1
|
Loeslakwiboon K, Li HH, Tsai S, Wen ZH, Lin C. Effects of chilling and cryoprotectants on glycans in shrimp embryos. Cryobiology 2024; 116:104930. [PMID: 38871207 DOI: 10.1016/j.cryobiol.2024.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Glycans are carbohydrates present in every organism that bind to specific molecules such as lectins, a diverse group of proteins. Glycans are vital to cell proliferation and protein trafficking. In addition, embryogenesis is a critical phase in the development of marine organisms. This study investigated the effects of chilling and cryoprotective agents (CPAs) on glycans in the embryos of Stenopus hispidus. The glycan profiles of embryos of S. hispidus at the heartbeat stage were analyzed using lectin arrays. The results of analyses revealed that mannose was the most abundant glycan in the S. hispidus embryos; mannose is crucial to cell proliferation, providing the energy required for embryonic growth. Additionally, the results reveled that chilling altered the content of several glycans, including fucose and Gla-GlcNAc. Chilling may promote monosaccharide accumulation, facilitating osmotic regulation of cells and signal molecules to aid S. hispidus embryos in adapting to cold conditions. Changes were also observed in the lectins NPA, orysata, PALa, ASA, discoidin II, discoidin I, UDA, PA-IIL, and PHA-P after the samples were treated with different CPAs. DMSO may minimize cell damage during exposure to chilling by preserving cell structures, membrane properties, and functions. The present study is the first to investigate the profiles and functions of glycans in shrimp embryos subjected to low-temperature injuries. This study enhances the understanding of cell reproduction during embryogenesis and provides valuable information for the study of glycans in embryos.
Collapse
Affiliation(s)
- Kanokpron Loeslakwiboon
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung, Taiwan; Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan
| | - Hsing-Hui Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan; National Museum of Marine Biology & Aquarium, Pingtung, Taiwan
| | - Sujune Tsai
- Department of Post Modern Agriculture, Mingdao University, Chang Hua, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chiahsin Lin
- National Museum of Marine Biology & Aquarium, Pingtung, Taiwan; Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, Taiwan.
| |
Collapse
|
2
|
Zhu J, Xue X, Ju R, Zhao J, Liu F, Han X, Yan Y, Wang Y, Feng Z, Lin D, Chen Z, Wang Y, Chen X, Chu C, Zuo S, Zhang Y. Ectopic Expression of Gastrodia Antifungal Protein in Rice Enhances Resistance to Rice Sheath Blight Disease. J Fungi (Basel) 2023; 10:33. [PMID: 38248943 PMCID: PMC10820164 DOI: 10.3390/jof10010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Sheath blight (ShB) disease, caused by Rhizoctonia solani Kühn, is one of the most serious rice diseases. Rice breeding against ShB has been severely hindered because no major resistance genes or germplasms are available in rice. Here, we report that introduction of Gastrodia antifungal protein (GAFP) genes from Gastrodia elata B1 into rice significantly enhances resistance to rice ShB. Four GAFP genes were cloned from G. elata B1, and all displayed a strong ability to inhibit R. solani growth in plate assays. Two versions, with or without a signal peptide, for each of the four GAFP genes were introduced into XD3 and R6547 rice cultivars, and all transgenic lines displayed stronger ShB resistance than the corresponding wild-type control in both greenhouse and field conditions. Importantly, GAFP2 showed the highest ShB resistance; GAFPs with and without its signal peptide showed no significant differences in enhancing ShB resistance. We also evaluated the agronomic traits of these transgenic rice and found that ectopic expression of GAFPs in rice at appropriate levels did not affect agronomic traits other than enhancing ShB resistance. Together, these results indicate that GAFP genes, especially GAFP2, have great potential in rice breeding against ShB disease.
Collapse
Affiliation(s)
- Junkai Zhu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
- Jiangsu Kingearth Seed Co., Ltd., Yangzhou 225009, China
| | - Xiang Xue
- Department of Horticulture, Yangzhou Polytechnic College, Yangzhou 225009, China;
- Jiangsu Safety& Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Ran Ju
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
| | - Jianhua Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
| | - Fen Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
| | - Xian Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
| | - Yu Yan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
| | - Yu Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
| | - Zhiming Feng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Dongmei Lin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
| | - Zongxiang Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, the Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Y.W.); (C.C.)
| | - Xijun Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China;
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, the Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (Y.W.); (C.C.)
| | - Shimin Zuo
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China/Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yafang Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou 225009, China; (J.Z.); (R.J.); (J.Z.); (F.L.); (X.H.); (Y.Y.); (Y.W.); (Z.F.); (Z.C.); (X.C.)
