1
|
Pepori AL, Michelozzi M, Santini A, Cencetti G, Bonello P, Gonthier P, Sebastiani F, Luchi N. Comparative transcriptional and metabolic responses of Pinus pinea to a native and a non-native Heterobasidion species. TREE PHYSIOLOGY 2019; 39:31-44. [PMID: 30137615 DOI: 10.1093/treephys/tpy086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/31/2018] [Indexed: 05/28/2023]
Abstract
Heterobasidion irregulare is a causal agent of root and butt-rot disease in conifers, and is native to North America. In 1944 it was introduced in central Italy in a Pinus pinea stand, where it shares the same niche with the native species Heterobasidion annosum. The introduction of a non-native pathogen may have significant negative effects on a naïve host tree and the ecosystem in which it resides, requiring a better understanding of the system. We compared the spatio-temporal phenotypic, transcriptional and metabolic host responses to inoculation with the two Heterobasidion species in a large experiment with P. pinea seedlings. Differences in length of lesions at the inoculation site (IS), expression of host genes involved in lignin pathway and in cell rescue and defence, and analysis of terpenes at both IS and 12 cm above the IS (distal site, DS), were assessed at 3, 14 and 35 days post inoculation (dpi). Results clearly showed that both species elicit similar physiological and biochemical responses in P. pinea seedlings. The analysis of host transcripts and total terpenes showed differences between inoculation sites and between pathogen and mock inoculated plants. Both pathogen and mock inoculations induced antimicrobial peptide and phenylalanine ammonia-lyase overexpression at IS beginning at 3 dpi; while at DS all the analysed genes, except for peroxidase, were overexpressed at 14 dpi. A significantly higher accumulation of terpenoids was observed at 14 dpi at IS, and at 35 dpi at DS. The terpene blend at IS showed significant variation among treatments and sampling times, while no significant differences were ever observed in DS tissues. Based on our results, H. irregulare does not seem to have competitive advantages over the native species H. annosum in terms of pathogenicity towards P. pinea trees; this may explain why the non-native species has not widely spread over the 73 years since its putative year of introduction into central Italy.
Collapse
Affiliation(s)
- Alessia Lucia Pepori
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council (IBBR-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Alberto Santini
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Gabriele Cencetti
- Institute of Biosciences and Bioresources, National Research Council (IBBR-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State University, 201 Kottman Hall, 2021 Coffey Rd, Columbus, OH, USA
| | - Paolo Gonthier
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, Grugliasco, TO, Italy
| | - Federico Sebastiani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| | - Nicola Luchi
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Via Madonna del Piano, Sesto Fiorentino (FI), Italy
| |
Collapse
|
2
|
A Gene Encoding Scots Pine Antimicrobial Protein Sp-AMP2 (PR-19) Confers Increased Tolerance against Botrytis cinerea in Transgenic Tobacco. FORESTS 2017. [DOI: 10.3390/f9010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Liu JJ, Williams H, Li XR, Schoettle AW, Sniezko RA, Murray M, Zamany A, Roke G, Chen H. Profiling methyl jasmonate-responsive transcriptome for understanding induced systemic resistance in whitebark pine (Pinus albicaulis). PLANT MOLECULAR BIOLOGY 2017; 95:359-374. [PMID: 28861810 DOI: 10.1007/s11103-017-0655-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
RNA-seq analysis on whitebark pine needles demonstrated that methyl jasmonate (MeJA)-triggered transcriptome re-programming substantially overlapped with defense responses against insects and fungal pathogens in Pinus species, increasing current knowledge regarding induced systemic resistance (ISR) to pathogens and pests in whitebark pine. Many whitebark pine populations are in steep decline due to high susceptibility to mountain pine beetle and the non-native white pine blister rust (WPBR). Resistance, including induced systemic resistance (ISR), is not well characterized in whitebark pine, narrowing the current options for increasing the success of restoration and breeding programs. Exogenous jasmonates are known to trigger ISR by activating the plant's immune system through regulation of gene expression to produce chemical defense compounds. This study reports profiles of whitebark pine needle transcriptomes, following methyl jasmonate (MeJA) treatment using RNA-seq. A MeJA-responsive transcriptome was de novo assembled and transcriptome profiling identified a set of differentially expressed genes (DEGs), revealing 1422 up- and 999 down-regulated transcripts with at least twofold change (FDR corrected p < 0.05) in needle tissues in response to MeJA application. GO analysis revealed that these DEGs have putative functions in plant defense signalling, transcription regulation, biosyntheses of secondary metabolites, and other biological processes. Lineage-specific expression of defense-related genes was characterized through comparison with MeJA signalling in model plants. In particular, MeJA-triggered transcriptome re-programming substantially overlapped with defense responses against WPBR and insects in related Pinus species, suggesting that MeJA may be used to improve whitebark pine resistance to pathogens/pests. Our study provides new insights into molecular mechanisms and metabolic pathways involved in whitebark pine ISR. DEGs identified in this study can be used as candidates to facilitate identification of genomic variation contributing to host resistance and aid in breeding selection of elite genotypes with better adaptive fitness to environmental stressors in this endangered tree species.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada.
