1
|
Zhang S, Ren Y, Wang S, Song L, Jing Y, Xu T, Kang X, Li Y. EuHDZ25 positively affects rubber biosynthesis by targeting EuFPS1 in Eucommia leaves. Int J Biol Macromol 2024; 272:132707. [PMID: 38825274 DOI: 10.1016/j.ijbiomac.2024.132707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Eucommia ulmoides is a temperate gum source plant that produces trans-polyisoprene (TPI), also known as Eucommia rubber. The structural configuration and function of TPI offer a new material with important potential for industrial development. In this study, we detected the TPI content in the leaves of diploid and triploid E. ulmoides plants. The average TPI content in the leaves of triploid E. ulmoides was significantly higher than that of diploid. Transcriptome data and weighted gene co-expression network analyses identified a significant positive correlation between the EuFPS1 gene and TPI content. Overexpression of EuFPS1 increased the density of rubber particles and TPI content, indicating its crucial role in TPI biosynthesis. In addition, the expression of EuHDZ25 in E. ulmoides was significantly positively correlated with EuFPS1 expression. Yeast one-hybrid and dual-luciferase assays demonstrated that EuHDZ25 mainly promotes TPI biosynthesis through positive regulation of EuFPS1 expression. The significantly up-regulated expression of EuHDZ25 and its consequent upregulation of EuFPS1 during the biosynthesis of TPI may partially explain the increased TPI content of triploids. This study provides an important theoretical foundation for further exploring the molecular mechanism of secondary metabolites content variation in polyploids and can help to promote the development and utilization of rubber resources.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yongyu Ren
- College of Forestry, Henan Agricultural University, Zhengzhou 450046, China
| | - Shun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lianjun Song
- Weixian Eucommia National Forest Tree Germplasm Repository, Weixian Forestry Cultivation Base of Superior Species, Hebei, China
| | - Yanchun Jing
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tingting Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Zhang S, Chen H, Wang S, Du K, Song L, Xu T, Xia Y, Guo R, Kang X, Li Y. Positive regulation of the Eucommia rubber biosynthesis-related gene EuFPS1 by EuWRKY30 in Eucommia ulmoides. Int J Biol Macromol 2024; 268:131751. [PMID: 38657917 DOI: 10.1016/j.ijbiomac.2024.131751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Eucommia rubber is a secondary metabolite from Eucommia ulmoides that has attracted much attention because of its unique properties and enormous potential for application. However, the transcriptional mechanism regulating its biosynthesis has not yet been determined. Farnesyl pyrophosphate synthase is a key enzyme in the Eucommia rubber biosynthesis. In this study, the promoter of EuFPS1 was used as bait, EuWRKY30 was screened from the cDNA library of EuFPS1 via a yeast one-hybrid system. EuWRKY30 belongs to the WRKY IIa subfamily and contains a WRKY domain and a C2H2 zinc finger motif, and the expressed protein is located in the nucleus. EuWRKY30 and EuFPS1 exhibited similar tissue expression patterns, and yeast one-hybrid and dual-luciferase experiments confirmed that EuWRKY30 directly binds to the W-box element in the EuFPS1 promoter and activates its expression. Moreover, the overexpression of EuWRKY30 significantly upregulated the expression level of EuFPS1, further increasing the density of the rubber particles and Eucommia rubber content. The results of this study indicated that EuWRKY30 positively regulates EuFPS1, which plays a critical role in the synthesis of Eucommia rubber, provided a basis for further analysis of the underlying transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hao Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kang Du
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lianjun Song
- Weixian Eucommia National Forest Tree Germplasm Repository, Weixian Forestry Cultivation Base of Superior Species, Hebei, China
| | - Tingting Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yufei Xia
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ruihua Guo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Attri K, Zhang Z, Singh A, Sharrock RA, Xie Z. Rapid sequence and functional diversification of a miRNA superfamily targeting calcium signaling components in seed plants. THE NEW PHYTOLOGIST 2022; 235:1082-1095. [PMID: 35485957 PMCID: PMC9322595 DOI: 10.1111/nph.18185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
MicroRNA (miRNA)-directed posttranscriptional gene silencing (miR-PTGS) is an integral component of gene regulatory networks governing plant development and responses to the environment. The sequence homology between Sly-miR4376, a miRNA common to Solanaceae and reported to target autoinhibited Ca2+ -ATPase 10 (ACA10) messenger RNA (mRNA) in tomato, and Arabidopsis miR391 (Ath-miR391), previously annotated as a nonconserved member of the deeply conserved miR390 family, has prompted us to revisit the function of Ath-miR391, as well as its regulatory conservation. A combination of genetic, molecular, and bioinformatic analyses revealed a hidden conservation for miR-PTGS of ACA10 homologs in spermatophytes. We found that the Arabidopsis ACA10 mRNA undergoes miR391-directed cleavage in vivo. Furthermore, transgenic overexpression of miR391 recapitulated the compact inflorescence (cif) phenotypes characteristic of ACA10 loss-of-function mutants, due to miR391-directed PTGS of ACA10. Significantly, comprehensive data mining revealed robust evidence for widespread PTGS of ACA10 homologs directed by a superfamily of related miRNAs sharing a conserved sequence core. Intriguingly, the ACA-targeting miRNAs in Poaceae also direct PTGS for calmodulin-like proteins which are putative Ca2+ sensors. The PTGS of ACA10 homologs is therefore directed by a miRNA superfamily that is of ancient origin and has undergone rapid sequence diversification associated with functional innovation.