- Jiangsu Safety& Environment Technology and Equipment for Planting and Breeding Industry Engineering Research Center, Yangzhou Polytechnic College, Yangzhou 225009, China
| |
Collapse
|
3
|
Ovcharenko OO, Rudas VA. Modern Approaches to Genetic Engineering in the Orchidaceae Family. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Genetic Transformation of Quercus ilex Somatic Embryos with a Gnk2-like Protein That Reveals a Putative Anti-Oomycete Action. PLANTS 2022; 11:plants11030304. [PMID: 35161285 PMCID: PMC8838351 DOI: 10.3390/plants11030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Holm oak is a key tree species in Mediterranean ecosystems, whose populations have been increasingly threatened by oak decline syndrome, a disease caused by the combined action of Phytophthora cinnamomi and abiotic stresses. The aim of the present study was to produce holm oak plants that overexpress the Ginkbilobin-2 homologous domain gene (Cast_Gnk2-like) that it is known to possess antifungal properties. Proembryogenic masses (PEMs) isolated from four embryogenic lines (Q8, E2, Q10-16 and E00) were used as target explants. PEMs were co-cultured for 5 days with Agrobacterium EHA105pGnk2 and then cultured on selective medium containing kanamycin (kan) and carbenicillin. After 14 weeks on selective medium, the transformation events were observed in somatic embryos of lines Q8 and E2 and a total of 4 transgenic lines were achieved. The presence of the Cast_Gnk2-like gene on transgenic embryos was verified by PCR, and the number of transgene copies and gene expression was estimated by qPCR. Transgenic plants were obtained from all transgenic lines after cold storage of the somatic embryos for 2 months and subsequent transfer to germination medium. In an in vitro tolerance assay with the pathogen P. cinnamomi, we observed that transgenic plants were able to survive longer than wild type.
Collapse
|
5
|
Zhou Y, Yang K, Yan Q, Wang X, Cheng M, Si J, Xue X, Shen D, Jing M, Tyler BM, Dou D. Targeting of anti-microbial proteins to the hyphal surface amplifies protection of crop plants against Phytophthora pathogens. MOLECULAR PLANT 2021; 14:1391-1403. [PMID: 33965632 DOI: 10.1016/j.molp.2021.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Phytophthora pathogens are a persistent threat to the world's commercially important agricultural crops, including potato and soybean. Current strategies aim at reducing crop losses rely mostly on disease-resistance breeding and chemical pesticides, which can be frequently overcome by the rapid adaptive evolution of pathogens. Transgenic crops with intrinsic disease resistance offer a promising alternative and continue to be developed. Here, we explored Phytophthora-derived PI3P (phosphatidylinositol 3-phosphate) as a novel control target, using proteins that bind this lipid to direct secreted anti-microbial peptides and proteins (AMPs) to the surface of Phytophthora pathogens. In transgenic Nicotiana benthamiana, soybean, and potato plants, significantly enhanced resistance to different pathogen isolates was achieved by expression of two AMPs (GAFP1 or GAFP3 from the Chinese medicinal herb Gastrodia elata) fused with a PI3P-specific binding domain (FYVE). Using the soybean pathogen P. sojae as an example, we demonstrated that the FYVE domain could boost the activities of GAFPs in multiple independent assays, including those performed in vitro, in vivo, and in planta. Mutational analysis of P. sojae PI3K1 and PI3K2 genes of this pathogen confirmed that the enhanced activities of the targeted GAFPs were correlated with PI3P levels in the pathogen. Collectively, our study provides a new strategy that could be used to confer resistance not only to Phytophthora pathogens in many plants but also potentially to many other kinds of plant pathogens with unique targets.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Yang
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Yan
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Beijing 100091, China
| | - Ming Cheng
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jierui Si
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xue Xue
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China.
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | - Daolong Dou
- Key Laboratory of Plant Immunity, College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China; College of Plant Protection, China Agricultural University, Beijing 100091, China.
| |
Collapse
|
6
|
Yang J, Xiao Q, Xu J, Da L, Guo L, Huang L, Liu Y, Xu W, Su Z, Yang S, Pan Q, Jiang W, Zhou T. GelFAP: Gene Functional Analysis Platform for Gastrodia elata. FRONTIERS IN PLANT SCIENCE 2020; 11:563237. [PMID: 33193491 PMCID: PMC7642037 DOI: 10.3389/fpls.2020.563237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Gastrodia elata, also named Tianma, is a valuable traditional Chinese herbal medicine. It has numerous important pharmacological roles such as in sedation and lowering blood pressure and as anticonvulsant and anti-aging, and it also has effects on the immune and cardiovascular systems. The whole genome sequencing of G. elata has been completed in recent years, which provides a strong support for the construction of the G. elata gene functional analysis platform. Therefore, in our research, we collected and processed 39 transcriptome data of G. elata and constructed the G. elata gene co-expression networks, then we identified functional modules by the weighted correlation network analysis (WGCNA) package. Furthermore, gene families of G. elata were identified by tools including HMMER, iTAK, PfamScan, and InParanoid. Finally, we constructed a gene functional analysis platform for G. elata . In our platform, we introduced functional analysis tools such as BLAST, gene set enrichment analysis (GSEA), and cis-elements (motif) enrichment analysis tool. In addition, we analyzed the co-expression relationship of genes which might participate in the biosynthesis of gastrodin and predicted 19 mannose-binding lectin antifungal proteins of G. elata. We also introduced the usage of the G. elata gene function analysis platform (GelFAP) by analyzing CYP51G1 and GFAP4 genes. Our platform GelFAP may help researchers to explore the gene function of G. elata and make novel discoveries about key genes involved in the biological processes of gastrodin.
Collapse
Affiliation(s)
- Jiaotong Yang
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiaoqiao Xiao
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lingling Da
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Wenying Xu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Su
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shiping Yang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qi Pan
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Source Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
7
|
Favre-Godal Q, Gourguillon L, Lordel-Madeleine S, Gindro K, Choisy P. Orchids and their mycorrhizal fungi: an insufficiently explored relationship. MYCORRHIZA 2020; 30:5-22. [PMID: 31982950 DOI: 10.1007/s00572-020-00934-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/17/2020] [Indexed: 05/03/2023]
Abstract
Orchids are associated with diverse fungal taxa, including nonmycorrhizal endophytic fungi as well as mycorrhizal fungi. The orchid mycorrhizal (OM) symbiosis is an excellent model for investigating the biological interactions between plants and fungi due to their high dependency on these symbionts for growth and survival. To capture the complexity of OM interactions, significant genomic, numerous transcriptomic, and proteomic studies have been performed, unraveling partly the role of each partner. On the other hand, several papers studied the bioactive metabolites from each partner but rarely interpreted their significance in this symbiotic relationship. In this review, we focus from a biochemical viewpoint on the OM dynamics and its molecular interactions. The ecological functions of OM in plant development and stress resistance are described first, summarizing recent literature. Secondly, because only few studies have specifically looked on OM molecular interactions, the signaling pathways and compounds allowing the establishment/maintenance of mycorrhizal association involved in arbuscular mycorrhiza (AM) are discussed in parallel with OM. Based on mechanistic similarities between OM and AM, and recent findings on orchids' endophytes, a putative model representing the different molecular strategies that OM fungi might employ to establish this association is proposed. It is hypothesized here that (i) orchids would excrete plant molecule signals such as strigolactones and flavonoids but also other secondary metabolites; (ii) in response, OM fungi would secrete mycorrhizal factors (Myc factors) or similar compounds to activate the common symbiosis genes (CSGs); (iii) overcome the defense mechanism by evasion of the pathogen-associated molecular patterns (PAMPs)-triggered immunity and by secretion of effectors such as small inhibitor proteins; and (iv) finally, secrete phytohormones to help the colonization or disrupt the crosstalk of plant defense phytohormones. To challenge this putative model, targeted and untargeted metabolomics studies with special attention to each partner's contribution are finally encouraged and some technical approaches are proposed.
Collapse
Affiliation(s)
- Quentin Favre-Godal
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France.
- CNRS, IPHC UMR 7178, Chimie analytique des molécules bioactives et pharmacognosie, Université de Strasbourg, F-67000, Strasbourg, France.
| | - Lorène Gourguillon
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France
| | - Sonia Lordel-Madeleine
- CNRS, IPHC UMR 7178, Chimie analytique des molécules bioactives et pharmacognosie, Université de Strasbourg, F-67000, Strasbourg, France
| | - Katia Gindro
- Agroscope, Swiss Federal Research Station, Plant Protection, 60 Route de Duiller, PO Box, 1260, Nyon, Switzerland
| | - Patrick Choisy
- LVMH recherche, Innovation Matériaux Naturels et Développement Durable, 185 avenue de Verdun, 45800, St Jean de Braye, France
| |
Collapse
|
8
|
Bhagat YS, Bhat RS, Kolekar RM, Patil AC, Lingaraju S, Patil RV, Udikeri SS. Remusatia vivipara lectin and Sclerotium rolfsii lectin interfere with the development and gall formation activity of Meloidogyne incognita in transgenic tomato. Transgenic Res 2019; 28:299-315. [PMID: 30868351 DOI: 10.1007/s11248-019-00121-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/11/2019] [Indexed: 11/24/2022]
Abstract
Root knot nematodes are serious threats to growth and yield of solaneous crops including tomato. In this study, a binary vector carrying Remusatia vivipara (rvl1) and Sclerotium rolfsii (srl1) lectin genes were introduced independently into Lycopersicon esculentum cv. Pusa Ruby via Agrobacterium tumefaciens for resistance against root knot nematode, Meloidogyne incognita. In total, one hundred and one rvl1 and srl1-transformed plants exhibiting kanamycin resistance were confirmed to carry transgenes as detected by polymerase chain reaction (PCR) with 4.59% transformation efficiency. Genetic analysis of T1 progeny confirmed Mendelian segregation of the introduced genes. Three events each of rvl1 and srl1 transgenic tomato were randomly selected for further confirmation by Southern and TAIL-PCR analyses. All three events of srl1 transgenics showed single copy transgene, whereas two rvl1 transgenic events showed single copy of transgene, while remaining event showed two copies of transgenes. Site of integration obtained for rvl1 and srl1 transgenic events by TAIL-PCR revealed that all the three events of rvl1 and srl1 transgenics differed for their site of integration and insertion sites did not contain any predicted gene. Moreover, expression of the rvl1 and srl1 transgenes was detected by haemagglutination assay in all three events of rvl1 and srl1, but not in non-transgenic tomato plant. Homozygous progenies of these events were grown and inoculated with M. incognita. Development and reproduction of M. incognita was severely affected in transgenic tomato plants expressing RVL1 and SRL1 exhibiting the high levels of resistance compared to non-transgenic plants. Therefore, these transgenic lines demonstrate a promising potential for variety development of tomato lines with enhanced resistance against M. incognita.
