1
|
Zhang J, Huang WL, Chen WS, Rao RY, Lai NW, Huang ZR, Yang LT, Chen LS. Mechanisms by Which Increased pH Ameliorates Copper Excess in Citrus sinensis Roots: Insight from a Combined Analysis of Physiology, Transcriptome, and Metabolome. PLANTS (BASEL, SWITZERLAND) 2024; 13:3054. [PMID: 39519972 PMCID: PMC11548300 DOI: 10.3390/plants13213054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Limited data are available on copper (Cu)-pH interaction-responsive genes and/or metabolites in plant roots. Citrus sinensis seedlings were treated with 300 μM (Cu toxicity) or 0.5 μM (control) CuCl2 at pH 3.0 or 4.8 for 17 weeks. Thereafter, gene expression and metabolite profiles were obtained using RNA-Seq and widely targeted metabolome, respectively. Additionally, several related physiological parameters were measured in roots. The results indicated that elevating the pH decreased the toxic effects of Cu on the abundances of secondary metabolites and primary metabolites in roots. This difference was related to the following several factors: (a) elevating the pH increased the capacity of Cu-toxic roots to maintain Cu homeostasis by reducing Cu uptake and Cu translocation to young leaves; (b) elevating the pH alleviated Cu toxicity-triggered oxidative damage by decreasing reactive oxygen species (ROS) formation and free fatty acid abundances and increasing the ability to detoxify ROS and maintain cell redox homeostasis in roots; and (c) increasing the pH prevented root senescence and cell wall (CW) metabolism impairments caused by Cu toxicity by lowering Cu levels in roots and root CWs, thus improving root growth. There were some differences and similarities in Cu-pH interaction-responsive genes and metabolites between leaves and roots.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.Z.); (W.-L.H.); (W.-S.C.); (R.-Y.R.); (N.-W.L.); (Z.-R.H.); (L.-T.Y.)
| |
Collapse
|
2
|
Bekele-Alemu A, Girma-Tola D, Ligaba-Osena A. The Potential of CRISPR/Cas9 to Circumvent the Risk Factor Neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid Limiting Wide Acceptance of the Underutilized Grass Pea ( Lathyrus sativus L.). Curr Issues Mol Biol 2024; 46:10570-10589. [PMID: 39329978 PMCID: PMC11430654 DOI: 10.3390/cimb46090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Grass pea (Lathyrus sativus L.) is a protein-rich crop that is resilient to various abiotic stresses, including drought. However, it is not cultivated widely for human consumption due to the neurotoxin β-N-oxalyl-L-α, β-diaminopropionic acid (β-ODAP) and its association with neurolathyrism. Though some varieties with low β-ODAP have been developed through classical breeding, the β-ODAP content is increasing due to genotype x environment interactions. This review covers grass pea nutritional quality, β-ODAP biosynthesis, mechanism of paralysis, traditional ways to reduce β-ODAP, candidate genes for boosting sulfur-containing amino acids, and the potential and targets of gene editing to reduce β-ODAP content. Recently, two key enzymes (β-ODAP synthase and β-cyanoalanine synthase) have been identified in the biosynthetic pathway of β-ODAP. We proposed four strategies through which the genes encoding these enzymes can be targeted and suppressed using CRISPR/Cas9 gene editing. Compared to its homology in Medicago truncatula, the grass pea β-ODAP synthase gene sequence and β-cyanoalanine synthase showed 62.9% and 95% similarity, respectively. The β-ODAP synthase converts the final intermediate L-DAPA into toxic β-ODAP, whist β-cyanoalanine synthase converts O-Acetylserine into β-isoxazolin-5-on-2-yl-alanine. Since grass pea is low in methionine and cysteine amino acids, improvement of these amino acids is also needed to boost its protein content. This review contains useful resources for grass pea improvement while also offering potential gene editing strategies to lower β-ODAP levels.
Collapse
Affiliation(s)
- Abreham Bekele-Alemu
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Deribew Girma-Tola
- Department of Biology, College of Natural Sciences, Salale University, Fitche P.O. Box 245, Ethiopia
| | - Ayalew Ligaba-Osena
- Laboratory of Plant Molecular Biology and Biotechnology, Department of Biology, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
3
|
Kim W, Kim S, Mawhinney TP, Krishnan HB. Elemental sulfur concentration can be used as a rapid, reliable, and cost-effective predictor of sulfur amino acid content of soybean seeds. Sci Rep 2024; 14:3093. [PMID: 38326523 PMCID: PMC10850096 DOI: 10.1038/s41598-024-53590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024] Open
Abstract
In this study, we have examined the feasibility of using elemental sulfur content of soybean seeds as a proxy for the overall sulfur amino acid content of soybean seeds. Earlier, we have identified by high throughput ionomic phenotyping several high and low sulfur containing soybean lines from the USDA Soybean Germplasm Collection. Here, we measured the cysteine and methionine content of select soybean lines by high-performance liquid chromatography. Our results demonstrate that those soybean lines which had high elemental sulfur content also had a higher cysteine and methionine content when compared to soybean lines with low elemental sulfur. SDS-PAGE and immunoblot analysis revealed that the accumulation of Bowman Birk protease inhibitor and lunasin in soybean seeds may only be marginally correlated with the elemental sulfur levels. However, we found a positive correlation between the levels of trypsin and chymotrypsin inhibitor activities and elemental sulfur and sulfur amino acid content of the seeds. Thus, elemental sulfur content and/or protease inhibitor activity measurement can be utilized as a rapid and cost-effective method to predict the overall sulfur amino acid content of soybean seeds. Our findings will benefit breeders in their endeavors to develop soybean cultivars with enhanced sulfur amino acid content.
Collapse
Affiliation(s)
- Wonseok Kim
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Sunhyung Kim
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Hari B Krishnan
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
- Plant Genetics Research Unit, USDA, Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Talha M, Shani MY, Ashraf MY, De Mastro F, Brunetti G, Khan MKR, Gillani SWUHS, Khan A, Abbas S, Cocozza C. Lead Toxicity-Mediated Growth and Metabolic Alterations at Early Seedling Stages of Maize ( Zea mays L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3335. [PMID: 37765499 PMCID: PMC10535917 DOI: 10.3390/plants12183335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
To investigate the toxic effects of lead (Pb) on key metabolic activities essential for proper germination and seedling growth of maize seeds, experiments were carried out with different levels of Pb (0 to 120 mg of Pb L-1 as PbCl2) applied through growth medium to two maize hybrids H-3310S and H-6724. The research findings indicated that growth and metabolic activities were adversely affected by increased Pb contamination in growth medium; however, a slow increase in these parameters was recorded with increasing time from 0 to 120 h. Protease activity decreased with an increase in the level of Pb contamination but increased with time; consequently, a reduction in seed proteins and an increase in total free amino acids were observed with time. Similarly, α-amylase activity decreased with an increase in Pb concentration in growth medium while it increased with increasing time from 0 to 120 h; consequently, reducing and non-reducing sugars increased with time but decreased with exposure to lead. The roots of both maize hybrids had higher Pb contents than those of the shoot, which decreased the uptake of nitrogen, phosphorus, and potassium. All these nutrients are essential for optimal plant growth; therefore, the reduction in growth and biomass of maize seedlings could be due to Pb toxicity that altered metabolic processes, as sugar and amino acids are necessary for the synthesis of metabolic compounds, rapid cell division, and proper functioning of enzymes in the growing embryo, but all were dramatically reduced due to suppression of protease and α-amylase by toxicity of Pb. In general, hybrid H-3310S performed better in Pb-contaminated growth medium than H-6724.
Collapse
Affiliation(s)
- Muhammad Talha
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology (NIAB-C), Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Muhammad Yasin Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Francesco De Mastro
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Gennaro Brunetti
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology (NIAB-C), Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Syed Wajih ul Hassan Shah Gillani
- Nuclear Institute for Agriculture and Biology (NIAB-C), Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Adeel Khan
- Nuclear Institute for Agriculture and Biology (NIAB-C), Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad 38000, Pakistan
| | - Shahid Abbas
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Claudio Cocozza
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| |
Collapse
|
5
|
Devi V, Bhushan B, Gupta M, Sethi M, Kaur C, Singh A, Singh V, Kumar R, Rakshit S, Chaudhary DP. Genetic and molecular understanding for the development of methionine-rich maize: a holistic approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1249230. [PMID: 37794928 PMCID: PMC10546030 DOI: 10.3389/fpls.2023.1249230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Maize (Zea mays) is the most important coarse cereal utilized as a major energy source for animal feed and humans. However, maize grains are deficient in methionine, an essential amino acid required for proper growth and development. Synthetic methionine has been used in animal feed, which is costlier and leads to adverse health effects on end-users. Bio-fortification of maize for methionine is, therefore, the most sustainable and environmental friendly approach. The zein proteins are responsible for methionine deposition in the form of δ-zein, which are major seed storage proteins of maize kernel. The present review summarizes various aspects of methionine including its importance and requirement for different subjects, its role in animal growth and performance, regulation of methionine content in maize and its utilization in human food. This review gives insight into improvement strategies including the selection of natural high-methionine mutants, molecular modulation of maize seed storage proteins and target key enzymes for sulphur metabolism and its flux towards the methionine synthesis, expression of synthetic genes, modifying gene codon and promoters employing genetic engineering approaches to enhance its expression. The compiled information on methionine and essential amino acids linked Quantitative Trait Loci in maize and orthologs cereals will give insight into the hotspot-linked genomic regions across the diverse range of maize germplasm through meta-QTL studies. The detailed information about candidate genes will provide the opportunity to target specific regions for gene editing to enhance methionine content in maize. Overall, this review will be helpful for researchers to design appropriate strategies to develop high-methionine maize.