Collapse
Affiliation(s)
- Komal Attri
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Zijie Zhang
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Atinder Singh
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| | - Robert A. Sharrock
- Department of Plant Sciences and Plant PathologyMontana State UniversityBozemanMT59717USA
| | - Zhixin Xie
- Department of Biological SciencesTexas Tech UniversityLubbockTX79409USA
| |
Collapse
|
4
|
Whole genome re-sequencing reveals the genetic diversity and evolutionary patterns of Eucommia ulmoides. Mol Genet Genomics 2022; 297:485-494. [PMID: 35146538 DOI: 10.1007/s00438-022-01864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
Eucommia ulmoides (E. ulmoides) is a deciduous perennial tree belonging to the order Garryales, and is known as "living fossil" plant, along with ginkgo (Ginkgo biloba), metaspaca (Metasequoia glyptostroboides) and dove tree (Davidia involucrata Baill). However, the genetic diversity and population structure of E. ulmoides are still ambiguous nowdays. In this study, we re-sequenced the genomes of 12 E. ulmoides accessions from different major climatic geography regions in China to elucidate the genetic diversity, population structure and evolutionary pattern. By integration of phylogenetic analysis, principal component analysis and population structure analysis based on a number of high-quality SNPs, a total of 12 E. ulmoides accessions were clustered into four different groups. This result is consistent with their geographical location except for group samples from Shanghai and Hunan province. E. ulmoides accessions from Hunan province exhibited a closer genetic relationship with E. ulmoides accessions from Shanghai in China compared with other regions, which is also supported by the result of population structure analyses. Genetic diversity analysis further revealed that E. ulmoides samples in Shanghai and Hunan province were with higher genetic diversity than those in other regions in this study. In addition, we treated the E. ulmoides materials from Shanghai and Hunan province as group A, and the other materials from other places as group B, and then analyzed the evolutionary pattern of E. ulmoides. The result showed the significant differentiation (Fst = 0.1545) between group A and group B. Some candidate highly divergent genome regions were identified in group A by selective sweep analyses, and the function analysis of candidate genes in these regions showed that biological regulation processes could be correlated with the Eu-rubber biosynthesis. Notably, nine genes were identified from selective sweep regions. They were involved in the Eu-rubber biosynthesis and expressed in rubber containing tissues. The genetic diversity research and evolution model of E. ulmoides were preliminarily explored in this study, which laid the foundation for the protection of germplasm resources and the development and utilization of multipurpose germplasm resources in the future.
Collapse
|
5
|
Identification, evolution and expression analysis of WRKY gene family in Eucommia ulmoides. Genomics 2021; 113:3294-3309. [PMID: 34022347 DOI: 10.1016/j.ygeno.2021.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/31/2021] [Accepted: 05/17/2021] [Indexed: 11/20/2022]
Abstract
The WRKY transcription factors is one of the largest families of transcription factors (TFs) in plants and involved in multiple biological processes. However, the role of the WRKY family had not been reported in Eucommia ulmoides. In this study, 45 WRKY genes (EuWRKY1-45) with conserved WRKY domain were identified in E. ulmoides and classified into three groups. The group II was further divided into five subgroups based on phylogenetic analysis, and each clade was well supported by the conserved motifs. All the genes were located on 34 different scaffolds respectively. A number of development-, light-, hormone-, and stress-related elements were randomly distributed in the promoter sequences of EuWRKYs. Expression profiles indicated that EuWRKY genes were involved in leaf development, and majority of EuWRKYs genes were highly expressed in leaf buds. Co-expression analysis of WRKYs suggested an intricate interplay of growth-related responses. EuWRKY4 was involved in a complex proteins interaction network. Collectively, our results provide extensive insights into the WRKY gene family, thereby contributing to the screening of additional candidate genes in E. ulmoides.
Collapse
|
6
|
Wei X, Peng P, Peng F, Dong J. Natural Polymer Eucommia Ulmoides Rubber: A Novel Material. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3797-3821. [PMID: 33761246 DOI: 10.1021/acs.jafc.0c07560] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
As the second natural rubber resource, Eucommia ulmoides rubber (EUR) from Eucommia ulmoides Oliver is mainly composed of trans-1,4-polyisoprene, which is the isomer of natural rubber cis-1,4-polyisoprene from Hevea brasiliensis. In the past few years, the great potential application of EUR has received increasing attention, and there is a growing awareness that the natural polymer EUR could become an emerging research topic in field of the novel materials due to its unique and excellent duality of both rubber and plastic. To gain insight into its further development, in this review, the extraction, structure, physicochemical properties, and modification of EUR are discussed in detail. More emphasis on the potential applications in the fields of the environment, agriculture, engineering, and biomedical engineering is summarized. Finally, some insights into the challenges and perspectives of EUR are also suggested.