Collapse
Affiliation(s)
- Yogesh S Bhagat
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India.
| | - Ramesh S Bhat
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| | - Rohini M Kolekar
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| | - Ashlesha C Patil
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Bangalore, Bengaluru, 560065, India
| | - S Lingaraju
- Insititute of Organic Farming, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| | - R V Patil
- Department of Horticulture, College of Agriculture, Bijapur, University of Agricultural Sciences, Dharwad, 586103, India
| | - S S Udikeri
- Agriculture Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| |
Collapse
|
9
|
Petri C, Alburquerque N, Faize M, Scorza R, Dardick C. Current achievements and future directions in genetic engineering of European plum (Prunus domestica L.). Transgenic Res 2018; 27:225-240. [PMID: 29651659 PMCID: PMC5986827 DOI: 10.1007/s11248-018-0072-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/06/2018] [Indexed: 01/05/2023]
Abstract
In most woody fruit species, transformation and regeneration are difficult. However, European plum (Prunus domestica) has been shown to be amenable to genetic improvement technologies from classical hybridization, to genetic engineering, to rapid cycle crop breeding ('FasTrack' breeding). Since the first report on European plum transformation with marker genes in the early 90 s, numerous manuscripts have been published reporting the generation of new clones with agronomically interesting traits, such as pests, diseases and/or abiotic stress resistance, shorter juvenile period, dwarfing, continuous flowering, etc. This review focuses on the main advances in genetic transformation of European plum achieved to date, and the lines of work that are converting genetic engineering into a contemporary breeding tool for this species.
Collapse
Affiliation(s)
- Cesar Petri
- Departamento de Producción Vegetal, Instituto de Biotecnología Vegetal, UPCT, Campus Muralla del Mar, 30202, Cartagena, Murcia, Spain.
| | - Nuria Alburquerque
- Departamento de Mejora Vegetal, CEBAS-CSIC, Campus de Espinardo, 30100, Espinardo, Murcia, Spain
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization, Faculty of Sciences, University Chouaib Doukkali, 24000, El Jadida, Morocco
| | - Ralph Scorza
- Ag Biotech and Plant Breeding Consulting Services, Ralph Scorza LLC, Shepherdstown, WV, 25443, USA
| | - Chris Dardick
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430, USA
| |
Collapse
|
10
|
Yuan Y, Jin X, Liu J, Zhao X, Zhou J, Wang X, Wang D, Lai C, Xu W, Huang J, Zha L, Liu D, Ma X, Wang L, Zhou M, Jiang Z, Meng H, Peng H, Liang Y, Li R, Jiang C, Zhao Y, Nan T, Jin Y, Zhan Z, Yang J, Jiang W, Huang L. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat Commun 2018; 9:1615. [PMID: 29691383 PMCID: PMC5915607 DOI: 10.1038/s41467-018-03423-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
We present the 1.06 Gb sequenced genome of Gastrodia elata, an obligate mycoheterotrophic plant, which contains 18,969 protein-coding genes. Many genes conserved in other plant species have been deleted from the G. elata genome, including most of those for photosynthesis. Additional evidence of the influence of genome plasticity in the adaptation of this mycoheterotrophic lifestyle is evident in the large number of gene families that are expanded in G. elata, including glycoside hydrolases and urease that likely facilitate the digestion of hyphae are expanded, as are genes associated with strigolactone signaling, and ATPases that may contribute to the atypical energy metabolism. We also find that the plastid genome of G. elata is markedly smaller than that of green plant species while its mitochondrial genome is one of the largest observed to date. Our report establishes a foundation for studying adaptation to a mycoheterotrophic lifestyle.
Collapse
Affiliation(s)
- Yuan Yuan
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Xiaohua Jin
- Institute of Botany, Chinese Academy of Sciences (IBCAS), 100093, Beijing, China
| | - Juan Liu
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xing Zhao
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Junhui Zhou
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xin Wang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Deyi Wang
- Institute of Botany, Chinese Academy of Sciences (IBCAS), 100093, Beijing, China
| | - Changjiangsheng Lai
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wei Xu
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Jingwen Huang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Liangping Zha
- Anhui University of Chinese Medicine, 230012, Hefei, China
| | - Dahui Liu
- Hubei University of Chinese Medicine, 430065, Wuhan, China
| | - Xiao Ma
- Institute of Botany, Chinese Academy of Sciences (IBCAS), 100093, Beijing, China
| | - Li Wang
- Institute of Medicinal Botany, Yunnan Academy of Agricultural Sciences, 650223, Kunming, China
| | - Menyan Zhou
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Hubiao Meng
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Huasheng Peng
- Anhui University of Chinese Medicine, 230012, Hefei, China
| | - Yuting Liang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Chao Jiang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yuyang Zhao
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Tiegui Nan
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yan Jin
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhilai Zhan
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Jian Yang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, 100083, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China.