Collapse
Affiliation(s)
- Veena Devi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Bharat Bhushan
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Mamta Gupta
- Division of Biotechnology, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Mehak Sethi
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Charanjeet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Alla Singh
- Division of Biotechnology, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Vishal Singh
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Ramesh Kumar
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Sujay Rakshit
- Division of Plant Breeding, Indian Institute of Maize Research, Ludhiana, Punjab, India
| | - Dharam P. Chaudhary
- Division of Biochemistry, Indian Institute of Maize Research, Ludhiana, Punjab, India
| |
Collapse
|
6
|
Girija A, Hacham Y, Dvir S, Panda S, Lieberman-Lazarovich M, Amir R. Cystathionine γ-synthase expression in seeds alters metabolic and DNA methylation profiles in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:595-610. [PMID: 37300538 DOI: 10.1093/plphys/kiad330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) seeds expressing the feedback-insensitive form of cystathionine γ-synthase (AtD-CGS), the key gene of methionine (Met) synthesis, under the control of a seed-specific phaseolin promoter (SSE plants) show a significant increase in Met content. This elevation is accompanied by increased levels of other amino acids (AAs), sugars, total protein, and starch, which are important from a nutritional aspect. Here, we investigated the mechanism behind this phenomenon. Gas chromatography-mass spectrometry (GC-MS) analysis of SSE leaves, siliques, and seeds collected at 3 different developmental stages showed high levels of Met, AAs, and sugars compared to the control plants. A feeding experiment with isotope-labeled AAs showed an increased flux of AAs from nonseed tissues toward the developing seeds of SSE. Transcriptome analysis of leaves and seeds displayed changes in the status of methylation-related genes in SSE plants that were further validated by methylation-sensitive enzymes and colorimetric assay. These results suggest that SSE leaves have higher DNA methylation rates than control plants. This occurrence apparently led to accelerated senescence, together with enhanced monomer synthesis, which further resulted in increased transport of monomers from the leaves toward the seeds. The developing seeds of SSE plants, however, show reduced Met levels and methylation rates. The results provide insights into the role of Met in DNA methylation and gene expression and how Met affects the metabolic profile of the plant.
Collapse
Affiliation(s)
- Aiswarya Girija
- MIGAL-Galilee Research Institute, Plant Metabolism Lab, Kiryat Shmona 11016, Israel
| | - Yael Hacham
- MIGAL-Galilee Research Institute, Plant Metabolism Lab, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel Hai College, Upper Galilee 1220800, Israel
| | - Shachar Dvir
- MIGAL-Galilee Research Institute, Plant Metabolism Lab, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel Hai College, Upper Galilee 1220800, Israel
| | - Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Department of Vegetables and Field Crops, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Rachel Amir
- MIGAL-Galilee Research Institute, Plant Metabolism Lab, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel Hai College, Upper Galilee 1220800, Israel
| |
Collapse
|
7
|
Rahman SU, McCoy E, Raza G, Ali Z, Mansoor S, Amin I. Improvement of Soybean; A Way Forward Transition from Genetic Engineering to New Plant Breeding Technologies. Mol Biotechnol 2023; 65:162-180. [PMID: 35119645 DOI: 10.1007/s12033-022-00456-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/21/2022] [Indexed: 01/18/2023]
Abstract
Soybean is considered one of the important crops among legumes. Due to high nutritional contents in seed (proteins, sugars, oil, fatty acids, and amino acids), soybean is used globally for food, feed, and fuel. The primary consumption of soybean is vegetable oil and feed for chickens and livestock. Apart from this, soybean benefits soil fertility by fixing atmospheric nitrogen through root nodular bacteria. While conventional breeding is practiced for soybean improvement, with the advent of new biotechnological methods scientists have also engineered soybean to improve different traits (herbicide, insect, and disease resistance) to fulfill consumer requirements and to meet the global food deficiency. Genetic engineering (GE) techniques such as transgenesis and gene silencing help to minimize the risks and increase the adaptability of soybean. Recently, new plant breeding technologies (NPBTs) emerged such as zinc-finger nucleases, transcription activator-like effector nucleases, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), which paved the way for enhanced genetic modification of soybean. These NPBTs have the potential to improve soybean via gene functional characterization precision genome engineering for trait improvement. Importantly, these NPBTs address the ethical and public acceptance issues related to genetic modifications and transgenesis in soybean. In the present review, we summarized the improvement of soybean through GE and NPBTs. The valuable traits that have been improved through GE for different constraints have been discussed. Moreover, the traits that have been improved through NPBTs and potential targets for soybean improvements via NPBTs and solutions for ethical and public acceptance are also presented.
Collapse
Affiliation(s)
- Saleem Ur Rahman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Evan McCoy
- Center for Applied Genetic Technologies (CAGT), University of Georgia, Athens, USA
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Zahir Ali
- Laboratory for Genome Engineering, Center for Desert Agriculture and Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan.
| |
Collapse
|
8
|
Kim S, Krishnan HB. A fast and cost-effective procedure for reliable measurement of trypsin inhibitor activity in soy and soy products. Methods Enzymol 2023; 680:195-213. [PMID: 36710011 DOI: 10.1016/bs.mie.2022.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rapid and accurate measurement of trypsin inhibitor is critical for soy processors to assess the quality of soy meal. Currently, trypsin inhibitor activity is measured using the American Oil Chemists' Society (AOCS) and the American Association of Cereal Chemists International (AACCI) approved method. We have modified and improved the AACCI/AOCS approved method resulting in the elimination of several time-consuming steps and drastically reducing the assay volume. By employing our simplified procedure, we have measured trypsin inhibitor activity of several soy and soy products. A side-by side comparison of our simplified procedure with AOCS approved method revealed strikingly similar results indicating that several time-consuming and tedious steps associated with AACCI/AOCS approved methods can be eliminated without sacrificing the accuracy of the assay. Moreover, we demonstrate that our assay can also be carried out in 96-well microplates which will enable high-throughput screening of large number of soy meal samples.
Collapse
Affiliation(s)
- Sunhyung Kim
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Hari B Krishnan
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States; Plant Genetics Research Unit, USDA, Agricultural Research Service, Columbia, MO, United States.
| |
Collapse
|
9
|
Wang B, Teng D, Yu C, Yao L, Ma X, Wu T. Increased sulfur-containing amino acid content and altered conformational characteristics of soybean proteins by rebalancing 11S and 7S compositions. FRONTIERS IN PLANT SCIENCE 2022; 13:828153. [PMID: 36119623 PMCID: PMC9478179 DOI: 10.3389/fpls.2022.828153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Soybean proteins are limited by their low contents of methionine and cysteine. Herein, 7S globulin accumulation was reduced using RNA interference to silence CG-β-1 expression, and the content of the A2B1a subunit was largely increased under the soybean seed-specific oleosin8 promoter. The results showed that the sulfur-containing amino acid content in soybean seeds drastically improved, reaching 79.194 nmol/mg, and the 11S/7S ratio had a 1.89-fold increase compared to the wild-type acceptor. The secondary structures of 11S globulin were also altered, and the β-sheet content increased with decreasing β-turn content, which was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and circular dichroism analysis. Our findings suggested that raising the accumulation of 11S glycinin at the expense of reducing the content of 7S globulin is an attractive and precise engineering strategy to increase the amount of sulfur-containing amino acids, and soybean proteins with A2B1a subunits of 11S isolates improved, and β-subunits of 7S fractions reduced simultaneously might be an effective new material for food production.