Collapse
Affiliation(s)
- Xingneng Wei
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Juane Dong
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Kajiura H, Yoshizawa T, Tokumoto Y, Suzuki N, Takeno S, Takeno KJ, Yamashita T, Tanaka SI, Kaneko Y, Fujiyama K, Matsumura H, Nakazawa Y. Structure-function studies of ultrahigh molecular weight isoprenes provide key insights into their biosynthesis. Commun Biol 2021; 4:215. [PMID: 33594248 PMCID: PMC7887238 DOI: 10.1038/s42003-021-01739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/24/2020] [Indexed: 12/03/2022] Open
Abstract
Some plant trans-1,4-prenyltransferases (TPTs) produce ultrahigh molecular weight trans-1,4-polyisoprene (TPI) with a molecular weight of over 1.0 million. Although plant-derived TPI has been utilized in various industries, its biosynthesis and physiological function(s) are unclear. Here, we identified three novel Eucommia ulmoides TPT isoforms—EuTPT1, 3, and 5, which synthesized TPI in vitro without other components. Crystal structure analysis of EuTPT3 revealed a dimeric architecture with a central hydrophobic tunnel. Mutation of Cys94 and Ala95 on the central hydrophobic tunnel no longer synthesizd TPI, indicating that Cys94 and Ala95 were essential for forming the dimeric architecture of ultralong-chain TPTs and TPI biosynthesis. A spatiotemporal analysis of the physiological function of TPI in E. ulmoides suggested that it is involved in seed development and maturation. Thus, our analysis provides functional and mechanistic insights into TPI biosynthesis and uncovers biological roles of TPI in plants. Kajiura and Yoshizawa et al. identify three new prenyltransferases in the tree Eucommia ulmoides that synthesize exceptionally high molecular weight trans-1,4-polyisoprene (TPI). Through crystal structure and mutational analyses, they identify key residues required for TPI synthesis and reveal its functional importance in seed development.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.,Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan.,Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuji Tokumoto
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Nobuaki Suzuki
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Shinya Takeno
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Kanokwan Jumtee Takeno
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Takuya Yamashita
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Shun-Ichi Tanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yoshinobu Kaneko
- Yeast Genetic Resources Lab, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Yoshihisa Nakazawa
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan. .,Faculty of Bioscience and Bioindustry, Tokushima University, 2-1 Minami-josanjima, Tokushima, 770-8513, Japan.
| |
Collapse
|
8
|
Li Y, Wei H, Yang J, Du K, Li J, Zhang Y, Qiu T, Liu Z, Ren Y, Song L, Kang X. High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis. HORTICULTURE RESEARCH 2020; 7:183. [PMID: 33328448 PMCID: PMC7603500 DOI: 10.1038/s41438-020-00406-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/13/2020] [Accepted: 09/04/2020] [Indexed: 05/06/2023]
Abstract
We report the acquisition of a high-quality haploid chromosome-scale genome assembly for the first time in a tree species, Eucommia ulmoides, which is known for its rubber biosynthesis and medicinal applications. The assembly was obtained by applying PacBio and Hi-C technologies to a haploid that we specifically generated. Compared to the initial genome release, this one has significantly improved assembly quality. The scaffold N50 (53.15 MB) increased 28-fold, and the repetitive sequence content (520 Mb) increased by 158.24 Mb, whereas the number of gaps decreased from 104,772 to 128. A total of 92.87% of the 26,001 predicted protein-coding genes identified with multiple strategies were anchored to the 17 chromosomes. A new whole-genome duplication event was superimposed on the earlier γ paleohexaploidization event, and the expansion of long terminal repeats contributed greatly to the evolution of the genome. The more primitive rubber biosynthesis of this species, as opposed to that in Hevea brasiliensis, relies on the methylerythritol-phosphate pathway rather than the mevalonate pathway to synthesize isoprenyl diphosphate, as the MEP pathway operates predominantly in trans-polyisoprene-containing leaves and central peels. Chlorogenic acid biosynthesis pathway enzymes were preferentially expressed in leaves rather than in bark. This assembly with higher sequence contiguity can foster not only studies on genome structure and evolution, gene mapping, epigenetic analysis and functional genomics but also efforts to improve E. ulmoides for industrial and medical uses through genetic engineering.
Collapse
Affiliation(s)
- Yun Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, People's Republic of China
| | - Hairong Wei
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, People's Republic of China
- School of Forest Resources and Environmental, Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Jun Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, People's Republic of China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, People's Republic of China
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, People's Republic of China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, People's Republic of China
| | - Tong Qiu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, People's Republic of China
| | - Zhao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, People's Republic of China
| | - Yongyu Ren
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, People's Republic of China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083, Beijing, People's Republic of China
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, People's Republic of China
| | - Lianjun Song
- Hebei Huayang Fine Seeds and Seedlings Co., Ltd., 054700, Hebei, People's Republic of China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, 100083, Beijing, People's Republic of China.
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, 100083, Beijing, People's Republic of China.
- College of Biological Sciences and Technology, Beijing Forestry University, 100083, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Molecular Sex Identification in the Hardy Rubber Tree ( Eucommia ulmoides Oliver) via ddRAD Markers. Int J Genomics 2020; 2020:2420976. [PMID: 32509842 PMCID: PMC7246395 DOI: 10.1155/2020/2420976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/03/2020] [Indexed: 11/18/2022] Open
Abstract
Eucommia ulmoides, also known as the industrially and medicinally important hardy rubber tree, is the sole species of Eucommiaceae. Nevertheless, its dioecious property hinders sex recognition by traditional morphological observation at very early developmental stages, thus inhibiting breeding and economic cropping. In this study, double-digest restriction site-associated DNA sequencing (ddRAD-seq) was applied to screen sex-linked molecular markers for sex identification and investigation of the sex determination system in 20 male and female E. ulmoides individual plants, respectively. In consequence, five candidate male-specific loci but no female-specific loci were predicated among the 183,752 male and 147,122 female catalogue loci by bioinformatics analysis. Subsequent PCR (polymerase chain reaction) amplification and Sanger sequencing examinations were performed on another 24 individuals, 12 for each sex, from a separate population. One ideal sex-linked locus, MSL4, was identified among the five putative male-specific loci that were found using ddRAD data. MSL4 is 479 bp in length and highly conserved in all the male individuals, suggesting its feature of being stable and repeatable. Our results also indicated that the sex of E. ulmoides is likely determined genetically. In short, this study provides a consistent and reproducible ddRAD marker (MSL4) that is able to discriminate male from female seedlings in E. ulmoides, which will be valuable for rapid breeding practice and better commercial production of this economically important tree.
