1
|
Xia Y, Sun G, Xiao J, He X, Jiang H, Zhang Z, Zhang Q, Li K, Zhang S, Shi X, Wang Z, Liu L, Zhao Y, Yang Y, Duan K, Ye W, Wang Y, Dong S, Wang Y, Ma Z, Wang Y. AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance. MOLECULAR PLANT 2024; 17:1344-1368. [PMID: 39030909 DOI: 10.1016/j.molp.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Plant cell walls are a critical site where plants and pathogens continuously struggle for physiological dominance. Here we show that dynamic remodeling of pectin methylesterification of plant cell walls is a component of the physiological and co-evolutionary struggles between hosts and pathogens. A pectin methylesterase (PsPME1) secreted by Phytophthora sojae decreases the degree of pectin methylesterification, thus synergizing with an endo-polygalacturonase (PsPG1) to weaken plant cell walls. To counter PsPME1-mediated susceptibility, a plant-derived pectin methylesterase inhibitor protein, GmPMI1, protects pectin to maintain a high methylesterification status. GmPMI1 protects plant cell walls from enzymatic degradation by inhibiting both soybean and P. sojae pectin methylesterases during infection. However, constitutive expression of GmPMI1 disrupted the trade-off between host growth and defense responses. We therefore used AlphaFold structure tools to design a modified form of GmPMI1 (GmPMI1R) that specifically targets and inhibits pectin methylesterases secreted from pathogens but not from plants. Transient expression of GmPMI1R enhanced plant resistance to oomycete and fungal pathogens. In summary, our work highlights the biochemical modification of the cell wall as an important focal point in the physiological and co-evolutionary conflict between hosts and microbes, providing an important proof of concept that AI-driven structure-based tools can accelerate the development of new strategies for plant protection.
Collapse
Affiliation(s)
- Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Junhua Xiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xinyi He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xuechao Shi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhaoyun Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Lin Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuheng Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiming Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
2
|
Saberi Riseh R, Gholizadeh Vazvani M, Taheri A, Kennedy JF. Pectin-associated immune responses in plant-microbe interactions: A review. Int J Biol Macromol 2024; 273:132790. [PMID: 38823736 DOI: 10.1016/j.ijbiomac.2024.132790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This review explores the role of pectin, a complex polysaccharide found in the plant cell wall, in mediating immune responses during interactions between plants and microbes. The objectives of this study were to investigate the molecular mechanisms underlying pectin-mediated immune responses and to understand how these interactions shape plant-microbe communication. Pectin acts as a signaling molecule, triggering immune responses such as the production of antimicrobial compounds, reinforcement of the cell wall, and activation of defense-related genes. Pectin functions as a target for pathogen-derived enzymes, enabling successful colonization by certain microbial species. The document discusses the complexity of pectin-based immune signaling networks and their modulation by various factors, including pathogen effectors and host proteins. It also emphasizes the importance of understanding the crosstalk between pectin-mediated immunity and other defense pathways to develop strategies for enhancing plant resistance against diseases. The insights gained from this study have implications for the development of innovative approaches to enhance crop protection and disease management in agriculture. Further investigations into the components and mechanisms involved in pectin-mediated immunity will pave the way for future advancements in plant-microbe interaction research.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Abdolhossein Taheri
- Department of Plant Protection, Faculty of Plant Production, University of agricultural Sciences and natural resources of Gorgan, Iran.