Collapse
Affiliation(s)
- Biao Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, China
| | - Da Teng
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Cunhao Yu
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Luming Yao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Shanghai, China
| | - Xiaohong Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlong Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Mondal S, Pramanik K, Panda D, Dutta D, Karmakar S, Bose B. Sulfur in Seeds: An Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030450. [PMID: 35161431 PMCID: PMC8838887 DOI: 10.3390/plants11030450] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 05/30/2023]
Abstract
Sulfur is a growth-limiting and secondary macronutrient as well as an indispensable component for several cellular components of crop plants. Over the years various scientists have conducted several experiments on sulfur metabolism based on different aspects of plants. Sulfur metabolism in seeds has immense importance in terms of the different sulfur-containing seed storage proteins, the significance of transporters in seeds, the role of sulfur during the time of seed germination, etc. The present review article is based on an overview of sulfur metabolism in seeds, in respect to source to sink relationships, S transporters present in the seeds, S-regulated seed storage proteins and the importance of sulfur at the time of seed germination. Sulfur is an essential component and a decidable factor for seed yield and the quality of seeds in terms of oil content in oilseeds, storage of qualitative proteins in legumes and has a significant role in carbohydrate metabolism in cereals. In conclusion, a few future perspectives towards a more comprehensive knowledge on S metabolism/mechanism during seed development, storage and germination have also been stated.
Collapse
Affiliation(s)
- Sananda Mondal
- Department of Crop Physiology, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, India;
| | - Kalipada Pramanik
- Department of Agronomy, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, India;
| | - Debasish Panda
- Department of Crop Physiology, Institute of Agriculture, Visva-Bharati University, Sriniketan 731236, India;
| | - Debjani Dutta
- Department of Plant Physiology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (D.D.); (S.K.)
| | - Snehashis Karmakar
- Department of Plant Physiology, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur 741252, India; (D.D.); (S.K.)
| | - Bandana Bose
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India;
| |
Collapse
|
11
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Shahzad R, Jamil S, Ahmad S, Nisar A, Khan S, Amina Z, Kanwal S, Aslam HMU, Gill RA, Zhou W. Biofortification of Cereals and Pulses Using New Breeding Techniques: Current and Future Perspectives. Front Nutr 2021; 8:721728. [PMID: 34692743 PMCID: PMC8528959 DOI: 10.3389/fnut.2021.721728] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Cereals and pulses are consumed as a staple food in low-income countries for the fulfillment of daily dietary requirements and as a source of micronutrients. However, they are failing to offer balanced nutrition due to deficiencies of some essential compounds, macronutrients, and micronutrients, i.e., cereals are deficient in iron, zinc, some essential amino acids, and quality proteins. Meanwhile, the pulses are rich in anti-nutrient compounds that restrict the bioavailability of micronutrients. As a result, the population is suffering from malnutrition and resultantly different diseases, i.e., anemia, beriberi, pellagra, night blindness, rickets, and scurvy are common in the society. These facts highlight the need for the biofortification of cereals and pulses for the provision of balanced diets to masses and reduction of malnutrition. Biofortification of crops may be achieved through conventional approaches or new breeding techniques (NBTs). Conventional approaches for biofortification cover mineral fertilization through foliar or soil application, microbe-mediated enhanced uptake of nutrients, and conventional crossing of plants to obtain the desired combination of genes for balanced nutrient uptake and bioavailability. Whereas, NBTs rely on gene silencing, gene editing, overexpression, and gene transfer from other species for the acquisition of balanced nutritional profiles in mutant plants. Thus, we have highlighted the significance of conventional and NBTs for the biofortification of cereals and pulses. Current and future perspectives and opportunities are also discussed. Further, the regulatory aspects of newly developed biofortified transgenic and/or non-transgenic crop varieties via NBTs are also presented.
Collapse
Affiliation(s)
- Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakeel Ahmad
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Amina Nisar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Sipper Khan
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany
| | - Zarmaha Amina
- Tropics and Subtropics Group, Institute of Agricultural Engineering, University of Hohenheim, Stuttgart, Germany
| | - Shamsa Kanwal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | | | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Weijun Zhou
- Key Laboratory of Spectroscopy Sensing, The Ministry of Agriculture and Rural Affairs, Institute of Crop Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Cabanos C, Matsuoka Y, Maruyama N. Soybean proteins/peptides: A review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds. Peptides 2021; 143:170598. [PMID: 34153351 DOI: 10.1016/j.peptides.2021.170598] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Soybean is one of the most important sources of plant protein and is known for its wide range of agricultural, food, and industrial applications as well as health benefits. Interest in soybean proteins has been steadily growing as progressively more applications and benefits are discovered. This review article is focused on the major seed storage proteins of soybean, their three-dimensional structures, their nutritional importance and bioactive peptides, cellular synthesis, and accumulation in seeds. This will also summarize past efforts in the recombinant production of foreign proteins or bioactive peptides in soybean seed.
Collapse
Affiliation(s)
- Cerrone Cabanos
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuki Matsuoka
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Nobuyuki Maruyama
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
14
|
Alaswad AA, Song B, Oehrle NW, Wiebold WJ, Mawhinney TP, Krishnan HB. Development of soybean experimental lines with enhanced protein and sulfur amino acid content. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110912. [PMID: 34034869 DOI: 10.1016/j.plantsci.2021.110912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Accepted: 04/14/2021] [Indexed: 05/13/2023]
Abstract
Soybean is the preferred protein source for both poultry and swine feed. However, this preferred status is being challenged due to competition from alternative feed ingredients. To overcome this, it becomes necessary for breeders to develop soybean cultivars that contain higher protein and better nutritional composition. In this study, we have developed experimental soybean lines that not only contain significantly higher amounts of protein but also improved sulfur amino acid content. This objective was achieved by crossing a O-acetylserine sulfhydrylase (OASS) overexpressing transgenic soybean line with elevated levels of sulfur amino acid content (CS) with a high protein Korean soybean cultivar (Lee 5). Introgression of high protein and overexpression of OASS was monitored in the experimental lines at each successive generation (F2-F6) by measuring protein content and OASS activity. The average protein content of transgenic CS and Lee 5 seeds were 34.8 % and 44.7 %, while in the experimental soybean lines the protein content ranged from 41.3 %-47.7 %, respectively. HPLC and inductively coupled plasma-mass spectrometry analyses revealed that all the experimental lines developed in this study contained significantly higher amounts of sulfur containing amino acids and elemental sulfur in the seeds. The sulfur amino acid (cysteine + methionine) content of the experimental lines ranged from 1.1 % to 1.26 % while the parents Lee 5 and CS had 0.79 % and 1.1 %, respectively. SDS-PAGE and western blot analysis demonstrated that the accumulation of Bowman-Birk protease inhibitor and lunasin, two sulfur amino acid rich peptides, were elevated in experimental soybean lines. High-resolution 2D-gel electrophoresis and Delta2D gel analysis validated that an overall increase in the different subunits of 7S β-conglycinin and 11S glycinin were mainly responsible for the observed increase in the total amount of protein in experimental lines.
Collapse
Affiliation(s)
- Alaa A Alaswad
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA
| | - Bo Song
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA
| | - Nathan W Oehrle
- Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO, 65211, USA
| | - William J Wiebold
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas P Mawhinney
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA; Plant Genetics Research Unit, USDA-Agricultural Research Service, Columbia, MO, 65211, USA.
| |
Collapse
|
15
|
Kim WS, Sun-Hyung J, Oehrle NW, Jez JM, Krishnan HB. Overexpression of ATP sulfurylase improves the sulfur amino acid content, enhances the accumulation of Bowman-Birk protease inhibitor and suppresses the accumulation of the β-subunit of β-conglycinin in soybean seeds. Sci Rep 2020; 10:14989. [PMID: 32929147 PMCID: PMC7490426 DOI: 10.1038/s41598-020-72134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/26/2020] [Indexed: 01/18/2023] Open
Abstract
ATP sulfurylase, an enzyme which catalyzes the conversion of sulfate to adenosine 5'-phosphosulfate (APS), plays a significant role in controlling sulfur metabolism in plants. In this study, we have expressed soybean plastid ATP sulfurylase isoform 1 in transgenic soybean without its transit peptide under the control of the 35S CaMV promoter. Subcellular fractionation and immunoblot analysis revealed that ATP sulfurylase isoform 1 was predominantly expressed in the cell cytoplasm. Compared with that of untransformed plants, the ATP sulfurylase activity was about 2.5-fold higher in developing seeds. High-resolution 2-D gel electrophoresis and immunoblot analyses revealed that transgenic soybean seeds overexpressing ATP sulfurylase accumulated very low levels of the β-subunit of β-conglycinin. In contrast, the accumulation of the cysteine-rich Bowman-Birk protease inhibitor was several fold higher in transgenic soybean plants when compared to the non-transgenic wild-type seeds. The overall protein content of the transgenic seeds was lowered by about 3% when compared to the wild-type seeds. Metabolite profiling by LC-MS and GC-MS quantified 124 seed metabolites out of which 84 were present in higher amounts and 40 were present in lower amounts in ATP sulfurylase overexpressing seeds compared to the wild-type seeds. Sulfate, cysteine, and some sulfur-containing secondary metabolites accumulated in higher amounts in ATP sulfurylase transgenic seeds. Additionally, ATP sulfurylase overexpressing seeds contained significantly higher amounts of phospholipids, lysophospholipids, diacylglycerols, sterols, and sulfolipids. Importantly, over expression of ATP sulfurylase resulted in 37-52% and 15-19% increases in the protein-bound cysteine and methionine content of transgenic seeds, respectively. Our results demonstrate that manipulating the expression levels of key sulfur assimilatory enzymes could be exploited to improve the nutritive value of soybean seeds.