Collapse
|
10
|
Jin C, Li Z, Li Y, Wang S, Li L, Liu M, Ye J. Transcriptome analysis of terpenoid biosynthetic genes and simple sequence repeat marker screening in Eucommia ulmoides. Mol Biol Rep 2020; 47:1979-1990. [PMID: 32040708 DOI: 10.1007/s11033-020-05294-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/21/2022]
Abstract
Trans-polyisoprene rubber is produced in the tissues of leaves, bark, and fruit of Eucommia ulmoides and is considered an important energy source. Transcript profiles of two tissues from E. ulmoides cv. Qinzhong No. 3, leaf and fruit, were analysed using the Illumina HiSeq 2000 system. In total, 104 million clean reads were obtained and assembled into 58,863 unigenes. Through gene functional classification, 28,091 unigenes (47.72%) were annotated and 65 unigenes have been hypothesized to encode proteins involved in terpenoid biosynthesis. In addition, 10,041 unigenes were detected as differentially expressed unigenes, and 29 of them were putatively related to terpenoid biosynthesis. The synthesis of trans-polyisoprene rubbers in E. ulmoides was hypothesised to be dominated by the mevalonate pathway. Farnesyl diphosphate synthase 2 (FPPS2) was considered a key component in the biosynthesis of trans-polyprenyl diphosphate. Rubber elongation factor 3 (REF3) might be involved in stabilising the membrane of rubber particles in E. ulmoides. To date, 351 simple sequence repeats (SSRs) were validated as polymorphisms from eight E. ulmoides plants (two parent plants and six F1 individuals), and these could act as molecular markers for genetic map density increase and breeding improvement of E. ulmoides.
Collapse
Affiliation(s)
- Cangfu Jin
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhouqi Li
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yu Li
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China.,Forestry College, Fujian A&F University, Fuzhou, Fujian, China
| | - Shuhui Wang
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China.,Yantai Forestry Science Institute, Yantai, Shandong, China
| | - Long Li
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Minhao Liu
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Ye
- Academy of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
Ye J, Han W, Fan R, Liu M, Li L, Jia X. Integration of Transcriptomes, Small RNAs, and Degradome Sequencing to Identify Putative miRNAs and Their Targets Related to Eu-Rubber Biosynthesis in Eucommia ulmoides. Genes (Basel) 2019; 10:genes10080623. [PMID: 31430866 PMCID: PMC6722833 DOI: 10.3390/genes10080623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Eucommia ulmoides has attracted much attention as a valuable natural rubber (Eu-rubber) production tree. As a strategic material, Eu-rubber plays a vital role in general and defence industries. However, the study of Eu-rubber biosynthesis at a molecular level is scarce, and the regulatory network between microRNAs (miRNAs) and messenger RNAs (mRNAs) in Eu-rubber biosynthesis has not been assessed. In this study, we comprehensively analyzed the transcriptomes, small RNAs (sRNAs) and degradome to reveal the regulatory network of Eu-rubber biosynthesis in E. ulmoides. A total of 82,065 unigenes and 221 miRNAs were identified using high-throughput sequencing; 20,815 targets were predicted using psRNATarget software. Of these targets, 779 miRNA-target pairs were identified via degradome sequencing. Thirty-one miRNAs were differentially expressed; 22 targets of 34 miRNAs were annotated in the terpenoid backbone biosynthesis pathway (ko00900) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG). These miRNAs were putatively related to Eu-rubber biosynthesis. A regulatory network was constructed according to the expression profiles of miRNAs and their targets. These results provide a comprehensive analysis of transcriptomics, sRNAs and degradome to reveal the Eu-rubber accumulation, and provide new insights into genetic engineering techniques which may improve the content of Eu-rubber in E. ulmoides.
Collapse
Affiliation(s)
- Jing Ye
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Wenjing Han
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Ruisheng Fan
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Minhao Liu
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Long Li
- College of Forestry, Northwest A&F University, Shaanxi 712100, China
| | - Xiaoming Jia
- College of Forestry, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
12
|
Men X, Wang F, Chen GQ, Zhang HB, Xian M. Biosynthesis of Natural Rubber: Current State and Perspectives. Int J Mol Sci 2018; 20:E50. [PMID: 30583567 PMCID: PMC6337083 DOI: 10.3390/ijms20010050] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Natural rubber is a kind of indispensable biopolymers with great use and strategic importance in human society. However, its production relies almost exclusively on rubber-producing plants Hevea brasiliensis, which have high requirements for growth conditions, and the mechanism of natural rubber biosynthesis remains largely unknown. In the past two decades, details of the rubber chain polymerization and proteins involved in natural rubber biosynthesis have been investigated intensively. Meanwhile, omics and other advanced biotechnologies bring new insight into rubber production and development of new rubber-producing plants. This review summarizes the achievements of the past two decades in understanding the biosynthesis of natural rubber, especially the massive information obtained from the omics analyses. Possibilities of natural rubber biosynthesis in vitro or in genetically engineered microorganisms are also discussed.
Collapse
Affiliation(s)
- Xiao Men
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Fan Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guo-Qiang Chen
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Hai-Bo Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao 266101, China.
| |
Collapse
|
13
|
Liu H, Lu Y, Wang J, Hu J, Wuyun T. Genome-wide screening of long non-coding RNAs involved in rubber biosynthesis in Eucommia ulmoides. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:1070-1082. [PMID: 29944209 DOI: 10.1111/jipb.12693] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Increasing evidence indicates that long non-coding RNAs (lncRNAs) play pivotal roles in regulatory networks controlling plant and animal gene expression. However, lncRNA roles in regulating rubber biosynthesis in Eucommia ulmoides, an emerging source of natural rubber (Eu-rubber), are currently unknown. Here, we report on RNA deep-sequencing of E. ulmoides fruits at two developmental stages. Based on application of a stringent pipeline, 29,103 lncRNAs and 9,048 transcripts of uncertain coding potential (TUCPs) were identified. Two differentially expressed (DE) TUCPs appear to simultaneously regulate 12 protein-coding genes involved in Eu-rubber biosynthesis (GIEBs), as well as 95 DE genes. Functional categorization of these 95 DE genes indicated their involvement in subcellular microstructures and cellular processes, such as cell wall, cell division, and growth. These DE genes may participate in the differentiation and development of laticifers, where Eu-rubber is synthesized. A model is proposed in which "commanders" (DE TUCPs) direct the "builders" (DE genes) to construct a "storehouse" of materials needed for Eu-rubber synthesis, and the "workers" (GIEBs) to synthesize Eu-rubber. These findings provide insights into both cis- and trans-polyisoprene biosynthesis in plants, laying the foundation for additional studies of this crucial process.