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
3
|
Li L, Wu W, Lin H, Zhou L, Zhang D, Ishfaq M, Zhong Y, Li B, Peng Y, Wu X, Yu Y, Li X, Chen Q. Amino acid application inhibits root-to-shoot cadmium translocation in Chinese cabbage by modulating pectin methyl-esterification. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108401. [PMID: 38301327 DOI: 10.1016/j.plaphy.2024.108401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
The exogenous application of amino acids (AAs) generally alleviates cadmium (Cd) toxicity in plants by altering their subcellular distribution. However, the physiological mechanisms underlying AA-mediated cell wall (CW) sequestration of Cd in Chinese cabbage remain unclear. Using two genotypes of Chinses cabbage, Jingcui 60 (Cd-tolerant) and 16-7 (Cd-sensitive), we characterized the root structure, subcellular distribution of Cd, CW component, and related gene expression under the Cd stress. Cysteine (Cys) supplementation led to a reduction in the Cd concentration in the shoots of Jingcui 60 and 16-7 by 65.09 % and 64.03 %, respectively. Addition of Cys alleviated leaf chlorosis in both cultivars by increasing Cd chelation in the root CW and reducing its distribution in the cytoplasm and organelles. We further demonstrated that Cys supplementation mediated the downregulation of PMEI1 expression and improving the activity of pectin methyl-esterase (PME) by 17.98 % and 25.52 % in both cultivars, respectively, compared to the Cd treatment, resulting in an approximate 12.00 %-14.70 % increase in Cd retention in pectin. In contrast, threonine (Thr) application did not significantly alter Cd distribution in the shoots of either cultivar. Taken together, our results suggest that Cys application reduces Cd root-to-shoot translocation by increasing Cd sequestration in the root CW through the downregulation of pectin methyl-esterification.
Collapse
Affiliation(s)
- Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenliang Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Huiru Lin
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Lin Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Donghan Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Muhammad Ishfaq
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Bingcheng Li
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-sen University, Shenzhen, Guangdong, 523758, China
| | - Xiuwen Wu
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yifa Yu
- Nanning Harworld Biological Technology, Inc, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Huang Y, Li Y, Zou K, Wang Y, Ma Y, Meng D, Luo H, Qu J, Li F, Xuan Y, Du W. The Resistance of Maize to Ustilago maydis Infection Is Correlated with the Degree of Methyl Esterification of Pectin in the Cell Wall. Int J Mol Sci 2023; 24:14737. [PMID: 37834187 PMCID: PMC10573042 DOI: 10.3390/ijms241914737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Common smut caused by Ustilago maydis is one of the dominant fungal diseases in plants. The resistance mechanism to U. maydis infection involving alterations in the cell wall is poorly studied. In this study, the resistant single segment substitution line (SSSL) R445 and its susceptible recurrent parent line Ye478 of maize were infected with U. maydis, and the changes in cell wall components and structure were studied at 0, 2, 4, 8, and 12 days postinfection. In R445 and Ye478, the contents of cellulose, hemicellulose, pectin, and lignin increased by varying degrees, and pectin methylesterase (PME) activity increased. The changes in hemicellulose and pectin in the cell wall after U. maydis infection were analyzed via immunolabeling using monoclonal antibodies against hemicellulsic xylans and high/low-methylated pectin. U. maydis infection altered methyl esterification of pectin, and the degree of methyl esterification was correlated with the resistance of maize to U. maydis. Furthermore, the relationship between methyl esterification of pectin and host resistance was validated using 15 maize inbred lines with different resistance levels. The results revealed that cell wall components, particularly pectin, were important factors affecting the colonization and propagation of U. maydis in maize, and methyl esterification of pectin played a role in the resistance of maize to U. maydis infection.
Collapse
Affiliation(s)
- Yingni Huang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Kunkun Zou
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Wang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuting Ma
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Dexuan Meng
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Haishan Luo
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianzhou Qu
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Wanli Du
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
5
|
Guo S, Wang M, Song X, Zhou G, Kong Y. The evolving views of the simplest pectic polysaccharides: homogalacturonan. PLANT CELL REPORTS 2022; 41:2111-2123. [PMID: 35986766 DOI: 10.1007/s00299-022-02909-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Pectin is an important component of cell wall polysaccharides and is important for normal plant growth and development. As a major component of pectin in the primary cell wall, homogalacturonan (HG) is a long-chain macromolecular polysaccharide composed of repeated α-1,4-D-GalA sugar units. At the same time, HG is synthesized in the Golgi apparatus in the form of methyl esterification and acetylation. It is then secreted into the plasmodesmata, where it is usually demethylated by pectin methyl esterase (PME) and deacetylated by pectin acetylase (PAE). The synthesis and modification of HG are involved in polysaccharide metabolism in the cell wall, which affects the structure and function of the cell wall and plays an important role in plant growth and development. This paper mainly summarizes the recent research on the biosynthesis, modification and the roles of HG in plant cell wall.