Collapse
Affiliation(s)
- Won-Seok Kim
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA
| | - Jeong Sun-Hyung
- Plant Genetics Research, USDA-Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA
| | - Nathan W Oehrle
- Plant Genetics Research, USDA-Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO, 65211, USA.
- Plant Genetics Research, USDA-Agricultural Research Service, University of Missouri, 108 Curtis Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
16
|
Girija A, Shotan D, Hacham Y, Amir R. The Level of Methionine Residues in Storage Proteins Is the Main Limiting Factor of Protein-Bound-Methionine Accumulation in Arabidopsis Seeds. FRONTIERS IN PLANT SCIENCE 2020; 11:1136. [PMID: 32849697 PMCID: PMC7419676 DOI: 10.3389/fpls.2020.01136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The low level of methionine, an essential sulfur-containing amino acid, limits the nutritional quality of seeds. Two main factors can control the level of protein-bound methionine: the level of free methionine that limits protein accumulation and the methionine residues inside the storage proteins. To reveal the main limiting factor, we generated transgenic Arabidopsis thaliana seed-specific plants expressing the methionine-rich sunflower seed storage (SSA) protein (A1/A2). The contents of protein-bound methionine in the water-soluble protein fraction that includes the SSA in A1/A2 were 5.3- and 10.5-fold, respectively, compared to control, an empty vector (EV). This suggests that free methionine can support this accumulation. To elucidate if the level of free methionine could be increased further in the protein-bound methionine, these lines were crossed with previously characterized plants having higher levels of free methionine in seeds (called SSE). The progenies of the crosses (A1S, A2S) exhibited the highest level of protein-bound methionine, but this level did not differ significantly from A2, suggesting that all the methionine residues of A2 were filled with methionine. It also suggests that the content of methionine residues in the storage proteins is the main limiting factor. The results also proposed that the storage proteins can change their content in response to high levels of free methionine or SSA. This was assumed since the water-soluble protein fraction was highest in A1S/A2S as well as in SSE compared to EV and A1/A2. By using these seeds, we also aimed at gaining more knowledge about the link between high free methionine and the levels of metabolites that usually accumulate during abiotic stresses. This putative connection was derived from a previous analysis of SSE. The results of metabolic profiling showed that the levels of 29 and 20 out of the 56 metabolites were significantly higher in SSE and A1, respectively, that had higher level of free methionine, compared A1S/A2S, which had lower free methionine levels. This suggests a strong link between high free methionine and the accumulation of stress-associated metabolites.
Collapse
Affiliation(s)
- Aiswarya Girija
- Department of Plant Science, MIGAL—Galilee Research Center, Kiryat Shmona, Israel
| | - David Shotan
- Department of Plant Science, MIGAL—Galilee Research Center, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Yael Hacham
- Department of Plant Science, MIGAL—Galilee Research Center, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| | - Rachel Amir
- Department of Plant Science, MIGAL—Galilee Research Center, Kiryat Shmona, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
17
|
Ma Y, Ma W, Hu D, Zhang X, Yuan W, He X, Kan G, Yu D. QTL Mapping for Protein and Sulfur-Containing Amino Acid Contents Using a High-Density Bin-Map in Soybean ( Glycine max L. Merr.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12313-12321. [PMID: 31618030 DOI: 10.1021/acs.jafc.9b04497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soybean provides essential protein and amino acids for humans and animals, while sulfur-containing amino acids (SAA), including methionine (Met) and cysteine (Cys), are very limited. In this study, we constructed a high-density bin-map with 3420 bin markers using 676 857 SNPs of a recombinant-inbred line (RIL) population derived from a cross between Kefeng no. 1 and Nannong 1138-2. Quantitative trait loci (QTL) mapping was performed for Cys, Met, SAA, and the protein content using this high-density bin-map. Twenty-five QTLs linked to these four traits were identified, and four genomic regions located on chromosomes (Chr) 07, 08, 15, and 20 were overlapped by multiple QTLs. Among them, bin 115-124 located on Chr 15 was associated with all four traits and was a novel locus with a high LOD value. These findings will provide a basis for nutritional quality improvement using marker-assisted selection breeding and clarify the genetic mechanisms of SAA and protein in soybean.
Collapse
Affiliation(s)
- Yujie Ma
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , Nanjing 210095 , China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany , Chinese Academy of Sciences , Beijing 100093 , China
| | - Weiyu Ma
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , Nanjing 210095 , China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , Nanjing 210095 , China
| | - Xinnan Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , Nanjing 210095 , China
| | - Wenjie Yuan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , Nanjing 210095 , China
| | - Xiaohong He
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , Nanjing 210095 , China
| | - Guizhen Kan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , Nanjing 210095 , China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , Nanjing 210095 , China
- School of Life Sciences , Guangzhou University , Guangzhou 510006 , China
| |
Collapse
|
18
|
Joshi J, Renaud JB, Sumarah MW, Marsolais F. Deciphering S-methylcysteine biosynthesis in common bean by isotopic tracking with mass spectrometry. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:176-186. [PMID: 31215701 DOI: 10.1111/tpj.14438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/22/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
The suboptimal content of sulfur-containing amino acids methionine and cysteine prevents common bean (Phaseolus vulgaris) from being an excellent source of protein. Nutritional improvements to this significant crop require a better understanding of the biosynthesis of sulfur-containing compounds including the nonproteogenic amino acid S-methylcysteine and the dipeptide γ-glutamyl-S-methylcysteine, which accumulate in seed. In this study, seeds were incubated with isotopically labelled serine, cysteine or methionine and analyzed by reverse phase chromatography-high resolution mass spectrometry to track stable isotopes as they progressed through the sulfur metabolome. We determined that serine and methionine are the sole precursors of free S-methylcysteine in developing seeds, indicating that this compound is likely to be synthesized through the condensation of O-acetylserine and methanethiol. BSAS4;1, a cytosolic β-substituted alanine synthase preferentially expressed in developing seeds, catalyzed the formation of S-methylcysteine in vitro. A higher flux of labelled serine or cysteine was observed in a sequential pathway involving γ-glutamyl-cysteine, homoglutathione and S-methylhomoglutathione, a likely precursor to γ-glutamyl-S-methylcysteine. Preferential incorporation of serine over cysteine supports a subcellular compartmentation of this pathway, likely to be in the chloroplast. The origin of the methyl group in S-methylhomoglutathione was traced to methionine. There was substantial incorporation of carbons from methionine into the β-alanine portion of homoglutathione and S-methylhomoglutathione, suggesting the breakdown of methionine by methionine γ-lyase and conversion of α-ketobutyrate to β-alanine via propanoate metabolism. These findings delineate the biosynthetic pathways of the sulfur metabolome of common bean and provide an insight that will aid future efforts to improve nutritional quality.
Collapse
Affiliation(s)
- Jaya Joshi
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| | - Justin B Renaud
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Mark W Sumarah
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
| | - Frédéric Marsolais
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, Ontario, N6A 3K7, Canada
| |
Collapse
|
19
|
Janani C, Sundararajan B, Kumari BR. Construction and transformation of peroxisome proliferator activated receptor gamma (RnPPARγ) gene using Agrobacterium tumefaciens into Glycine max L. Merr. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Amir R, Cohen H, Hacham Y. Revisiting the attempts to fortify methionine content in plant seeds. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4105-4114. [PMID: 30911752 DOI: 10.1093/jxb/erz134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The sulfur-containing amino acid methionine belongs to the group of essential amino acids, meaning that humans and animals must consume it in their diets. However, plant seeds have low levels of methionine, limiting their nutritional potential. For this reason, efforts have been made over the years to increase methionine levels in seeds. Here, we summarize these efforts and focus particularly on those utilizing diverse genetic and molecular tools. Four main approaches are described: (i) expression of methionine-rich storage proteins in a seed-specific manner to incorporate more soluble methionine into the protein fraction; (ii) reduction of methionine-poor storage proteins inside the seeds to reinforce the accumulation of methionine-rich proteins; (iii) silencing methionine catabolic enzymes; and (iv) up-regulation of key biosynthetic enzymes participating in methionine synthesis. We focus on the biosynthetic genes that operate de novo in seeds and that belong to the sulfur assimilation and aspartate family pathways, as well as genes from the methionine-specific pathway. We also include those enzymes that operate in non-seed tissues that contribute to the accumulation of methionine in seeds, such as S-methylmethionine enzymes. Finally, we discuss the biotechnological potential of these manipulations to increase methionine content in plant seeds and their effect on seed germination.