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Xiao Rui Li
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Anna W Schoettle
- USDA Forest Service, Rocky Mountain Research Station, 240 West Prospect Road, Fort Collins, CO, 80526, USA
| | - Richard A Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR, 97424, USA
| | - Michael Murray
- Ministry of Forests, Lands and Natural Resource Operations, 333 Victoria St., Nelson, BC, V1L 4K3, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Gary Roke
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| | - Hao Chen
- Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada
| |
Collapse
|
4
|
Liu J, Sniezko RA, Zamany A, Williams H, Wang N, Kegley A, Savin DP, Chen H, Sturrock RN. Saturated genic SNP mapping identified functional candidates and selection tools for the Pinus monticola Cr2 locus controlling resistance to white pine blister rust. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1149-1162. [PMID: 28176454 PMCID: PMC5552481 DOI: 10.1111/pbi.12705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 05/17/2023]
Abstract
Molecular breeding incorporates efficient tools to increase rust resistance in five-needle pines. Susceptibility of native five-needle pines to white pine blister rust (WPBR), caused by the non-native invasive fungus Cronartium ribicola (J.C. Fisch.), has significantly reduced wild populations of these conifers in North America. Major resistance (R) genes against specific avirulent pathotypes have been found in several five-needle pine species. In this study, we screened genic SNP markers by comparative transcriptome and genetic association analyses and constructed saturated linkage maps for the western white pine (Pinus monticola) R locus (Cr2). Phenotypic segregation was measured by a hypersensitive reaction (HR)-like response on the needles and disease symptoms of cankered stems post inoculation by the C. ribicola avcr2 race. SNP genotypes were determined by HRM- and TaqMan-based SNP genotyping. Saturated maps of the Cr2-linkage group (LG) were constructed in three seed families using a total of 34 SNP markers within 21 unique genes. Cr2 was consistently flanked by contig_2142 (encoding a ruvb-like protein) and contig_3772 (encoding a delta-fatty acid desaturase) across the three seed families. Cr2 was anchored to the Pinus consensus LG-1, which differs from LGs where other R loci of Pinus species were mapped. GO annotation identified a set of NBS-LRR and other resistance-related genes as R candidates in the Cr2 region. Association of one nonsynonymous SNP locus of an NBS-LRR gene with Cr2-mediated phenotypes provides a valuable tool for marker-assisted selection (MAS), which will shorten the breeding cycle of resistance screening and aid in the restoration of WPBR-disturbed forest ecosystems.
Collapse
Affiliation(s)
- Jun‐Jun Liu
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | | | - Arezoo Zamany
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | - Holly Williams
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | - Ning Wang
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
- Academy of Agriculture and Forestry ScienceQinghai UniversityXiningChina
| | - Angelia Kegley
- Dorena Genetic Resource CenterUSDA Forest ServiceCottage GroveORUSA
| | - Douglas P. Savin
- Dorena Genetic Resource CenterUSDA Forest ServiceCottage GroveORUSA
| | - Hao Chen
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | | |
Collapse
|
5
|
Liu JJ, Sniezko R, Murray M, Wang N, Chen H, Zamany A, Sturrock RN, Savin D, Kegley A. Genetic Diversity and Population Structure of Whitebark Pine (Pinus albicaulis Engelm.) in Western North America. PLoS One 2016; 11:e0167986. [PMID: 27992468 PMCID: PMC5161329 DOI: 10.1371/journal.pone.0167986] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/23/2016] [Indexed: 11/18/2022] Open
Abstract
Whitebark pine (WBP, Pinus albicaulis Engelm.) is an endangered conifer species due to heavy mortality from white pine blister rust (WPBR, caused by Cronartium ribicola) and mountain pine beetle (Dendroctonus ponderosae). Information about genetic diversity and population structure is of fundamental importance for its conservation and restoration. However, current knowledge on the genetic constitution and genomic variation is still limited for WBP. In this study, an integrated genomics approach was applied to characterize seed collections from WBP breeding programs in western North America. RNA-seq analysis was used for de novo assembly of the WBP needle transcriptome, which contains 97,447 protein-coding transcripts. Within the transcriptome, single nucleotide polymorphisms (SNPs) were discovered, and more than 22,000 of them were non-synonymous SNPs (ns-SNPs). Following the annotation of genes with ns-SNPs, 216 ns-SNPs within candidate genes with putative functions in disease resistance and plant defense were selected to design SNP arrays for high-throughput genotyping. Among these SNP loci, 71 were highly polymorphic, with sufficient variation to identify a unique genotype for each of the 371 individuals originating from British Columbia (Canada), Oregon and Washington (USA). A clear genetic differentiation was evident among seed families. Analyses of genetic spatial patterns revealed varying degrees of diversity and the existence of several genetic subgroups in the WBP breeding populations. Genetic components were associated with geographic variables and phenotypic rating of WPBR disease severity across landscapes, which may facilitate further identification of WBP genotypes and gene alleles contributing to local adaptation and quantitative resistance to WPBR. The WBP genomic resources developed here provide an invaluable tool for further studies and for exploitation and utilization of the genetic diversity preserved within this endangered conifer and other five-needle pines.