Collapse
Affiliation(s)
- Shuaiqiang Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Xinxin Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Gongke Zhou
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
- Academy of Dongying Efficient Agricultural Technology and Industry On Saline and Alkaline Land in Collaboration With Qingdao Agricultural University, Dongying, 257092, People's Republic of China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
6
|
Wang J, Ling L, Cai H, Guo C. Gene-wide identification and expression analysis of the PMEI family genes in soybean (Glycine max). 3 Biotech 2020; 10:335. [PMID: 32656068 DOI: 10.1007/s13205-020-02328-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/29/2020] [Indexed: 12/28/2022] Open
Abstract
Pectin Methylesterase Inhibitors (PMEI) gene family is widely spread in plants and plays crucial roles in plant development as well as biotic and abiotic stress response. However, little information was known about the function of PMEI genes in soybean. Herein, we identified 170 PMEI genes in soybean. These PMEI genes were divided into four groups (I-IV) based on phylogenetic analysis, and they were unevenly distributed in 18 soybean chromosomes. Gene structures and motif pattern analyses revealed that the PMEI genes in the same group showed the same characteristics. For the GmPMEI genes, gene duplication events occurred broadly, 52 pairs tandem duplication events and 55 pairs segmental duplication events suggested that the GmPMEI genes had high homology. Besides, the PMEI genes presented different expression patterns in different tissues, while several of these genes were expressed only in flowers. Under the biotic and abiotic stresses, PMEI genes had significant positive impact on the tolerance ability of soybean, and the ABA-responsive elements and SA-responsive elements played vital roles in responding to a variety of stresses. This study provides insights into the evolution and potential functions of GmPMEIs.
Collapse
Affiliation(s)
- Jingjing Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025 China
- Heilongjiang Vocational College of Biology Science and Technology, Harbin, China
| | - Lei Ling
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025 China
| | - He Cai
- Mudanjiang Normal University, Mudanjiang, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1 of Shida Road, Limin Development Zone, Harbin, 150025 China
| |
Collapse
|
7
|
Bömer M, O’Brien JA, Pérez-Salamó I, Krasauskas J, Finch P, Briones A, Daudi A, Souda P, Tsui TL, Whitelegge JP, Paul Bolwell G, Devoto A. COI1-dependent jasmonate signalling affects growth, metabolite production and cell wall protein composition in arabidopsis. ANNALS OF BOTANY 2018; 122:1117-1129. [PMID: 29924303 PMCID: PMC6324744 DOI: 10.1093/aob/mcy109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/31/2018] [Indexed: 05/07/2023]
Abstract
Background and Aims Cultured cell suspensions have been the preferred model to study the apoplast as well as to monitor metabolic and cell cycle-related changes. Previous work showed that methyl jasmonate (MeJA) inhibits leaf growth in a CORONATINE INSENSITIVE 1 (COI1)-dependent manner, with COI1 being the jasmonate (JA) receptor. Here, the effect of COI1 overexpression on the growth of stably transformed arabidopsis cell cultures is described. Methods Time-course experiments were carried out to analyse gene expression, and protein and metabolite levels. Key Results Both MeJA treatment and the overexpression of COI1 modify growth, by altering cell proliferation and expansion. DNA content as well as transcript patterns of cell cycle and cell wall remodelling markers were altered. COI1 overexpression also increases the protein levels of OLIGOGALACTURONIDE OXIDASE 1, BETA-GLUCOSIDASE/ENDOGLUCANASES and POLYGALACTURONASE INHIBITING PROTEIN2, reinforcing the role of COI1 in mediating defence responses and highlighting a link between cell wall loosening and growth regulation. Moreover, changes in the levels of the primary metabolites alanine, serine and succinic acid of MeJA-treated Arabidopsis cell cultures were observed. In addition, COI1 overexpression positively affects the availability of metabolites such as β-alanine, threonic acid, putrescine, glucose and myo-inositol, thereby providing a connection between JA-inhibited growth and stress responses. Conclusions This study contributes to the understanding of the regulation of growth and the production of metabolic resources by JAs and COI1. This will have important implications in dissecting the complex relationships between hormonal and cell wall signalling in plants. The work also provides tools to uncover novel mechanisms co-ordinating cell division and post-mitotic cell expansion in the absence of organ developmental control.