Collapse
Affiliation(s)
- Rachel Amir
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| | - Hagai Cohen
- Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Hacham
- Laboratory of Plant Science, Migal - Galilee Technology Center, Kiryat Shmona, Israel
- Tel-Hai College, Upper Galilee, Israel
| |
Collapse
|
21
|
Jez JM. Structural biology of plant sulfur metabolism: from sulfate to glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4089-4103. [PMID: 30825314 DOI: 10.1093/jxb/erz094] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Sulfur is an essential element for all organisms. Plants must assimilate this nutrient from the environment and convert it into metabolically useful forms for the biosynthesis of a wide range of compounds, including cysteine and glutathione. This review summarizes structural biology studies on the enzymes involved in plant sulfur assimilation [ATP sulfurylase, adenosine-5'-phosphate (APS) reductase, and sulfite reductase], cysteine biosynthesis (serine acetyltransferase and O-acetylserine sulfhydrylase), and glutathione biosynthesis (glutamate-cysteine ligase and glutathione synthetase) pathways. Overall, X-ray crystal structures of enzymes in these core pathways provide molecular-level information on the chemical events that allow plants to incorporate sulfur into essential metabolites and revealed new biochemical regulatory mechanisms, such as structural rearrangements, protein-protein interactions, and thiol-based redox switches, for controlling different steps in these pathways.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
22
|
Common Bean ( Phaseolus vulgaris L.) Accumulates Most S-Methylcysteine as Its γ-Glutamyl Dipeptide. PLANTS 2019; 8:plants8050126. [PMID: 31091711 PMCID: PMC6572574 DOI: 10.3390/plants8050126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
The common bean (Phaseolus vulgaris) constitutes an excellent source of vegetable dietary protein. However, there are sub-optimal levels of the essential amino acids, methionine and cysteine. On the other hand, P. vulgaris accumulates large amounts of the γ-glutamyl dipeptide of S-methylcysteine, and lower levels of free S-methylcysteine and S-methylhomoglutathione. Past results suggest two distinct metabolite pools. Free S-methylcysteine levels are high at the beginning of seed development and decline at mid-maturation, while there is a biphasic accumulation of γ-glutamyl-S-methylcysteine, at early cotyledon and maturation stages. A possible model involves the formation of S-methylcysteine by cysteine synthase from O-acetylserine and methanethiol, whereas the majority of γ-glutamyl-S-methylcysteine may arise from S-methylhomoglutathione. Metabolite profiling during development and in genotypes differing in total S-methylcysteine accumulation showed that γ-glutamyl-S-methylcysteine accounts for most of the total S-methylcysteine in mature seed. Profiling of transcripts for candidate biosynthetic genes indicated that BSAS4;1 expression is correlated with both the developmental timing and levels of free S-methylcysteine accumulated, while homoglutathione synthetase (hGS) expression was correlated with the levels of γ-glutamyl-S-methylcysteine. Analysis of S-methylated phytochelatins by liquid chromatography and high resolution tandem mass spectrometry revealed only small amounts of homophytochelatin-2 with a single S-methylcysteine. The mitochondrial localization of phytochelatin synthase 2—predominant in seed, determined by confocal microscopy of a fusion with the yellow fluorescent protein—and its spatial separation from S-methylhomoglutathione may explain the lack of significant accumulation of S-methylated phytochelatins.
Collapse
|
23
|
Krishnan HB, Jez JM. Review: The promise and limits for enhancing sulfur-containing amino acid content of soybean seed. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:14-21. [PMID: 29807584 DOI: 10.1016/j.plantsci.2018.03.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Soybeans are an excellent source of protein in monogastric diets and rations with ∼75% of soybeans produced worldwide used primarily for animal feed. Even though soybeans are protein-rich and have a well-balanced amino acid profile, the nutritive quality of this important crop could be further improved by elevating the concentrations of certain amino acids. The levels of the sulfur-containing amino acids cysteine and methionine in soybean seed proteins are inadequate for optimal growth and development of monogastric animals, which necessitates dietary supplementation. Subsequently, concerted efforts have been made to increase the concentrations of cysteine and methionine in soybean seeds by both classical breeding and genetic engineering; however, these efforts have met with only limited success. In this review, we discuss the strengths and weakness of different approaches in elevating the sulfur amino acid content of soybeans. Manipulation of enzymes involved in the sulfur assimilatory pathway appears to be a viable avenue for improving sulfur amino acid content. This approach requires a through biochemical characterization of sulfur assimilatory enzymes in soybean seeds. We highlight recent studies targeting key sulfur assimilatory enzymes and the manipulation of sulfur metabolism in transgenic soybeans to improve the nutritive value of soybean proteins.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of Missouri, Columbia, MO 65211, USA.
| | - Joseph M Jez
- Department of Biology,Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
24
|
Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front Nutr 2018; 5:12. [PMID: 29492405 PMCID: PMC5817065 DOI: 10.3389/fnut.2018.00012] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Biofortification is an upcoming, promising, cost-effective, and sustainable technique of delivering micronutrients to a population that has limited access to diverse diets and other micronutrient interventions. Unfortunately, major food crops are poor sources of micronutrients required for normal human growth. The manuscript deals in all aspects of crop biofortification which includes-breeding, agronomy, and genetic modification. It tries to summarize all the biofortification research that has been conducted on different crops. Success stories of biofortification include lysine and tryptophan rich quality protein maize (World food prize 2000), Vitamin A rich orange sweet potato (World food prize 2016); generated by crop breeding, oleic acid, and stearidonic acid soybean enrichment; through genetic transformation and selenium, iodine, and zinc supplementation. The biofortified food crops, especially cereals, legumes, vegetables, and fruits, are providing sufficient levels of micronutrients to targeted populations. Although a greater emphasis is being laid on transgenic research, the success rate and acceptability of breeding is much higher. Besides the challenges biofortified crops hold a bright future to address the malnutrition challenge.
Collapse
Affiliation(s)
- Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Natasha Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Saloni Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Payal Kapoor
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Aman Kumar
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | | | - Priya Arora
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
25
|
Krishnan HB, Song B, Oehrle NW, Cameron JC, Jez JM. Impact of overexpression of cytosolic isoform of O-acetylserine sulfhydrylase on soybean nodulation and nodule metabolome. Sci Rep 2018; 8:2367. [PMID: 29402985 PMCID: PMC5799319 DOI: 10.1038/s41598-018-20919-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/25/2018] [Indexed: 01/05/2023] Open
Abstract
Nitrogen-fixing nodules, which are also major sites of sulfur assimilation, contribute significantly to the sulfur needs of whole soybean plants. Nodules are the predominant sites for cysteine accumulation and the activity of O-acetylserine(thiol)lyase (OASS) is central to the sulfur assimilation process in plants. Here, we examined the impact of overexpressing OASS on soybean nodulation and nodule metabolome. Overexpression of OASS did not affect the nodule number, but negatively impacted plant growth. HPLC measurement of antioxidant metabolites demonstrated that levels of cysteine, glutathione, and homoglutathione nearly doubled in OASS overexpressing nodules when compared to control nodules. Metabolite profiling by LC-MS and GC-MS demonstrated that several metabolites related to serine, aspartate, glutamate, and branched-chain amino acid pathways were significantly elevated in OASS overexpressing nodules. Striking differences were also observed in the flavonoid levels between the OASS overexpressing and control soybean nodules. Our results suggest that OASS overexpressing plants compensate for the increase in carbon requirement for sulfur assimilation by reducing the biosynthesis of some amino acids, and by replenishing the TCA cycle through fatty acid hydrolysis. These data may indicate that in OASS overexpressing soybean nodules there is a moderate decease in the supply of energy metabolites to the nodule, which is then compensated by the degradation of cellular components to meet the needs of the nodule energy metabolism.
Collapse
Affiliation(s)
- Hari B Krishnan
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA.