| |
Collapse
|
11
|
Yuan Y, Jin X, Liu J, Zhao X, Zhou J, Wang X, Wang D, Lai C, Xu W, Huang J, Zha L, Liu D, Ma X, Wang L, Zhou M, Jiang Z, Meng H, Peng H, Liang Y, Li R, Jiang C, Zhao Y, Nan T, Jin Y, Zhan Z, Yang J, Jiang W, Huang L. The Gastrodia elata genome provides insights into plant adaptation to heterotrophy. Nat Commun 2018. [PMID: 29691383 DOI: 10.1038/s41467-018-03423-3425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
We present the 1.06 Gb sequenced genome of Gastrodia elata, an obligate mycoheterotrophic plant, which contains 18,969 protein-coding genes. Many genes conserved in other plant species have been deleted from the G. elata genome, including most of those for photosynthesis. Additional evidence of the influence of genome plasticity in the adaptation of this mycoheterotrophic lifestyle is evident in the large number of gene families that are expanded in G. elata, including glycoside hydrolases and urease that likely facilitate the digestion of hyphae are expanded, as are genes associated with strigolactone signaling, and ATPases that may contribute to the atypical energy metabolism. We also find that the plastid genome of G. elata is markedly smaller than that of green plant species while its mitochondrial genome is one of the largest observed to date. Our report establishes a foundation for studying adaptation to a mycoheterotrophic lifestyle.
Collapse
Affiliation(s)
- Yuan Yuan
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Xiaohua Jin
- Institute of Botany, Chinese Academy of Sciences (IBCAS), 100093, Beijing, China
| | - Juan Liu
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xing Zhao
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Junhui Zhou
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Xin Wang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Deyi Wang
- Institute of Botany, Chinese Academy of Sciences (IBCAS), 100093, Beijing, China
| | - Changjiangsheng Lai
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wei Xu
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Jingwen Huang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Liangping Zha
- Anhui University of Chinese Medicine, 230012, Hefei, China
| | - Dahui Liu
- Hubei University of Chinese Medicine, 430065, Wuhan, China
| | - Xiao Ma
- Institute of Botany, Chinese Academy of Sciences (IBCAS), 100093, Beijing, China
| | - Li Wang
- Institute of Medicinal Botany, Yunnan Academy of Agricultural Sciences, 650223, Kunming, China
| | - Menyan Zhou
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Hubiao Meng
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Huasheng Peng
- Anhui University of Chinese Medicine, 230012, Hefei, China
| | - Yuting Liang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, 100083, Beijing, China
| | - Chao Jiang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yuyang Zhao
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Tiegui Nan
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yan Jin
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Zhilai Zhan
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Jian Yang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, 100083, Beijing, China.
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, Chinese Academy of Chinese Medical Sciences, 100700, Beijing, China.
| |
Collapse
|
12
|
Chen S, Liu JQ, Xiao H, Zhang J, Liu A. Simultaneous Qualitative Assessment and Quantitative Analysis of Metabolites (Phenolics, Nucleosides and Amino Acids) from the Roots of Fresh Gastrodia elata Using UPLC-ESI-Triple Quadrupole Ion MS and ESI- Linear Ion Trap High-Resolution MS. PLoS One 2016; 11:e0150647. [PMID: 26954012 PMCID: PMC4783114 DOI: 10.1371/journal.pone.0150647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/16/2016] [Indexed: 11/18/2022] Open
Abstract
A sensitive, effective and optimized method, based on ultra performance liquid chromatography (UPLC) coupled with ESI-triple quadrupole ion MS and ESI-linear ion trap high-resolution MS, has been developed for the simultaneous quantitative and qualitative determination of phenolics, nucleosides and amino acids in the roots of fresh Gastrodia elata. Optimization of the analytical method provided higher separation efficiency and better peak resolution for the targeted compounds. The simultaneous separation protocols were also optimized by routinely using accurate mass measurements, within 5 ppm error, for each molecular ion and the subsequent fragment ions. In total, 31 compounds, including 23 phenolics, two nucleosides, four amino acids, one gastrodin and one other compound were identified or tentatively characterized. Mono-substituted parishin glucoside (9), methoxy mono-substituted parishin (13), methyl parishin (26), p-hydroxybenzyl di-substituted parishin (29), and p-hydroxybenzyl parishin (31) were tentatively identified as new compounds. Principal metabolite content analysis and the composition of eight representative G. elata cultivars of various species indicated that geographic insulation was the main contributor to clustering.
Collapse
Affiliation(s)
- Sha Chen
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, China
| | - Jun Qiu Liu
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, China
| | - Hui Xiao
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, China
| | - Jun Zhang
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, China
| | - An Liu
- Key laboratory of Beijing for identification and safety evaluation of Chinese medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, China
- * E-mail:
| |
Collapse
|
13
|
Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS One 2015; 10:e0121902. [PMID: 25849296 PMCID: PMC4388846 DOI: 10.1371/journal.pone.0121902] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
Abstract
Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.
Collapse
Affiliation(s)
- Rebecca Lyons
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
- * E-mail:
| | - Jiri Stiller
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - Jonathan Powell
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - Anca Rusu
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
| | - John M. Manners
- CSIRO Agriculture Flagship, Black Mountain Laboratories, Canberra, ACT, Australia
| | - Kemal Kazan
- CSIRO Agriculture Flagship, Queensland Bioscience Precinct, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI), The University of Queensland, St Lucia, Brisbane, Queensland, 4067, Australia
| |
Collapse
|
14
|
Dias RDO, Machado LDS, Migliolo L, Franco OL. Insights into animal and plant lectins with antimicrobial activities. Molecules 2015; 20:519-41. [PMID: 25569512 PMCID: PMC6272381 DOI: 10.3390/molecules20010519] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022] Open
Abstract
Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.