Collapse
Affiliation(s)
- Moritz Bömer
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - José A O’Brien
- Departamento de Genética Molecular y Microbiología, Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Imma Pérez-Salamó
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Jovaras Krasauskas
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Paul Finch
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Andrea Briones
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Arsalan Daudi
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Puneet Souda
- Departamento de Genética Molecular y Microbiología, Departamento de Fruticultura y Enología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tjir-Li Tsui
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - G Paul Bolwell
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Alessandra Devoto
- Plant Molecular Science and Centre of Systems and Synthetic Biology, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
8
|
The Multifaceted Role of Pectin Methylesterase Inhibitors (PMEIs). Int J Mol Sci 2018; 19:ijms19102878. [PMID: 30248977 PMCID: PMC6213510 DOI: 10.3390/ijms19102878] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/30/2023] Open
Abstract
Plant cell walls are complex and dynamic structures that play important roles in growth and development, as well as in response to stresses. Pectin is a major polysaccharide of cell walls rich in galacturonic acid (GalA). Homogalacturonan (HG) is considered the most abundant pectic polymer in plant cell walls and is partially methylesterified at the C6 atom of galacturonic acid. Its degree (and pattern) of methylation (DM) has been shown to affect biomechanical properties of the cell wall by making pectin susceptible for enzymatic de-polymerization and enabling gel formation. Pectin methylesterases (PMEs) catalyze the removal of methyl-groups from the HG backbone and their activity is modulated by a family of proteinaceous inhibitors known as pectin methylesterase inhibitors (PMEIs). As such, the interplay between PME and PMEI can be considered as a determinant of cell adhesion, cell wall porosity and elasticity, as well as a source of signaling molecules released upon cell wall stress. This review aims to highlight recent updates in our understanding of the PMEI gene family, their regulation and structure, interaction with PMEs, as well as their function in response to stress and during development.
Collapse
|
9
|
A transcriptomics approach uncovers novel roles for poly(ADP-ribosyl)ation in the basal defense response in Arabidopsis thaliana. PLoS One 2017; 12:e0190268. [PMID: 29284022 PMCID: PMC5746271 DOI: 10.1371/journal.pone.0190268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/10/2017] [Indexed: 12/20/2022] Open
Abstract
Pharmacological inhibition of poly(ADP-ribose) polymerase (PARP) or loss of Arabidopsis thaliana PARG1 (poly(ADP-ribose) glycohydrolase) disrupt a subset of plant defenses. In the present study we examined the impact of altered poly(ADP-ribosyl)ation on early gene expression induced by the microbe-associate molecular patterns (MAMPs) flagellin (flg22) and EF-Tu (elf18). Stringent statistical analyses and filtering identified 178 genes having MAMP-induced mRNA abundance patterns that were altered by either PARP inhibitor 3-aminobenzamide (3AB) or PARG1 knockout. From the identified set of 178 genes, over fifty Arabidopsis T-DNA insertion lines were chosen and screened for altered basal defense responses. Subtle alterations in callose deposition and/or seedling growth in response to those MAMPs were observed in knockouts of At3g55630 (FPGS3, a cytosolic folylpolyglutamate synthetase), At5g15660 (containing an F-box domain), At1g47370 (a TIR-X (Toll-Interleukin Receptor domain)), and At5g64060 (a predicted pectin methylesterase inhibitor). Over-represented GO terms for the gene expression study included "innate immune response" for elf18/parg1, highlighting a subset of elf18-activated defense-associated genes whose expression is altered in parg1 plants. The study also allowed a tightly controlled comparison of early mRNA abundance responses to flg22 and elf18 in wild-type Arabidopsis, which revealed many differences. The PARP inhibitor 3-methoxybenzamide (3MB) was also used in the gene expression profiling, but pleiotropic impacts of this inhibitor were observed. This transcriptomics study revealed targets for further dissection of MAMP-induced plant immune responses, impacts of PARP inhibitors, and the molecular mechanisms by which poly(ADP-ribosyl)ation regulates plant responses to MAMPs.