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Bo Song
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Nathan W Oehrle
- USDA-ARS, Plant Genetics Research Unit, 105 Curtis Hall, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey C Cameron
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309-0596, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
26
|
Elucidating the Effects of Higher Expression Level of Cystathionine γ-Synthase on Methionine Contents in Transgenic Arabidopsis, Soybean and Tobacco Seeds. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-56526-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
27
|
Song B, Oehrle NW, Liu S, Krishnan HB. Characterization of Seed Storage Proteins of Several Perennial Glycine Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8499-8508. [PMID: 27794605 DOI: 10.1021/acs.jafc.6b03677] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Perennial Glycine species, distant relatives of soybean, have been recognized as a potential source of new genetic diversity for soybean improvement. The subgenus Glycine includes around 30 perennial species, which are well-adapted to drought conditions and possess resistance to a number of soybean pathogens. In spite of the potential of the perennial Glycine species for soybean improvement, very little is known about their storage proteins and their relationship with cultivated soybean seed proteins. We have examined the seed protein composition of nine perennial Glycine species by one- and two-dimensional (1-D and 2-D) gel electrophoresis. The relationship between cultivated soybean and perennial soybean seed proteins was examined by immunoblot analyses using antibodies raised against G. max β-conglycinin, glycinin A3 subunit, lipoxygenase, leginsulin, Kunitz trypsin inhibitor, and Bowman-Birk protease inhibitor. Additionally, we have measured the trypsin and chymotrypsin inhibitor activities from cultivated soybean and perennial Glycine species and have found marked differences between them. Our 2-D gel and immunoblot analyses demonstrate significant differences in the protein composition and size heterogeneities of the 7S and 11S seed storage proteins of soybean and perennial Glycine species. Perennial Glycine species accumulated a 45 kDa protein that was not detected in G. max and G. soja. This unique 45 kDa protein was immunologically related to the A3 glycinin subunit of G. max. The results of our studies suggest that even though the seed proteins of wild perennial Glycine species and G. max are immunologically related, their genes have diverged from each other during the course of evolution.
Collapse
Affiliation(s)
- Bo Song
- Plant Genetics Research Unit, USDA-Agricultural Research Service , Columbia, Missouri 65211, United States
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University , Harbin, China
| | - Nathan W Oehrle
- Plant Genetics Research Unit, USDA-Agricultural Research Service , Columbia, Missouri 65211, United States
| | - Shanshan Liu
- Key Laboratory of Soybean Biology at the Chinese Ministry of Education, Northeast Agricultural University , Harbin, China
| | - Hari B Krishnan
- Plant Genetics Research Unit, USDA-Agricultural Research Service , Columbia, Missouri 65211, United States
- Plant Science Division, University of Missouri , Columbia, Missouri 65211, United States
| |
Collapse
|
28
|
He Y, Schmidt MA, Erwin C, Guo J, Sun R, Pendarvis K, Warner BW, Herman EM. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF). PLoS One 2016; 11:e0157034. [PMID: 27314851 PMCID: PMC4912142 DOI: 10.1371/journal.pone.0157034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform.
Collapse
Affiliation(s)
- Yonghua He
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Monica A. Schmidt
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Christopher Erwin
- St. Louis Children's Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jun Guo
- St. Louis Children's Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Raphael Sun
- St. Louis Children's Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ken Pendarvis
- School of Animal & Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Brad W. Warner
- St. Louis Children's Hospital and Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Eliot M. Herman
- School of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
29
|
Cohen H, Pajak A, Pandurangan S, Amir R, Marsolais F. Higher endogenous methionine in transgenic Arabidopsis seeds affects the composition of storage proteins and lipids. Amino Acids 2016; 48:1413-22. [DOI: 10.1007/s00726-016-2193-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 01/03/2023]
|
30
|
Krishnan HB, Kim WS, Oehrle NW, Alaswad AA, Baxter I, Wiebold WJ, Nelson RL. Introgression of leginsulin, a cysteine-rich protein, and high-protein trait from an Asian soybean plant introduction genotype into a North American experimental soybean line. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2862-9. [PMID: 25756929 DOI: 10.1021/jf505202z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Soybean is an important protein source for both humans and animals. However, soybean proteins are relatively poor in the sulfur-containing amino acids, cysteine and methionine. Improving the content of endogenous proteins rich in sulfur-containing amino acids could enhance the nutritive value of soybean meal. Leginsulin, a cysteine-rich peptide, predominantly accumulates in Asian soybean accessions but not in most North American cultivars. By screening diverse soybean accessions from the USDA Soybean Germplasm Collection, we were able to identify one plant introduction, PI 427138, as a high-protein line with relatively high amounts of both elemental sulfur and leginsulin. We introgressed these desirable traits from PI 427138 into an experimental line with the aim of improving the overall protein content and quality of seed proteins. Biochemical characterization of inbred progenies from the cross of LD00-3309 with PI 427138 grown at six locations revealed stable ingression of high protein, high elemental sulfur, and high leginsulin accumulation. Comparison of soybean seed proteins resolved by high-resolution 2-D gel electrophoresis in combination with Delta2D image analysis software revealed preferential accumulation of a few glycinin subunits contributed to the increased protein content in the introgressed lines. Amino acid analysis revealed that even though the leginsulin introgressed lines had higher protein, leginsulin, and elemental sulfur, the overall concentration of sulfur-containing amino acids was not significantly altered when compared with the parental lines. The experimental soybean lines developed during this study (Leg-3, Leg-7, and Leg-8) lack A5, A4, and B3 glycinin subunits and could be utilized in breeding programs to develop high-quality tofu cultivars.
Collapse
Affiliation(s)
- Hari B Krishnan
- †Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Columbia, Missouri 65211, United States
| | - Won-Seok Kim
- ‡Plant Science Division, University of Missouri, Columbia, Missouri 65211, United States
| | - Nathan W Oehrle
- †Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Columbia, Missouri 65211, United States
| | - Alaa A Alaswad
- ‡Plant Science Division, University of Missouri, Columbia, Missouri 65211, United States
- §King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Ivan Baxter
- #Plant Genetics Research Unit, Donald Danforth Plant Sciences Center, Agricultural Research Service, U.S. Department of Agriculture, St. Louis, Missouri 63132, United States
| | - William J Wiebold
- ‡Plant Science Division, University of Missouri, Columbia, Missouri 65211, United States
| | - Randall L Nelson
- ⊥Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
31
|
Pandurangan S, Sandercock M, Beyaert R, Conn KL, Hou A, Marsolais F. Differential response to sulfur nutrition of two common bean genotypes differing in storage protein composition. FRONTIERS IN PLANT SCIENCE 2015; 6:92. [PMID: 25750649 PMCID: PMC4335288 DOI: 10.3389/fpls.2015.00092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 05/28/2023]
Abstract
It has been hypothesized that the relatively low concentration of sulfur amino acids in legume seeds might be an ecological adaptation to nutrient poor, marginal soils. SARC1 and SMARC1N-PN1 are genetically related lines of common bean (dry bean, Phaseolus vulgaris) differing in seed storage protein composition. In SMARC1N-PN1, the lack of phaseolin and major lectins is compensated by increased levels of sulfur-rich proteins, resulting in an enhanced concentration of cysteine and methionine, mostly at the expense of the abundant non-protein amino acid, S-methylcysteine. To identify potential effects associated with an increased concentration of sulfur amino acids in the protein pool, the response of the two genotypes to low and high sulfur nutrition was evaluated under controlled conditions. Seed yield was increased by the high sulfate treatment in SMARC1N-PN1. The seed concentrations of sulfur, sulfate, and S-methylcysteine were altered by the sulfur treatment in both genotypes. The concentration of total cysteine and extractible globulins was increased specifically in SMARC1N-PN1. Proteomic analysis identified arcelin-like protein 4, lipoxygenase-3, albumin-2, and alpha amylase inhibitor beta chain as having increased levels under high sulfur conditions. Lipoxygenase-3 accumulation was sensitive to sulfur nutrition only in SMARC1N-PN1. Under field conditions, both SARC1 and SMARC1N-PN1 exhibited a slight increase in yield in response to sulfur treatment, typical for common bean.
Collapse
Affiliation(s)
- Sudhakar Pandurangan
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Mark Sandercock
- Cereal Research Centre Morden, Agriculture and Agri-Food CanadaCanada, Morden, MB, Canada
| | - Ronald Beyaert
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Kenneth L. Conn
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Anfu Hou
- Cereal Research Centre Morden, Agriculture and Agri-Food CanadaCanada, Morden, MB, Canada
| | - Frédéric Marsolais
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
32
|
Arun M, Subramanyam K, Mariashibu TS, Theboral J, Shivanandhan G, Manickavasagam M, Ganapathi A. Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Appl Biochem Biotechnol 2015; 175:2266-87. [PMID: 25480345 DOI: 10.1007/s12010-014-1360-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/10/2014] [Indexed: 01/28/2023]
Abstract
Soybean is a recalcitrant crop to Agrobacterium-mediated genetic transformation. Development of highly efficient, reproducible, and genotype-independent transformation protocol is highly desirable for soybean genetic improvement. Hence, an improved Agrobacterium-mediated genetic transformation protocol has been developed for cultivar PK 416 by evaluating various parameters including Agrobacterium tumefaciens strains (LBA4404, EHA101, and EHA105 harboring pCAMBIA1304 plasmid), sonication duration, vacuum infiltration pressure, and vacuum duration using cotyledonary node explants of soybean prepared from 7-day-old seedlings. The transformed plants were successfully developed through direct organogenesis system. Transgene expression was assessed by GUS histochemical and gfp visual assays, and integration was analyzed by PCR and Southern blot hybridization. Among the different combinations and durations evaluated, a maximum transformation efficiency of 18.6 % was achieved when the cotyledonary node explants of cv. PK 416 were sonicated for 20 s and vacuum infiltered for 2 min at 250 mmHg in A. tumefaciens EHA105 suspension. The amenability of the standardized protocol was tested on four more soybean cultivars JS 90-41, Hara Soy, Co 1, and Co 2 in which all the cultivars responded favorably with transformation efficiency ranging from 13.3 to 16.6 %. The transformation protocol developed in the present study would be useful to transform diverse soybean cultivars with desirable traits.