Collapse
Affiliation(s)
- Huimin Liu
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Yan Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Juan Wang
- Chemistry department, University of Missouri-Columbia, Columbia MO 65201, USA
| | - Jingjing Hu
- Inertia Shanghai Biotechnology Co., Ltd., Shanghai 200335, China
| | - Tana Wuyun
- State Key Laboratory of Tree Genetics and Breeding, Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China
| |
Collapse
|
14
|
Wang W, Chen S, Zhang X. Whole-Genome Comparison Reveals Heterogeneous Divergence and Mutation Hotspots in Chloroplast Genome of Eucommia ulmoides Oliver. Int J Mol Sci 2018; 19:E1037. [PMID: 29601491 PMCID: PMC5979487 DOI: 10.3390/ijms19041037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022] Open
Abstract
Eucommia ulmoides (E. ulmoides), the sole species of Eucommiaceae with high importance of medicinal and industrial values, is a Tertiary relic plant that is endemic to China. However, the population genetics study of E. ulmoides lags far behind largely due to the scarcity of genomic data. In this study, one complete chloroplast (cp) genome of E. ulmoides was generated via the genome skimming approach and compared to another available E. ulmoides cp genome comprehensively at the genome scale. We found that the structure of the cp genome in E. ulmoides was highly consistent with genome size variation which might result from DNA repeat variations in the two E. ulmoides cp genomes. Heterogeneous sequence divergence patterns were revealed in different regions of the E. ulmoides cp genomes, with most (59 out of 75) of the detected SNPs (single nucleotide polymorphisms) located in the gene regions, whereas most (50 out of 80) of the indels (insertions/deletions) were distributed in the intergenic spacers. In addition, we also found that all the 40 putative coding-region-located SNPs were synonymous mutations. A total of 71 polymorphic cpDNA fragments were further identified, among which 20 loci were selected as potential molecular markers for subsequent population genetics studies of E. ulmoides. Moreover, eight polymorphic cpSSR loci were also developed. The sister relationship between E. ulmoides and Aucuba japonica in Garryales was also confirmed based on the cp phylogenomic analyses. Overall, this study will shed new light on the conservation genomics of this endangered plant in the future.
Collapse
Affiliation(s)
- Wencai Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Siyun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Xianzhi Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
15
|
Wuyun TN, Wang L, Liu H, Wang X, Zhang L, Bennetzen JL, Li T, Yang L, Liu P, Du L, Wang L, Huang M, Qing J, Zhu L, Bao W, Li H, Du Q, Zhu J, Yang H, Yang S, Liu H, Yue H, Hu J, Yu G, Tian Y, Liang F, Hu J, Wang D, Gao R, Li D, Du H. The Hardy Rubber Tree Genome Provides Insights into the Evolution of Polyisoprene Biosynthesis. MOLECULAR PLANT 2018; 11:429-442. [PMID: 29229569 DOI: 10.1016/j.molp.2017.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/14/2017] [Accepted: 11/28/2017] [Indexed: 05/21/2023]
Abstract
Eucommia ulmoides, also called hardy rubber tree, is an economically important tree; however, the lack of its genome sequence restricts the fundamental biological research and applied studies of this plant species. Here, we present a high-quality assembly of its ∼1.2-Gb genome (scaffold N50 = 1.88 Mb) with at least 26 723 predicted genes for E. ulmoides, the first sequenced genome of the order Garryales, which was obtained using an integrated strategy combining Illumina sequencing, PacBio sequencing, and BioNano mapping. As a sister taxon to lamiids and campanulids, E. ulmoides underwent an ancient genome triplication shared by core eudicots but no further whole-genome duplication in the last ∼125 million years. E. ulmoides exhibits high expression levels and/or gene number expansion for multiple genes involved in stress responses and the biosynthesis of secondary metabolites, which may account for its considerable environmental adaptability. In contrast to the rubber tree (Hevea brasiliensis), which produces cis-polyisoprene, E. ulmoides has evolved to synthesize long-chain trans-polyisoprene via farnesyl diphosphate synthases (FPSs). Moreover, FPS and rubber elongation factor/small rubber particle protein gene families were expanded independently from the H. brasiliensis lineage. These results provide new insights into the biology of E. ulmoides and the origin of polyisoprene biosynthesis.
Collapse
Affiliation(s)
- Ta-Na Wuyun
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China.
| | - Lin Wang
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Huimin Liu
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Liangsheng Zhang
- Center for Genomics and Biotechnology; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Tiezhu Li
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450003, China
| | - Panfeng Liu
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Lanying Du
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Lu Wang
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Mengzhen Huang
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Jun Qing
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Lili Zhu
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Wenquan Bao
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Hongguo Li
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Qingxin Du
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Jingle Zhu
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China
| | - Hong Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Shuguang Yang
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Hui Liu
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Hui Yue
- Shandong BELO EUCOMMIA Biological Engineering Co., Ltd., Qingzhou 262500, China
| | - Jiang Hu
- Nextomics Biosciences Co., Ltd., Wuhan 430073, China
| | - Guoliang Yu
- Nextomics Biosciences Co., Ltd., Wuhan 430073, China
| | - Yu Tian
- Nextomics Biosciences Co., Ltd., Wuhan 430073, China
| | - Fan Liang
- Nextomics Biosciences Co., Ltd., Wuhan 430073, China
| | - Jingjing Hu
- Wuhan Unique Gene Bioinformatics Science and Technology Co., Ltd., Wuhan 430073, China
| | - Depeng Wang
- Nextomics Biosciences Co., Ltd., Wuhan 430073, China
| | - Ruiwen Gao
- Shandong BELO EUCOMMIA Biological Engineering Co., Ltd., Qingzhou 262500, China.
| | - Dejun Li
- Key Laboratory of Biology and Genetic Resources of Rubber Tree, Ministry of Agriculture, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China.
| | - Hongyan Du
- Non-timber Forest Research and Development Center, Chinese Academy of Forestry, Zhengzhou 450003, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, China.
| |
Collapse
|
16
|
Wang W, Zhang X. Identification of the Sex-Biased Gene Expression and Putative Sex-Associated Genes in Eucommia ulmoides Oliver Using Comparative Transcriptome Analyses. Molecules 2017; 22:E2255. [PMID: 29258253 PMCID: PMC6149867 DOI: 10.3390/molecules22122255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/29/2017] [Accepted: 12/14/2017] [Indexed: 12/04/2022] Open
Abstract
Eucommia ulmoides is a model representative of the dioecious plants with sex differentiation at initiation. Nevertheless, the genetic mechanisms of sexual dimorphism and sex determination in E. ulmoides remain poorly understood. In this study de novo transcriptome sequencing on Illumina platform generated >45 billion high-quality bases from fresh leaves of six male and female individuals of E. ulmoides. A total of 148,595 unigenes with an average length of 801 base-pairs (bp) were assembled. Through comparative transcriptome analyses, 116 differentially expressed genes (DEGs) between the males and the females were detected, including 73 male-biased genes and 43 female-biased genes. Of these DEGs, three female-biased genes were annotated to be related with the sexually dimorphic gutta content in E. ulmoides. One male-biased DEG was identified as putative MADS box gene APETALA3, a B class floral organ identity gene in the flowering plants. SNPs calling analyses further confirmed that the APETALA3-like gene was probably involved in the sex determination in E. ulmoides. Four other male-biased DEGs were potential sex-associated genes as well with segregated SNPs in accord with sex type. In addition, the SNPs density was 1.02 per kilobase (kb) in the expressed genes of E. ulmoides, implying a relatively high genetic diversity.
Collapse
Affiliation(s)
- Wencai Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
| | - Xianzhi Zhang
- Department of Forestry Protection, College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
17
|
Kajiura H, Suzuki N, Tokumoto Y, Yoshizawa T, Takeno S, Fujiyama K, Kaneko Y, Matsumura H, Nakazawa Y. Two Eucommia farnesyl diphosphate synthases exhibit distinct enzymatic properties leading to end product preferences. Biochimie 2017; 139:95-106. [PMID: 28478108 DOI: 10.1016/j.biochi.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/22/2017] [Accepted: 05/01/2017] [Indexed: 01/06/2023]
Abstract
Farnesyl diphosphate synthase (FPS) is an essential enzyme in the biosynthesis of prenyl precursors for the production of primary and secondary metabolites, including sterols, dolichols, carotenoids and ubiquinones, and for the modification of proteins. Here we identified and characterized two FPSs (EuFPS1 and EuFPS2) from the plant Eucommia ulmoides. The EuFPSs had seven highly conserved prenyltransferase-specific domains that are critical for activity. Complementation and biochemical analyses using bacterially produced recombinant EuFPS isoforms showed that the EuFPSs had FPP synthesis activities both in vivo and in vitro. In addition to the typical reaction mechanisms of FPS, EuFPSs utilized farnesyl diphosphate (FPP) as an allylic substrate and participated in further elongation of the isoprenyl chain, resulting in the synthesis of geranylgeranyl diphosphate. However, despite the high amino acid similarities between the two EuFPS isozymes, their specific activities, substrate preferences, and final reaction products were different. The use of dimethylallyl diphosphate (DMAPP) as an allylic substrate highlighted the differences between the two enzymes: depending on the pH, the metal ion cofactor, and the cofactor concentration, EuFPS2 accumulated geranyl diphosphate as an intermediate product at a constant rate, whereas EuFPS1 synthesized little geranyl diphosphate. The reaction kinetics of the EuFPSs demonstrated that isopentenyl diphosphate and DMAPP were used both as substrates and as inhibitors of EuFPS activity. Taken together, the results indicate that the biosynthesis of FPP is highly regulated by various factors indispensable for EuFPS reactions in plants.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Nobuaki Suzuki
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Yuji Tokumoto
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan; Laboratory of Forest Ecology & Physiology, Graduate School of Bioagricultural Science, Nagoya University, E1-1 (300), Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Shinya Takeno
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Kaneko
- Yeast Genetic Resources Lab, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yoshihisa Nakazawa
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan.