Collapse
|
10
|
Majid MU, Awan MF, Fatima K, Tahir MS, Ali Q, Rashid B, Rao AQ, Nasir IA, Husnain T. Genetic resources of chili pepper (Capsicum annuum L.) against Phytophthora capsici and their induction through various biotic and abiotic factors. CYTOL GENET+ 2017. [DOI: 10.3103/s009545271704003x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Marzin S, Hanemann A, Sharma S, Hensel G, Kumlehn J, Schweizer G, Röder MS. Are PECTIN ESTERASE INHIBITOR Genes Involved in Mediating Resistance to Rhynchosporium commune in Barley? PLoS One 2016; 11:e0150485. [PMID: 26937960 PMCID: PMC4777559 DOI: 10.1371/journal.pone.0150485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/15/2016] [Indexed: 11/25/2022] Open
Abstract
A family of putative PECTIN ESTERASE INHIBITOR (PEI) genes, which were detected in the genomic region co-segregating with the resistance gene Rrs2 against scald caused by Rhynchosporium commune in barley, were characterized and tested for their possible involvement in mediating resistance to the pathogen by complementation and overexpression analysis. The sequences of the respective genes were derived from two BAC contigs originating from the susceptible cultivar ‘Morex’. For the genes HvPEI2, HvPEI3, HvPEI4 and HvPEI6, specific haplotypes for 18 resistant and 23 susceptible cultivars were detected after PCR-amplification and haplotype-specific CAPS-markers were developed. None of the tested candidate genes HvPEI2, HvPEI3 and HvPEI4 alone conferred a high resistance level in transgenic over-expression plants, though an improvement of the resistance level was observed especially with OE-lines for gene HvPEI4. These results do not confirm but also do not exclude an involvement of the PEI gene family in the response to the pathogen. A candidate for the resistance gene Rrs2 could not be identified yet. It is possible that Rrs2 is a PEI gene or another type of gene which has not been detected in the susceptible cultivar ‘Morex’ or the full resistance reaction requires the presence of several PEI genes.
Collapse
Affiliation(s)
- Stephan Marzin
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Anja Hanemann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Shailendra Sharma
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | | | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- * E-mail:
| |
Collapse
|
12
|
Isolation, Expression, and Promoter Analysis of GbWRKY2: A Novel Transcription Factor Gene from Ginkgo biloba. Int J Genomics 2015; 2015:607185. [PMID: 26351628 PMCID: PMC4553201 DOI: 10.1155/2015/607185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/07/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022] Open
Abstract
WRKY transcription factor is involved in multiple life activities including plant growth and development as well as biotic and abiotic responses. We identified 28 WRKY genes from transcriptome data of Ginkgo biloba according to conserved WRKY domains and zinc finger structure and selected three WRKY genes, which are GbWRKY2, GbWRKY16, and GbWRKY21, for expression pattern analysis. GbWRKY2 was preferentially expressed in flowers and strongly induced by methyl jasmonate. Here, we cloned the full-length cDNA and genomic DNA of GbWRKY2. The full-length cDNA of GbWRKY2 was 1,713 bp containing a 1,014 bp open reading frame encoding a polypeptide of 337 amino acids. The GbWRKY2 genomic DNA had one intron and two exons. The deduced GbWRKY2 contained one WRKY domain and one zinc finger motif. GbWRKY2 was classified into Group II WRKYs. Southern blot analysis revealed that GbWRKY2 was a single copy gene in G. biloba. Many cis-acting elements related to hormone and stress responses were identified in the 1,363 bp-length 5'-flanking sequence of GbWRKY2, including W-box, ABRE-motif, MYBCOREs, and PYRIMIDINE-boxes, revealing the molecular mechanism of upregulated expression of GbWRKY2 by hormone and stress treatments. Further functional characterizations in transiently transformed tobacco leaves allowed us to identify the region that can be considered as the minimal promoter.