Collapse
Affiliation(s)
- Muthukrishnan Arun
- Department of Biotechnology & Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024,, Tamil Nadu, India
| | | | | | | | | | | | | |
Collapse
|
33
|
Kim WS, Jez JM, Krishnan HB. Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich δ-zein in transgenic soybeans. FRONTIERS IN PLANT SCIENCE 2014; 5:633. [PMID: 25426134 PMCID: PMC4227475 DOI: 10.3389/fpls.2014.00633] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/24/2014] [Indexed: 05/11/2023]
Abstract
Expression of heterologous methionine-rich proteins to increase the overall sulfur amino acid content of soybean seeds has been only marginally successful, presumably due to low accumulation of transgenes in soybeans or due to gene silencing. Proteome rebalancing of seed proteins has been shown to promote the accumulation of foreign proteins. In this study, we have utilized RNAi technology to suppress the expression of the β-conglycinin, the abundant 7S seed storage proteins of soybean. Western blot and 2D-gel analysis revealed that β-conglycinin knockdown line (SAM) failed to accumulate the α', α, and β-subunits of β-conglycinin. The proteome rebalanced SAM retained the overall protein and oil content similar to that of wild-type soybean. We also generated transgenic soybean lines expressing methionine-rich 11 kDa δ-zein under the control of either the glycinin or β-conglycinin promoter. The introgression of the 11 kDa δ-zein into β-conglycinin knockdown line did not enhance the accumulation of the 11 kDa δ-zein. However, when the same plants were grown in sulfur-rich medium, we observed 3- to 16-fold increased accumulation of the 11 kDa δ-zein. Transmission electron microscopy observation revealed that seeds grown in sulfur-rich medium contained numerous endoplasmic reticulum derived protein bodies. Our findings suggest that sulfur availability, not proteome rebalancing, is needed for high-level accumulation of heterologous methionine-rich proteins in soybean seeds.
Collapse
Affiliation(s)
- Won-Seok Kim
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of MissouriColumbia, MO, USA
| | - Joseph M. Jez
- Department of Biology, Washington UniversitySt. Louis, MO, USA
| | - Hari B. Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University of MissouriColumbia, MO, USA
| |
Collapse
|
34
|
Lu M, Xu BY, Zhou K, Cheng W, Jiang YL, Chen Y, Zhou CZ. Structural and biochemical analyses of Microcystis aeruginosa O-acetylserine sulfhydrylases reveal a negative feedback regulation of cysteine biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:308-15. [DOI: 10.1016/j.bbapap.2013.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/15/2013] [Accepted: 11/15/2013] [Indexed: 02/05/2023]
|
35
|
Yi H, Dey S, Kumaran S, Lee SG, Krishnan HB, Jez JM. Structure of soybean serine acetyltransferase and formation of the cysteine regulatory complex as a molecular chaperone. J Biol Chem 2013; 288:36463-72. [PMID: 24225955 PMCID: PMC3868759 DOI: 10.1074/jbc.m113.527143] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/04/2013] [Indexed: 01/03/2023] Open
Abstract
Serine acetyltransferase (SAT) catalyzes the limiting reaction in plant and microbial biosynthesis of cysteine. In addition to its enzymatic function, SAT forms a macromolecular complex with O-acetylserine sulfhydrylase. Formation of the cysteine regulatory complex (CRC) is a critical biochemical control feature in plant sulfur metabolism. Here we present the 1.75-3.0 Å resolution x-ray crystal structures of soybean (Glycine max) SAT (GmSAT) in apoenzyme, serine-bound, and CoA-bound forms. The GmSAT-serine and GmSAT-CoA structures provide new details on substrate interactions in the active site. The crystal structures and analysis of site-directed mutants suggest that His(169) and Asp(154) form a catalytic dyad for general base catalysis and that His(189) may stabilize the oxyanion reaction intermediate. Glu(177) helps to position Arg(203) and His(204) and the β1c-β2c loop for serine binding. A similar role for ionic interactions formed by Lys(230) is required for CoA binding. The GmSAT structures also identify Arg(253) as important for the enhanced catalytic efficiency of SAT in the CRC and suggest that movement of the residue may stabilize CoA binding in the macromolecular complex. Differences in the effect of cold on GmSAT activity in the isolated enzyme versus the enzyme in the CRC were also observed. A role for CRC formation as a molecular chaperone to maintain SAT activity in response to an environmental stress is proposed for this multienzyme complex in plants.
Collapse
Affiliation(s)
- Hankuil Yi
- From the Department of Biological Sciences, Chungnam National University, 220 Gung-Dong, Yuseong-Gu, Daejeon 305-764, Korea
| | - Sanghamitra Dey
- the Department of Biological Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Sangaralingam Kumaran
- the Council of Scientific and Industrial Research, Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India
| | - Soon Goo Lee
- the Department of Biology, Washington University, St. Louis, Missouri 63130, and
| | - Hari B. Krishnan
- the Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, Department of Agronomy, University of Missouri, Columbia, Missouri 65211
| | - Joseph M. Jez
- the Department of Biology, Washington University, St. Louis, Missouri 63130, and
| |
Collapse
|
36
|
Matityahu I, Godo I, Hacham Y, Amir R. Tobacco seeds expressing feedback-insensitive cystathionine gamma-synthase exhibit elevated content of methionine and altered primary metabolic profile. BMC PLANT BIOLOGY 2013; 13:206. [PMID: 24314105 PMCID: PMC3878949 DOI: 10.1186/1471-2229-13-206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/03/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND The essential sulfur-containing amino acid methionine plays a vital role in plant metabolism and human nutrition. In this study, we aimed to elucidate the regulatory role of the first committed enzyme in the methionine biosynthesis pathway, cystathionine γ-synthase (CGS), on methionine accumulation in tobacco seeds. We also studied the effect of this manipulation on the seed's metabolism. RESULTS Two forms of Arabidopsis CGS (AtCGS) were expressed under the control of the seeds-specific promoter of legumin B4: feedback-sensitive F-AtCGS (LF seeds), and feedback-insensitive T-AtCGS (LT seeds). Unexpectedly, the soluble content of methionine was reduced significantly in both sets of transgenic seeds. Amino acids analysis and feeding experiments indicated that although the level of methionine was reduced, the flux through its synthesis had increased. As a result, the level of protein-incorporated methionine had increased significantly in LT seeds by up to 60%, but this was not observed in LF seeds, whose methionine content is tightly regulated. This increase was accompanied by a higher content of other protein-incorporated amino acids, which led to 27% protein content in the seeds although this was statistically insignificantly. In addition, the levels of reducing sugars (representing starch) were slightly but significantly reduced, while that of oil was insignificantly reduced. To assess the impact of the high expression level of T-AtCGS in seeds on other primary metabolites, metabolic profiling using GC-MS was performed. This revealed significant alterations to the primary seed metabolism manifested by a significant increase in eight annotated metabolites (mostly sugars and their oxidized derivatives), while the levels of 12 other metabolites were reduced significantly in LT compared to wild-type seeds. CONCLUSION Expression of T-AtCGS leads to an increase in the level of total Met, higher contents of total amino acids, and significant changes in the levels of 20 annotated metabolites. The high level of oxidized metabolites, the two stress-associated amino acids, proline and serine, and low level of glutathione suggest oxidative stress that occurs during LT seed development. This study provides information on the metabolic consequence of increased CGS activity in seeds and how it affects the seed's nutritional quality.