| |
Collapse
|
18
|
Tokumoto Y, Uefuji H, Yamamoto N, Kajiura H, Takeno S, Suzuki N, Nakazawa Y. Gene coexpression network for trans-1,4-polyisoprene biosynthesis involving mevalonate and methylerythritol phosphate pathways in Eucommia ulmoides Oliver. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:165-172. [PMID: 31275023 PMCID: PMC6565995 DOI: 10.5511/plantbiotechnology.17.0619a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/19/2017] [Indexed: 05/15/2023]
Abstract
Eucommia ulmoides, a deciduous dioecious plant species, accumulates trans-1,4-polyisoprene (TPI) in its tissues such as pericarp and leaf. Probable TPI synthase (trans-isoprenyl diphosphate synthase (TIDS)) genes were identified by expressed sequence tags of this species; however, the metabolic pathway of TPI biosynthesis, including the role of TIDSs, is unknown. To understand the mechanism of TPI biosynthesis at the transcriptional level, comprehensive gene expression data from various organs were generated and TPI biosynthesis related genes were extracted by principal component analysis (PCA). The metabolic pathway was assessed by comparing the coexpression network of TPI genes with the isoprenoid gene coexpression network of model plants. By PCA, we dissected 27 genes assumed to be involved in polyisoprene biosynthesis, including TIDS genes, genes encoding enzymes of the mevalonate (MVA) pathway and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway, and genes related to rubber synthesis. The coexpression network revealed that 22 of the 27 TPI biosynthesis genes are coordinately expressed. The network was clustered into two modules, and this was also observed in model plants. The first module was mainly comprised of MEP pathway genes and TIDS1 gene, and the second module, of MVA pathway genes and TIDS5 gene. These results indicate that TPI is likely biosynthesized by both the MEP and MVA pathways and that TIDS gene expression is differentially controlled by these pathways.
Collapse
Affiliation(s)
- Yuji Tokumoto
- Hitz (Bio) Research Alliance Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirotaka Uefuji
- Hitz (Bio) Research Alliance Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoki Yamamoto
- Hitz (Bio) Research Alliance Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Kajiura
- Hitz (Bio) Research Alliance Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinya Takeno
- Hitz (Bio) Research Alliance Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuaki Suzuki
- Hitz (Bio) Research Alliance Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshihisa Nakazawa
- Hitz (Bio) Research Alliance Laboratory, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- E-mail: Tel & Fax: +81-6-6879-4165
| |
Collapse
|
19
|
Wang L, Du H, Wuyun TN. Genome-Wide Identification of MicroRNAs and Their Targets in the Leaves and Fruits of Eucommia ulmoides Using High-Throughput Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1632. [PMID: 27877179 PMCID: PMC5099690 DOI: 10.3389/fpls.2016.01632] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/17/2016] [Indexed: 05/03/2023]
Abstract
MicroRNAs (miRNAs), a group of endogenous small non-coding RNAs, play important roles in plant growth, development, and stress response processes. Eucommia ulmoides Oliver (hardy rubber tree) is one of the few woody plants capable of producing trans-1, 4-polyisoprene (TPI), also known as Eu-rubber, which has been utilized as an industrial raw material and is extensively cultivated in China. However, the mechanism of TPI biosynthesis has not been identified in E. ulmoides. To characterize small RNAs and their targets with potential biological roles involved in the TPI biosynthesis in E. ulmoides, in the present study, eight small RNA libraries were constructed and sequenced from young and mature leaves and fruits of E. ulmoides. Further analysis identified 34 conserved miRNAs belonging to 20 families (two unclassified families), and 115 novel miRNAs seemed to be specific to E. ulmoides. Among these miRNAs, fourteen conserved miRNAs and 49 novel miRNAs were significantly differentially expressed and identified as Eu-rubber accumulation related miRNAs. Based on the E. ulmoides genomic data, 202 and 306 potential target genes were predicted for 33 conserved and 92 novel miRNAs, respectively; the predicted targets are mostly transcription factors and functional genes, which were enriched in metabolic pathways and biosynthesis of secondary metabolites. Noticeably, based on the expression patterns of miRNAs and their target genes in combination with the Eu-rubber accumulation, the negative correlation of expression of six miRNAs (Eu-miR14, Eu-miR91, miR162a, miR166a, miR172c, and miR396a) and their predicted targets serving as potential regulators in Eu-rubber accumulation. This study is the first to detect conserved and novel miRNAs and their potential targets in E. ulmoides and identify several candidate genes potentially controlling rubber accumulation, and thus provide molecular evidence for understanding the roles of miRNAs in regulating the TPI biosynthesis in E. ulmoides.
Collapse
Affiliation(s)
- Lin Wang
- Non-timber Forest Research and Development Center, Chinese Academy of ForestryZhengzhou, China
- The Eucommia Engineering Research Center of State Forestry AdministrationZhengzhou, China
| | - Hongyan Du
- Non-timber Forest Research and Development Center, Chinese Academy of ForestryZhengzhou, China
- The Eucommia Engineering Research Center of State Forestry AdministrationZhengzhou, China
| | - Ta-na Wuyun
- Non-timber Forest Research and Development Center, Chinese Academy of ForestryZhengzhou, China
- The Eucommia Engineering Research Center of State Forestry AdministrationZhengzhou, China
| |
Collapse
|
20
|
Liu H, Fu J, Du H, Hu J, Wuyun T. De novo sequencing of Eucommia ulmoides flower bud transcriptomes for identification of genes related to floral development. GENOMICS DATA 2016; 9:105-10. [PMID: 27486566 PMCID: PMC4957572 DOI: 10.1016/j.gdata.2016.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 12/18/2022]
Abstract
Eucommia ulmoides Oliver is a woody perennial dioecious species native to China and has great economic value. However, little is known about flower bud development in this species. In this study, the transcriptomes of female and male flower buds were sequenced using the Illumina platform, a next-generation sequencing technology that provides cost-effective, highly efficient transcriptome profiling. In total, 11,558,188,080 clean reads were assembled into 75,065 unigenes with an average length of 1011 bp by de novo assembly using Trinity software. Through similarity comparisons with known protein databases, 47,071 unigenes were annotated, 146 of which were putatively related to the floral development of E. ulmoides. Fifteen of the 146 unigenes had significantly different expression levels between the two samples. Additionally, 24,346 simple sequence repeats were identified in 18,565 unigenes with 12,793 sequences suitable for the designed primers. In total, 67,447 and 58,236 single nucleotide polymorphisms were identified in male and female buds, respectively. This study provides a valuable resource for further conservation genetics and functional genomics research on E. ulmoides.