Collapse
|
13
|
Choi HW, Hwang BK. Molecular and cellular control of cell death and defense signaling in pepper. PLANTA 2015; 241:1-27. [PMID: 25252816 DOI: 10.1007/s00425-014-2171-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
14
|
Taurino M, Abelenda JA, Río-Alvarez I, Navarro C, Vicedo B, Farmaki T, Jiménez P, García-Agustín P, López-Solanilla E, Prat S, Rojo E, Sánchez-Serrano JJ, Sanmartín M. Jasmonate-dependent modifications of the pectin matrix during potato development function as a defense mechanism targeted by Dickeya dadantii virulence factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:418-29. [PMID: 24286390 DOI: 10.1111/tpj.12393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 05/20/2023]
Abstract
The plant cell wall constitutes an essential protection barrier against pathogen attack. In addition, cell-wall disruption leads to accumulation of jasmonates (JAs), which are key signaling molecules for activation of plant inducible defense responses. However, whether JAs in return modulate the cell-wall composition to reinforce this defensive barrier remains unknown. The enzyme 13-allene oxide synthase (13-AOS) catalyzes the first committed step towards biosynthesis of JAs. In potato (Solanum tuberosum), there are two putative St13-AOS genes, which we show here to be differentially induced upon wounding. We also determine that both genes complement an Arabidopsis aos null mutant, indicating that they encode functional 13-AOS enzymes. Indeed, transgenic potato plants lacking both St13-AOS genes (CoAOS1/2 lines) exhibited a significant reduction of JAs, a concomitant decrease in wound-responsive gene activation, and an increased severity of soft rot disease symptoms caused by Dickeya dadantii. Intriguingly, a hypovirulent D. dadantii pel strain lacking the five major pectate lyases, which causes limited tissue maceration on wild-type plants, regained infectivity in CoAOS1/2 plants. In line with this, we found differences in pectin methyl esterase activity and cell-wall pectin composition between wild-type and CoAOS1/2 plants. Importantly, wild-type plants had pectins with a lower degree of methyl esterification, which are the substrates of the pectate lyases mutated in the pel strain. These results suggest that, during development of potato plants, JAs mediate modification of the pectin matrix to form a defensive barrier that is counteracted by pectinolytic virulence factors from D. dadantii.