Collapse
Affiliation(s)
- Renata de Oliveira Dias
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Leandro Dos Santos Machado
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Ludovico Migliolo
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Octavio Luiz Franco
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| |
Collapse
|
15
|
Guidarelli M, Zoli L, Orlandini A, Bertolini P, Baraldi E. The mannose-binding lectin gene FaMBL1 is involved in the resistance of unripe strawberry fruits to Colletotrichum acutatum. MOLECULAR PLANT PATHOLOGY 2014; 15:832-40. [PMID: 24690196 PMCID: PMC6638621 DOI: 10.1111/mpp.12143] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The fungal pathogen Colletotrichum acutatum is the causal agent of strawberry (Fragaria × ananassa) anthracnose. Although the fungus can infect strawberry fruits at both unripe and ripe stages, the symptoms appear only on red ripe fruits. On white unripe fruits, the pathogen becomes quiescent as melanized appressoria after 24 h of interaction. Previous transcriptome analysis has indicated that a mannose-binding lectin (MBL) gene is the most up-regulated gene in 24-h-infected white strawberries, suggesting a role for this gene in the low susceptibility of unripe stages. A time course analysis of the expression of this MBL gene, named FaMBL1 (Fragaria × ananassa MBL 1a), was undertaken to monitor its expression profile in white and red fruits at early interaction times: FaMBL1 was expressed exclusively in white fruit after 24 h, when the pathogen was quiescent. Agrobacterium-mediated transient transformation was used to silence and overexpress the FaMBL1 gene in 24-h-infected white and red strawberries, respectively. FaMBL1-silenced unripe fruits showed an increase in susceptibility to C. acutatum. These 24-h-infected tissues contained subcuticular hyphae, indicating pathogen penetration and active growth. In contrast, overexpression of FaMBL1 in ripe fruits decreased susceptibility; here, 24-h-infected tissues showed a high percentage of ungerminated appressoria, suggesting that the growth of the pathogen had slowed. These data suggest that FaMBL1 plays a crucial role in the resistance of unripe strawberry fruits to C. acutatum.
Collapse
Affiliation(s)
- Michela Guidarelli
- Department of Agricultural Sciences (DIPSA), University of Bologna, Viale Fanin 46, Bologna, 40127, Italy
| | | | | | | | | |
Collapse
|
16
|
Miyakawa T, Hatano KI, Miyauchi Y, Suwa YI, Sawano Y, Tanokura M. A secreted protein with plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity. PLANT PHYSIOLOGY 2014; 166:766-78. [PMID: 25139159 PMCID: PMC4213107 DOI: 10.1104/pp.114.242636] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/14/2014] [Indexed: 05/19/2023]
Abstract
Plants have a variety of mechanisms for defending against plant pathogens and tolerating environmental stresses such as drought and high salinity. Ginkbilobin2 (Gnk2) is a seed storage protein in gymnosperm that possesses antifungal activity and a plant-specific cysteine-rich motif (domain of unknown function26 [DUF26]). The Gnk2-homologous sequence is also observed in an extracellular region of cysteine-rich repeat receptor-like kinases that function in response to biotic and abiotic stresses. Here, we report the lectin-like molecular function of Gnk2 and the structural basis of its monosaccharide recognition. Nuclear magnetic resonance experiments showed that mannan was the only yeast (Saccharomyces cerevisiae) cell wall polysaccharide that interacted with Gnk2. Gnk2 also interacted with mannose, a building block of mannan, with a specificity that was similar to those of mannose-binding legume lectins, by strictly recognizing the configuration of the hydroxy group at the C4 position of the monosaccharide. The crystal structure of Gnk2 in complex with mannose revealed that three residues (asparagine-11, arginine-93, and glutamate-104) recognized mannose by hydrogen bonds, which defined the carbohydrate-binding specificity. These interactions were directly related to the ability of Gnk2 to inhibit the growth of fungi, including the plant pathogenic Fusarium spp., which were disrupted by mutation of arginine-93 or the presence of yeast mannan in the assay system. In addition, Gnk2 did not inhibit the growth of a yeast mutant strain lacking the α1,2-linked mannose moiety. These results provide insights into the molecular basis of the DUF26 protein family.
Collapse
Affiliation(s)
- Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Ken-ichi Hatano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Yumiko Miyauchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - You-ichi Suwa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Yoriko Sawano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| |
Collapse
|
17
|
Perotto S, Rodda M, Benetti A, Sillo F, Ercole E, Rodda M, Girlanda M, Murat C, Balestrini R. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship. PLANTA 2014; 239:1337-49. [PMID: 24760407 DOI: 10.1007/s00425-014-2062-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/06/2014] [Indexed: 05/03/2023]
Abstract
Orchids fully depend on symbiotic interactions with specific soil fungi for seed germination and early development. Germinated seeds give rise to a protocorm, a heterotrophic organ that acquires nutrients, including organic carbon, from the mycorrhizal partner. It has long been debated if this interaction is mutualistic or antagonistic. To investigate the molecular bases of the orchid response to mycorrhizal invasion, we developed a symbiotic in vitro system between Serapias vomeracea, a Mediterranean green meadow orchid, and the rhizoctonia-like fungus Tulasnella calospora. 454 pyrosequencing was used to generate an inventory of plant and fungal genes expressed in mycorrhizal protocorms, and plant genes could be reliably identified with a customized bioinformatic pipeline. A small panel of plant genes was selected and expression was assessed by real-time quantitative PCR in mycorrhizal and non-mycorrhizal protocorm tissues. Among these genes were some markers of mutualistic (e.g. nodulins) as well as antagonistic (e.g. pathogenesis-related and wound/stress-induced) genes. None of the pathogenesis or wound/stress-related genes were significantly up-regulated in mycorrhizal tissues, suggesting that fungal colonization does not trigger strong plant defence responses. In addition, the highest expression fold change in mycorrhizal tissues was found for a nodulin-like gene similar to the plastocyanin domain-containing ENOD55. Another nodulin-like gene significantly more expressed in the symbiotic tissues of mycorrhizal protocorms was similar to a sugar transporter of the SWEET family. Two genes coding for mannose-binding lectins were significantly up-regulated in the presence of the mycorrhizal fungus, but their role in the symbiosis is unclear.
Collapse
Affiliation(s)
- Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Armijo G, Salinas P, Monteoliva MI, Seguel A, García C, Villarroel-Candia E, Song W, van der Krol AR, Álvarez ME, Holuigue L. A salicylic acid-induced lectin-like protein plays a positive role in the effector-triggered immunity response of Arabidopsis thaliana to Pseudomonas syringae Avr-Rpm1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1395-406. [PMID: 24006883 DOI: 10.1094/mpmi-02-13-0044-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Salicylic acid (SA) is one of the key hormones that orchestrate the pathogen-induced immune response in plants. This response is often characterized by the activation of a local hypersensitive reaction involving programmed cell death, which constrains proliferation of biotrophic pathogens. Here, we report the identification and functional characterization of an SA-induced legume lectin-like protein 1 (SAI-LLP1), which is coded by a gene that belongs to the group of early SA-activated Arabidopsis genes. SAI-LLP1 expression is induced upon inoculation with avirulent strains of Pseudomonas syringae pv. tomato via an SA-dependent mechanism. Constitutive expression of SAI-LLP1 restrains proliferation of P. syringae pv. tomato Avr-Rpm1 and triggers more cell death in inoculated leaves. Cellular and biochemical evidence indicates that SAI-LLP1 is a glycoprotein located primarily at the apoplastic side of the plasma membrane. This work indicates that SAI-LLP1 is involved in resistance to P. syringae pv. tomato Avr-Rpm1 in Arabidopsis, as a component of the SA-mediated defense processes associated with the effector-triggered immunity response.
Collapse
|
19
|
Abstract
Arguably, bacteriocins deployed in warfare among related bacteria are among the most diverse proteinacous compounds with respect to structure and mode of action. Identification of the first prokaryotic member of the so-called MMBLs (monocot mannose-binding lectins) or GNA (Galanthus nivalis agglutinin) lectin family and discovery of its genus-specific killer activity in the Gram-negative bacteria Pseudomonas and Xanthomonas has added yet another kind of toxin to this group of allelopathic molecules. This novel feature is reminiscent of the protective function, on the basis of antifungal, insecticidal, nematicidal or antiviral activity, assigned to or proposed for several of the eukaryotic MMBL proteins that are ubiquitously distributed among monocot plants, but also occur in some other plants, fish, sponges, amoebae and fungi. Direct bactericidal activity can also be effected by a C-type lectin, but this is a mammalian protein that limits mucosal colonization by Gram-positive bacteria. The presence of two divergent MMBL domains in the novel bacteriocins raises questions about task distribution between modules and the possible role of carbohydrate binding in the specificity of target strain recognition and killing. Notably, bacteriocin activity was also demonstrated for a hybrid MMBL protein with an accessory protease-like domain. This association with one or more additional modules, often with predicted peptide-hydrolysing or -binding activity, suggests that additional bacteriotoxic proteins may be found among the diverse chimaeric MMBL proteins encoded in prokaryotic genomes. A phylogenetic survey of the bacterial MMBL modules reveals a mosaic pattern of strongly diverged sequences, mainly occurring in soil-dwelling and rhizosphere bacteria, which may reflect a trans-kingdom acquisition of the ancestral genes.