Collapse
Affiliation(s)
- Huimin Liu
- Non-timber Forestry Research and Development Center of Chinese Academy of Forestry, Zhengzhou 450003, Henan, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, Henan, China
| | - JianMin Fu
- Non-timber Forestry Research and Development Center of Chinese Academy of Forestry, Zhengzhou 450003, Henan, China
| | - Hongyan Du
- Non-timber Forestry Research and Development Center of Chinese Academy of Forestry, Zhengzhou 450003, Henan, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, Henan, China
| | - Jingjing Hu
- Total Genomics Solution Limited, Shenzhen 518081, China
| | - Tana Wuyun
- Non-timber Forestry Research and Development Center of Chinese Academy of Forestry, Zhengzhou 450003, Henan, China; The Eucommia Engineering Research Center of State Forestry Administration, Zhengzhou 450003, Henan, China
| |
Collapse
|
21
|
Sablok G, Fu Y, Bobbio V, Laura M, Rotino GL, Bagnaresi P, Allavena A, Velikova V, Viola R, Loreto F, Li M, Varotto C. Fuelling genetic and metabolic exploration of C 3 bioenergy crops through the first reference transcriptome of Arundo donax L. PLANT BIOTECHNOLOGY JOURNAL 2014; 12. [PMCID: PMC4285118 DOI: 10.1111/pbi.12159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The development of inexpensive and highly productive biomass sources of biofuel is a priority in global climate change biology. Arundo donax, also known as the giant reed, is recognized as one of the most promising nonfood bioenergy crops in Europe. Despite its relevance, to date no genomic resources are available to support the characterization of the developmental, adaptive and metabolic traits underlying the high productivity of this nonmodel species. We hereby present the first report on the de novo assembly of bud, culm, leaf and root transcriptomes of A. donax, which can be accessed through a customized BLAST server (http://ecogenomics.fmach.it/arundo/) for mining and exploring the genetic potential of this species. Based on functional annotation and homology comparison to 19 prospective biofuel Poaceae species, we provide the first genomic view of this so far unexplored crop and indicate the model species with highest potential for comparative genomics approaches. The analysis of the transcriptome reveals strong differences in the enrichment of the Gene Ontology categories and the relative expression among different organs, which can guide future efforts for functional genomics or genetic improvement of A. donax. A set of homologs to key genes involved in lignin, cellulose, starch, lipid metabolism and in the domestication of other crops is discussed to provide a platform for possible enhancement of productivity and saccharification efficiency in A. donax.
Collapse
Affiliation(s)
- Gaurav Sablok
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
| | - Yuan Fu
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
- Dipartimento di Biotecnologie, Università degli Studi di VeronaVerona, Italy
| | - Valentina Bobbio
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di GenovaGenova, Italy
- Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Consiglio per la Ricerca e la Sperimentazione in AgricolturaSanremo, IM, Italy
| | - Marina Laura
- Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Consiglio per la Ricerca e la Sperimentazione in AgricolturaSanremo, IM, Italy
| | - Giuseppe L Rotino
- Unità di Ricerca per l'Orticoltura, Consiglio per la Ricerca e la Sperimentazione in AgricolturaMontanaso Lombardo, LO, Italy
| | - Paolo Bagnaresi
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Genomics Research CentreFiorenzuola D'Arda, PC, Italy
| | - Andrea Allavena
- Unità di Ricerca per la Floricoltura e le Specie Ornamentali, Consiglio per la Ricerca e la Sperimentazione in AgricolturaSanremo, IM, Italy
| | - Violeta Velikova
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
- Bulgarian Academy of Sciences, Institute of Plant Physiology and GeneticsSofia, Bulgaria
| | - Roberto Viola
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari (DISBA), Consiglio Nazionale delle Ricerche (CNR)Roma, Italy
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund MachS. Michele all'Adige, TN, Italy
- * Correspondence (fax +39 0461 650 956; email )
| |
Collapse
|
22
|
Nakazawa Y, Takeda T, Suzuki N, Hayashi T, Harada Y, Bamba T, Kobayashi A. Histochemical study of trans-polyisoprene accumulation by spectral confocal laser scanning microscopy and a specific dye showing fluorescence solvatochromism in the rubber-producing plant, Eucommia ulmoides Oliver. PLANTA 2013; 238:549-560. [PMID: 23775438 DOI: 10.1007/s00425-013-1912-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
A microscopic technique combining spectral confocal laser scanning microscopy with a lipophilic fluorescent dye, Nile red, which can emit trans-polyisoprene specific fluorescence, was developed, and unmixed images of synthesized trans-polyisoprene in situ in Eucommia ulmoides were successfully obtained. The images showed that trans-polyisoprene was initially synthesized as granules in non-articulated laticifers that changed shape to fibers during laticifer maturation. Non-articulated laticifers are developed from single laticiferous cells, which are differentiated from surrounding parenchyma cells in the cambium. Therefore, these observations suggested that trans-polyisoprene biosynthesis first started in laticifer cells as granules and then the granules accumulated and fused in the inner space of the laticifers over time. Finally, laticifers were filled with the synthesized trans-polyisoprene, which formed a fibrous structure fitting the laticifers shape. Both trans- and cis-polyisoprene are among the most important polymers naturally produced by plants, and this microscopic technique combined with histological study should provide useful information in the fields of plant histology, bioindustry and phytochemistry.
Collapse
Affiliation(s)
- Yoshihisa Nakazawa
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|