Collapse
Affiliation(s)
- Marco Taurino
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Petitot AS, Barsalobres-Cavallari C, Ramiro D, Albuquerque Freire E, Etienne H, Fernandez D. Promoter analysis of the WRKY transcription factors CaWRKY1a and CaWRKY1b homoeologous genes in coffee (Coffea arabica). PLANT CELL REPORTS 2013; 32:1263-76. [PMID: 23568411 DOI: 10.1007/s00299-013-1440-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE The regulation of the CaWRKY1 homoeologous genes were analyzed through the characterization of their promoters. The pW1a promoter is proposed as a new tool for coffee plant biotechnologies. WRKY transcription factors are important elements of the plant immune response. The CaWRKY1 gene from Coffea arabica is induced by several biotic and abiotic stresses, including challenge by the rust fungus Hemileia vastatrix. Two homoeologous CaWRKY1 genes, named CaWRKY1a and CaWRKY1b, were previously identified in the C. arabica allotetraploid genome. To gain insight into the transcriptional regulation of these genes, their promoter sequences, named pW1a and pW1b, respectively, were cloned and characterized in this study. In silico analysis revealed some important defense-associated regulatory elements, including W-boxes and as-1 elements. Promoter activities were analyzed in transient assays conducted by agroinfiltration of tobacco leaves. Exogenous salicylic acid (SA) treatments increased promoter activities corroborating the presence of as-1 regulatory elements. Transactivation assays with the CaWRKY1 protein showed the reduction of both pW1a and pW1b promoter activities, indicating that the CaWRKY1 protein may negatively regulate its own promoters. Stable transgenic C. arabica lines expressing a pW1a::GUS construct were obtained by Agrobacterium-mediated transformation and high GUS activity was observed in leaves subjected to mechanical wounding. Hence, the ability of pW1a to drive transgene expression in coffee plants as well as to enhance expression in response to stresses opens possibilities for using this promoter as a new tool for biotechnological approaches in coffee plants.
Collapse
Affiliation(s)
- Anne-Sophie Petitot
- Institut de Recherche pour le Développement, UMR186 IRD-CIRAD-UM2 Résistance des Plantes aux Bioagresseurs, 911 avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
16
|
Delporte A, Van Holle S, Van Damme EJM. Qualitative and quantitative analysis of the Nictaba promoter activity during development in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 67:162-8. [PMID: 23570871 DOI: 10.1016/j.plaphy.2013.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/11/2013] [Indexed: 05/21/2023]
Abstract
Nictaba is a genuine jasmonate inducible lectin expressed in the leaves and roots of Nicotiana tabacum cv. Samsun NN. Although the jasmonate pathway is generally highly conserved among plant species, recent research showed that it is followed by plant specific downstream processes. Previously the Nictaba promoter activity was studied in the model plant Arabidopsis thaliana, using the β-glucuronidase (GUS) as a gene reporter system. In this paper the promoter activity of Nictaba was analyzed in N. tabacum plants stably expressing a promoter-GUS fusion construct. Both histochemical and fluorometric techniques were used to follow Nictaba promoter activity during the development of the tobacco plants. GUS staining was predominantly detected in the cotyledons, the leaves and the roots during the youngest plant stages. As the plants grow older GUS staining was mostly present in the older leaves. A detailed comparative analysis was made of the GUS staining results obtained in transgenic Arabidopsis and tobacco lines.
Collapse
Affiliation(s)
- Annelies Delporte
- Ghent University, Dept. Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Coupure Links 653, 9000 Ghent, Belgium.
| | - Sofie Van Holle
- Ghent University, Dept. Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Ghent University, Dept. Molecular Biotechnology, Lab of Biochemistry and Glycobiology, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
17
|
Amelot N, Dorlhac de Borne F, San Clemente H, Mazars C, Grima-Pettenati J, Brière C. Transcriptome analysis of tobacco BY-2 cells elicited by cryptogein reveals new potential actors of calcium-dependent and calcium-independent plant defense pathways. Cell Calcium 2012; 51:117-30. [PMID: 22177386 DOI: 10.1016/j.ceca.2011.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/04/2011] [Accepted: 11/24/2011] [Indexed: 11/29/2022]
Abstract
Cryptogein is a proteinaceous elicitor secreted by the oomycete Phytophthora cryptogea, which induces a hypersensitive response in tobacco plants. We have previously reported that in tobacco BY-2 cells treated with cryptogein, most of the genes of the phenylpropanoid pathway were upregulated and cell wall-bound phenolics accumulated. Both events were Ca(2+) dependent. In this study, we designed a microarray covering a large proportion of the tobacco genome and monitored gene expression in cryptogein-elicited BY-2 cells to get a more complete view of the transcriptome changes and to assess their Ca(2+) dependence. The predominant functional gene categories affected by cryptogein included stress- and disease-related proteins, phenylpropanoid pathway, signaling components, transcription factors and cell wall reinforcement. Among the 3819 unigenes whose expression changed more than fourfold, 90% were Ca(2+) dependent, as determined by their sensitivity to lanthanum chloride. The most Ca(2+)-dependent transcripts upregulated by cryptogein were involved in defense responses or the oxylipin pathway. This genome-wide study strongly supports the importance of Ca(2+)-dependent transcriptional regulation of regulatory and defense-related genes contributing to cryptogein responses in tobacco.