Collapse
|
20
|
Gonzalez M, Pujol M, Metraux JP, Gonzalez-Garcia V, Bolton MD, Borrás-Hidalgo O. Tobacco leaf spot and root rot caused by Rhizoctonia solani Kühn. MOLECULAR PLANT PATHOLOGY 2011; 12:209-16. [PMID: 21355993 PMCID: PMC6640363 DOI: 10.1111/j.1364-3703.2010.00664.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rhizoctonia solani Kühn is a soil-borne fungal pathogen that causes disease in a wide range of plants worldwide. Strains of the fungus are traditionally grouped into genetically isolated anastomosis groups (AGs) based on hyphal anastomosis reactions. This article summarizes aspects related to the infection process, colonization of the host and molecular mechanisms employed by tobacco plants in resistance against R. solani diseases. TAXONOMY Teleomorph: Thanatephorus cucumeris (Frank) Donk; anamorph: Rhizoctonia solani Kühn; Kingdom Fungi; Phylum Basidiomycota; Class Agaricomycetes; Order Cantharellales; Family Ceratobasidiaceae; genus Thanatephorus. IDENTIFICATION Somatic hyphae in culture and hyphae colonizing a substrate or host are first hyaline, then buff to dark brown in colour when aging. Hyphae tend to form at right angles at branching points that are usually constricted. Cells lack clamp connections, but possess a complex dolipore septum with continuous parenthesomes and are multinucleate. Hyphae are variable in size, ranging from 3 to 17 µm in diameter. Although the fungus does not produce any conidial structure, ellipsoid to globose, barrel-shaped cells, named monilioid cells, 10-20 µm wide, can be produced in chains and can give rise to sclerotia. Sclerotia are irregularly shaped, up to 8-10 mm in diameter and light to dark brown in colour. DISEASE SYMPTOMS Symptoms in tobacco depend on AG as well as on the tissue being colonized. Rhizoctonia solani AG-2-2 and AG-3 infect tobacco seedlings and cause damping off and stem rot. Rhizoctonia solani AG-3 causes 'sore shin' and 'target spot' in mature tobacco plants. In general, water-soaked lesions start on leaves and extend up the stem. Stem lesions vary in colour from brown to black. During late stages, diseased leaves are easily separated from the plant because of severe wilting. In seed beds, disease areas are typically in the form of circular to irregular patches of poorly growing, yellowish and/or stunted seedlings. RESISTANCE Knowledge is scarce regarding the mechanisms associated with resistance to R. solani in tobacco. However, recent evidence suggests a complex response that involves several constitutive factors, as well as induced barriers controlled by multiple defence pathways. MANAGEMENT This fungus can survive for many years in soil as mycelium, and also by producing sclerotia, which makes the management of the disease using conventional means very difficult. Integrated pest management has been most successful; it includes timely fungicide applications, crop rotation and attention to soil moisture levels. Recent developments in biocontrol may provide other tools to control R. solani in tobacco.
Collapse
Affiliation(s)
- Marleny Gonzalez
- Laboratory of Plant Functional Genomics, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, Havana, 10600, Cuba Plant Health Institute, Playa, Havana 11600, Cuba
| | | | | | | | | | | |
Collapse
|
21
|
Hwang IS, Hwang BK. The pepper mannose-binding lectin gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. PLANT PHYSIOLOGY 2011; 155:447-63. [PMID: 21205632 PMCID: PMC3075774 DOI: 10.1104/pp.110.164848] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 10/06/2010] [Indexed: 05/18/2023]
Abstract
Plant mannose-binding lectins (MBLs) are crucial for plant defense signaling during pathogen attack by recognizing specific carbohydrates on pathogen surfaces. In this study, we isolated and functionally characterized a novel pepper (Capsicum annuum) MBL gene, CaMBL1, from pepper leaves infected with Xanthomonas campestris pv vesicatoria (Xcv). The CaMBL1 gene contains a predicted Galanthus nivalis agglutinin-related lectin domain responsible for the recognition of high-mannose N-glycans but lacks a middle S-locus glycoprotein domain and a carboxyl-terminal PAN-Apple domain. The CaMBL1 protein exhibits binding specificity for mannose and is mainly localized to the plasma membrane. Immunoblotting using a CaMBL1-specific antibody revealed that CaMBL1 is strongly expressed and accumulates in pepper leaves during avirulent Xcv infection. The transient expression of CaMBL1 induces the accumulation of salicylic acid (SA), the activation of defense-related genes, and the cell death phenotype in pepper. The G. nivalis agglutinin-related lectin domain of CaMBL1 is responsible for cell death induction. CaMBL1-silenced pepper plants are more susceptible to virulent or avirulent Xcv infection compared with unsilenced control plants, a phenotype that is accompanied by lowered reactive oxygen species accumulation, reduced expression of downstream SA target genes, and a concomitant decrease in SA accumulation. In contrast, CaMBL1 overexpression in Arabidopsis (Arabidopsis thaliana) confers enhanced resistance to Pseudomonas syringae pv tomato and Alternaria brassicicola infection. Together, these data suggest that CaMBL1 plays a key role in the regulation of plant cell death and defense responses through the induction of downstream defense-related genes and SA accumulation after the recognition of microbial pathogens.
Collapse
|
22
|
Ghosh M. Purification of a lectin-like antifungal protein from the medicinal herb, Withania somnifera. Fitoterapia 2009; 80:91-5. [DOI: 10.1016/j.fitote.2008.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/10/2008] [Accepted: 10/12/2008] [Indexed: 11/25/2022]
|
23
|
Lin L, Liu XF, Hu LC, Zhou Y, Sun XF, Tang KX. Expression and purification of Zantedeschia aethiopica agglutinin in Escherichia coli. Mol Biol Rep 2007; 36:437-41. [DOI: 10.1007/s11033-007-9198-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 12/03/2007] [Indexed: 11/27/2022]
|