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, Canada
- * E-mail:
| | - Richard Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR, United States of America
| | - Michael Murray
- Ministry of Forests, Lands and Natural Resource Operations, Nelson, BC, Canada
| | - Ning Wang
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, Canada
- Qinghai University, Academy of Agriculture and Forestry Science, 253 Ningda Road, Xining, Qinghai, China
| | - Hao Chen
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, Canada
| | - Arezoo Zamany
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, Canada
| | - Rona N. Sturrock
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC, Canada
| | - Douglas Savin
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR, United States of America
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR, United States of America
| |
Collapse
|
6
|
Liu JJ, Sniezko RA, Sturrock RN, Chen H. Western white pine SNP discovery and high-throughput genotyping for breeding and conservation applications. BMC PLANT BIOLOGY 2014; 14:380. [PMID: 25547170 PMCID: PMC4302426 DOI: 10.1186/s12870-014-0380-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 12/11/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND Western white pine (WWP, Pinus monticola Douglas ex D. Don) is of high interest in forest breeding and conservation because of its high susceptibility to the invasive disease white pine blister rust (WPBR, caused by the fungus Cronartium ribicola J. C. Fisch). However, WWP lacks genomic resource development and is evolutionarily far away from plants with available draft genome sequences. Here we report a single nucleotide polymorphism (SNP) study by bulked segregation-based RNA-Seq analysis. RESULTS A collection of resistance germplasm was used for construction of cDNA libraries and SNP genotyping. Approximately 36-89 million 2 × 100-bp reads were obtained per library and de-novo assembly generated the first shoot-tip reference transcriptome containing a total of 54,661 unique transcripts. Bioinformatic SNP detection identified >100,000 high quality SNPs in three expressed candidate gene groups: Pinus highly conserved genes (HCGs), differential expressed genes (DEGs) in plant defense response, and resistance gene analogs (RGAs). To estimate efficiency of in-silico SNP discovery, genotyping assay was developed by using Sequenom iPlex and it unveiled SNP success rates from 40.1% to 61.1%. SNP clustering analyses consistently revealed distinct populations, each composed of multiple full-sib seed families by parentage assignment in the WWP germplasm collection. Linkage disequilibrium (LD) analysis identified six genes in significant association with major gene (Cr2) resistance, including three RGAs (two NBS-LRR genes and one receptor-like protein kinase -RLK gene), two HCGs, and one DEG. At least one SNP locus provided an excellent marker for Cr2 selection across P. monticola populations. CONCLUSIONS The WWP shoot tip transcriptome and those validated SNP markers provide novel genomic resources for genetic, evolutionary and ecological studies. SNP loci of those candidate genes associated with resistant phenotypes can be used as positional and functional variation sites for further characterization of WWP major gene resistance against C. ribicola. Our results demonstrate that integration of RNA-seq-based transcriptome analysis and high-throughput genotyping is an effective approach for discovery of a large number of nucleotide variations and for identification of functional gene variants associated with adaptive traits in a non-model species.
Collapse
Affiliation(s)
- Jun-Jun Liu
- />Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Richard A Sniezko
- />USDA Forest Service, Dorena Genetic Resource Center, 34963 Shoreview Road, Cottage Grove, OR 97424 USA
| | - Rona N Sturrock
- />Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| | - Hao Chen
- />Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 West Burnside Road, Victoria, BC V8Z 1M5 Canada
| |
Collapse
|
7
|
Genetic Resistance to Fusiform Rust in Southern Pines and White Pine Blister Rust in White Pines—A Contrasting Tale of Two Rust Pathosystems—Current Status and Future Prospects. FORESTS 2014. [DOI: 10.3390/f5092050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Park K, Lee S, