6158. [PMID: 25142513 PMCID: PMC4139952 DOI: 10.1038/srep06158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/04/2014] [Indexed: 11/28/2022] Open
Abstract
DNA topoisomerases control the topology of DNA. Type II topoisomerases exhibit topology simplification, whereby products of their reactions are simplified beyond that expected based on thermodynamic equilibrium. The molecular basis for this process is unknown, although DNA bending has been implicated. To investigate the role of bending in topology simplification, the DNA bend angles of four enzymes of different types (IIA and IIB) were measured using atomic force microscopy (AFM). The enzymes tested were Escherichia coli topo IV and yeast topo II (type IIA enzymes that exhibit topology simplification), and Methanosarcina mazei topo VI and Sulfolobus shibatae topo VI (type IIB enzymes, which do not). Bend angles were measured using the manual tangent method from topographical AFM images taken with a novel amplitude-modulated imaging mode: small amplitude small set-point (SASS), which optimises resolution for a given AFM tip size and minimises tip convolution with the sample. This gave improved accuracy and reliability and revealed that all 4 topoisomerases bend DNA by a similar amount: ~120° between the DNA entering and exiting the enzyme complex. These data indicate that DNA bending alone is insufficient to explain topology simplification and that the ‘exit gate' may be an important determinant of this process.
Collapse
Affiliation(s)
- Neil H Thomson
- Department of Oral Biology, School of Dentistry and Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Sergio Santos
- 1] Department of Oral Biology, School of Dentistry and Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom [2]
| | - Lesley A Mitchenall
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Tanya Stuchinskaya
- 1] Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom [2]
| | - James A Taylor
- 1] Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom [2]
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
47
|
Single molecular investigation of DNA looping and aggregation by restriction endonuclease BspMI. Sci Rep 2014; 4:5897. [PMID: 25077775 PMCID: PMC4116625 DOI: 10.1038/srep05897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/15/2014] [Indexed: 11/09/2022] Open
Abstract
DNA looping and aggregation induced by restriction endonuclease BspMI are studied by atomic force microscopy (AFM) and magnetic tweezers (MT). With Ca(2+) substituted for the normal enzyme cofactor Mg(2+) and enzyme concentration below the critical concentration of 6 units/mL, AFM images of DNA-BspMI complex show that the number of binding and looping events increases with enzyme concentration. At the critical concentration 6 of units/mL, all the BspMI binding sites are saturated. It is worth noting that nonspecific BspMI binding to DNA at saturation concentration represents more than 8% of the total BspMI-DNA complexes directly observed in AFM images. Furthermore, we used MT to prove that additional loops can form when enzyme concentration is higher than its saturation valueand the complex is incubated for a long time (>2 hrs). We ascribe this phenomenon to the aggregation of enzymes. The force spectroscopy of the BspMI-DNA complex shows that the pulling force required to open the loop of the complex at less than saturation concentration has a peak at about 3 pN, which is lower than the force required to open additional loops due to enzyme aggregation at higher than saturation concentration (>6 pN).
Collapse
|
48
|
Li YL, Meng YF, Zhang ZM, Jiang Y. Detecting the oligomeric state of Escherichia coli MutS from its geometric architecture observed by an atomic force microscope at a single molecular level. J Phys Chem B 2014; 118:9218-24. [PMID: 25029278 DOI: 10.1021/jp504644r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomic force microscopy (AFM), which provides true 3D surface topography, can also be used to determine the geometric parameters of proteins quantitatively at a single molecular level. In this paper, two different kinds of Escherichia coli MutS (MutS) protein were observed using AFM, and the geometric parameters of the proteins such as height, perimeter, area, and volume were measured. On the basis of these measurements, the molecular weight, association constant, oligomeric state, and orientation of MutS proteins on a mica surface were deduced. The oligomerization mechanism of MutS was analyzed in detail, and the results show that two different kinds of interactions between MutS protein may be involved in oligomerization. Our results also show that AFM imaging is an accurate method for analyzing the geometric structures of a single protein quantitatively at a single-molecule level.
Collapse
Affiliation(s)
- Yan-Li Li
- School of Chemistry and Chemical Engineering, Southeast University , No. 2 Dongnandaxue Road, Jiangning, Nanjing, Jiangsu 211189, China
| | | | | | | |
Collapse
|
49
|
Balasuriya D, Srivats S, Murrell-Lagnado RD, Edwardson JM. Atomic force microscopy (AFM) imaging suggests that stromal interaction molecule 1 (STIM1) binds to Orai1 with sixfold symmetry. FEBS Lett 2014; 588:2874-80. [PMID: 24996186 DOI: 10.1016/j.febslet.2014.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 01/29/2023]
Abstract
Depletion of Ca(2+) from the endoplasmic reticulum (ER) lumen triggers the opening of Ca(2+) release-activated Ca(2+) (CRAC) channels at the plasma membrane. CRAC channels are activated by stromal interaction molecule 1 (STIM1), an ER resident protein that senses Ca(2+) store depletion and interacts with Orai1, the pore-forming subunit of the channel. The subunit stoichiometry of the CRAC channel is controversial. Here we provide evidence, using atomic force microscopy (AFM) imaging, that Orai1 assembles as a hexamer, and that STIM1 binds to Orai1 with sixfold symmetry. STIM1 associates with Orai1 in the form of monomers, dimers, and multimeric string-like structures that form links between the Orai1 hexamers. Our results provide new insights into the nature of the interactions between STIM1 and Orai1.
Collapse
Affiliation(s)
- Dilshan Balasuriya
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Shyam Srivats
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Ruth D Murrell-Lagnado
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
50
|
Antonio LS, Stewart AP, Varanda WA, Edwardson JM. Identification of P2X2/P2X4/P2X6 heterotrimeric receptors using atomic force microscopy (AFM) imaging. FEBS Lett 2014; 588:2125-8. [PMID: 24815693 DOI: 10.1016/j.febslet.2014.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Seven P2X purinergic receptor subunits have been identified: P2X1-P2X7. The overlapping expression of P2X2, P2X4 and P2X6 subunits has been shown in different cell types, and functional analysis of P2X receptors in Leydig cells suggests that the three subunits might interact. Here, His6-tagged P2X2, HA-tagged P2X4 and FLAG-tagged P2X6 subunits were co-expressed in tsA 201 cells. After sequential co-immunoprecipitation using anti-HA and anti-FLAG beads, all three subunits were present, demonstrating their interaction. Atomic force microscopy (AFM) imaging revealed receptors that were specifically decorated by both an anti-His6 antibody and an anti-HA Fab fragment, indicating the presence of a P2X2/4/6 heterotrimer. To our knowledge, this is the first report of a P2X receptor containing three different subunits.
Collapse
Affiliation(s)
- Ligia S Antonio
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom; Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Andrew P Stewart
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Wamberto A Varanda
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|