Collapse
Affiliation(s)
- Nicolas Amelot
- Université de Toulouse, Laboratoire de Recherches en Sciences Végétales, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
18
|
Raiola A, Lionetti V, Elmaghraby I, Immerzeel P, Mellerowicz EJ, Salvi G, Cervone F, Bellincampi D. Pectin methylesterase is induced in Arabidopsis upon infection and is necessary for a successful colonization by necrotrophic pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:432-40. [PMID: 21171891 DOI: 10.1094/mpmi-07-10-0157] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ability of bacterial or fungal necrotrophs to produce enzymes capable of degrading pectin is often related to a successful initiation of the infective process. Pectin is synthesized in a highly methylesterified form and is subsequently de-esterified in muro by pectin methylesterase. De-esterification makes pectin more susceptible to the degradation by pectic enzymes such as endopolygalacturonases (endoPG) and pectate lyases secreted by necrotrophic pathogens during the first stages of infection. We show that, upon infection, Pectobacterium carotovorum and Botrytis cinerea induce in Arabidopsis a rapid expression of AtPME3 that acts as a susceptibility factor and is required for the initial colonization of the host tissue.
Collapse
Affiliation(s)
- Alessandro Raiola
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Legnaro (PD) Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Carbohydrate metabolism and cell protection mechanisms differentiate drought tolerance and sensitivity in advanced potato clones (Solanum tuberosum L.). Funct Integr Genomics 2011; 11:275-91. [PMID: 21274588 DOI: 10.1007/s10142-010-0206-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/01/2010] [Accepted: 12/18/2010] [Indexed: 12/25/2022]
Abstract
In potatoes and many other crops, drought is one of the most important environmental constraints leading to yield loss. Development of drought-tolerant cultivars is therefore required for maintaining yields under climate change conditions and for the extension of agriculture to sub-optimal cropping areas. Drought tolerance mechanisms have been well described for many crop plants including Native Andean potato. However, knowledge on tolerance traits suitable for commercial potato varieties is scarce. In order to describe drought tolerance mechanisms that sustain potato yield under water stress, we have designed a growth-chamber experiment with two Solanum tuberosum L. cultivars, the more drought tolerant accession 397077.16, and the sensitive variety Canchan. After 21 days of drought exposure, gene expression was studied in leaves using cDNA microarrays. The results showed that the tolerant clone presented more differentially expressed genes than the sensitive one, suggesting greater stress response and adaptation. Moreover, it exhibited a large pool of upregulated genes belonging to cell rescue and detoxication such as LEAs, dehydrins, HSPs, and metallothioneins. Transcription factors related to abiotic stresses and genes belonging to raffinose family oligosaccharide synthesis, involved in desiccation tolerance, were upregulated to a greater extent in the tolerant clone. This latter result was corroborated by biochemical analyses performed at 32 and 49 days after drought that showed an increase in galactinol and raffinose especially in clone 397077.16. The results depict key components for the drought tolerance of this advanced potato clone.
Collapse
|
20
|
Pectin methylesterase and its proteinaceous inhibitor: a review. Carbohydr Res 2010; 345:2583-95. [DOI: 10.1016/j.carres.2010.10.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 09/30/2010] [Accepted: 10/03/2010] [Indexed: 11/23/2022]
|