Collapse
Affiliation(s)
- Ifat Matityahu
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Itamar Godo
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Yael Hacham
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
| | - Rachel Amir
- Laboratory of Plant Science, Migal Galilee Technology Center, P.O. Box 831, Kiryat Shmona 12100, Israel
- Tel Hai College, Upper Galilee, Israel
| |
Collapse
|
37
|
Natarajan S, Luthria D, Bae H, Lakshman D, Mitra A. Transgenic soybeans and soybean protein analysis: an overview. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11736-43. [PMID: 24099420 DOI: 10.1021/jf402148e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification. Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli. This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with soy-derived food products.
Collapse
Affiliation(s)
- Savithiry Natarajan
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| | | | | | | | | |
Collapse
|
38
|
Song S, Hou W, Godo I, Wu C, Yu Y, Matityahu I, Hacham Y, Sun S, Han T, Amir R. Soybean seeds expressing feedback-insensitive cystathionine γ-synthase exhibit a higher content of methionine. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1917-26. [PMID: 23530130 DOI: 10.1093/jxb/ert053] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Soybean seeds provide an excellent source of protein for human and livestock nutrition. However, their nutritional quality is hampered by a low concentration of the essential sulfur amino acid, methionine (Met). In order to study factors that regulate Met synthesis in soybean seeds, this study used the Met-insensitive form of Arabidopsis cystathionine γ-synthase (AtD-CGS), which is the first committed enzyme of Met biosynthesis. This gene was expressed under the control of a seed-specific promoter, legumin B4, and used to transform the soybean cultivar Zigongdongdou (ZD). In three transgenic lines that exhibited the highest expression level of AtD-CGS, the level of soluble Met increased significantly in developing green seeds (3.8-7-fold). These seeds also showed high levels of other amino acids. This phenomenon was more prominent in two transgenic lines, ZD24 and ZD91. The total Met content, which including Met incorporated into proteins, significantly increased in the mature dry seeds of these two transgenic lines by 1.8- and 2.3-fold, respectively. This elevation was accompanied by a higher content of other protein-incorporated amino acids, which led to significantly higher total protein content in the seeds of these two lines. However, in a third transgenic line, ZD01, the level of total Met and the level of other amino acids did not increase significantly in the mature dry seeds. This line also showed no significant change in protein levels. This suggests a positive connection between high Met content and the synthesis of other amino acids that enable the synthesis of more seed proteins.
Collapse
Affiliation(s)
- Shikui Song
- The National Key Facility for Crop Gene Resources and Genetic Improvement, NFCRI, MOA Key Laboratory of Soybean Biology Beijing, Institute of Crop Science, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The cysteine regulatory complex from plants and microbes: what was old is new again. Curr Opin Struct Biol 2013; 23:302-10. [DOI: 10.1016/j.sbi.2013.02.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/16/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
|
40
|
Yi H, Jez JM. Assessing functional diversity in the soybean β-substituted alanine synthase enzyme family. PHYTOCHEMISTRY 2012; 83:15-24. [PMID: 22986002 DOI: 10.1016/j.phytochem.2012.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 06/12/2012] [Accepted: 08/10/2012] [Indexed: 05/08/2023]
Abstract
In plants, proteins of the β-substituted alanine synthase (BSAS) enzyme family perform a diverse range of reactions, including formation of cysteine from O-acetylserine and sulfide, detoxification of cyanide by its addition to cysteine, the breakdown of cysteine into pyruvate, ammonia, and sulfide, and the synthesis of S-sulfocysteine. With the completed genome sequence of soybean (Glycine max (L.) Merr. cv. Williams 82), the functional diversity of the BSAS in this highly duplicated plant species was examined to determine whether soybean BSAS enzymes catalyze the various reactions connected to cysteine metabolism. The 16 soybean BSAS can be grouped into clades that are similar to those observed in Arabidopsis. Biochemical analysis of soybean BSAS proteins demonstrate that enzymes of clades I and III function as O-acetylserine sulfhydrylases for cysteine synthesis, clade II encodes cysteine desulfhydrase activity, and that clade V proteins function as β-cyanoalanine synthase for cyanide detoxification. Although clade IV is similar to Arabidopsis S-sulfocysteine synthase, this activity was not detected in the soybean homolog. Overall, our results show that bioinformatics approach provides a useful method to assess the biochemical properties of BSAS enzymes in plant species.
Collapse
Affiliation(s)
- Hankuil Yi
- Department of Biology, Washington University in St. Louis, One Brookings Drive, Campus Box 1137, St. Louis, MO 63130, USA
| | | |
Collapse
|
41
|
Liao D, Pajak A, Karcz SR, Chapman BP, Sharpe AG, Austin RS, Datla R, Dhaubhadel S, Marsolais F. Transcripts of sulphur metabolic genes are co-ordinately regulated in developing seeds of common bean lacking phaseolin and major lectins. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6283-95. [PMID: 23066144 PMCID: PMC3481216 DOI: 10.1093/jxb/ers280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The lack of phaseolin and phytohaemagglutinin in common bean (dry bean, Phaseolus vulgaris) is associated with an increase in total cysteine and methionine concentrations by 70% and 10%, respectively, mainly at the expense of an abundant non-protein amino acid, S-methyl-cysteine. Transcripts were profiled between two genetically related lines differing for this trait at four stages of seed development using a high density microarray designed for common bean. Transcripts of multiple sulphur-rich proteins were elevated, several previously identified by proteomics, including legumin, basic 7S globulin, albumin-2, defensin, albumin-1, the Bowman-Birk type proteinase inhibitor, the double-headed trypsin inhibitor, and the Kunitz trypsin inhibitor. A co-ordinated regulation of transcripts coding for sulphate transporters, sulphate assimilatory enzymes, serine acetyltransferases, cystathionine β-lyase, homocysteine S-methyltransferase and methionine gamma-lyase was associated with changes in cysteine and methionine concentrations. Differential gene expression of sulphur-rich proteins preceded that of sulphur metabolic enzymes, suggesting a regulation by demand from the protein sink. Up-regulation of SERAT1;1 and -1;2 expression revealed an activation of cytosolic O-acetylserine biosynthesis. Down-regulation of SERAT2;1 suggested that cysteine and S-methyl-cysteine biosynthesis may be spatially separated in different subcellular compartments. Analysis of free amino acid profiles indicated that enhanced cysteine biosynthesis was correlated with a depletion of O-acetylserine. These results contribute to our understanding of the regulation of sulphur metabolism in developing seed in response to a change in the composition of endogenous proteins.
Collapse
Affiliation(s)
- Dengqun Liao
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario N5V 4T3, Canada
| | - Agnieszka Pajak
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario N5V 4T3, Canada
| | - Steven R. Karcz
- Agriculture and Agri-Food Canada, Bioproducts and Bioprocesses, Saskatoon Research Centre, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - B. Patrick Chapman
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario N5V 4T3, Canada
| | - Andrew G. Sharpe
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Ryan S. Austin
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario N5V 4T3, Canada
| | - Raju Datla
- National Research Council Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sangeeta Dhaubhadel
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Frédéric Marsolais
- Agriculture and Agri-Food Canada, Genomics and Biotechnology, Southern Crop Protection and Food Research Centre, 1391 Sandford St., London, Ontario N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, Ontario N6A 5B7, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Palavalli MH, Natarajan SS, Wang TTY, Krishnan HB. Imbibition of soybean seeds in warm water results in the release of copious amounts of Bowman-Birk protease inhibitor, a putative anticarcinogenic agent. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3135-43. [PMID: 22372424 DOI: 10.1021/jf205308w] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protease inhibitors play a protective role against pathogenic microorganisms and herbivorous insects. The two predominant protease inhibitors of soybean seeds are the Kunitz trypsin inhibitor (KTI) and Bowman-Birk protease inhibitor (BBI). In this study, we report that soybean seeds incubated in warm water release large amounts of proteins into the surrounding media. Two-dimensional gel electrophoresis analysis of the seed exudates resulted in the separation of 93 distinct protein spots out of which 90 spots were identified by LC-MS/MS. The basic 7S globulin and the BBI are the two predominant proteins found in the soybean seed exudates. In addition to 7S and 11S seed storage proteins, others known to protect the seeds against pathogens and pests including KTI, peroxidase, α-galactosidase, and endo-1.3-β-glucanase were also identified in the seed exudates. Soybean seed exudate obtained by incubating the seeds in warm water was also able to inhibit the growth of human breast cancer cell line MCF-7. Since soybean seeds release large amounts of enzymatically active BBI when immersed in warm water, our procedure could be exploited as a simplified alternative method for the preparation of BBI concentrate which is being used as a cancer chemoprotective agent.
Collapse
Affiliation(s)
- Manoj H Palavalli
- Plant Science Division, University of Missouri, 1-41 Agriculture Building, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
43
|
Ravilious GE, Jez JM. Structural biology of plant sulfur metabolism: From assimilation to biosynthesis. Nat Prod Rep 2012; 29:1138-52. [DOI: 10.1039/c2np20009k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|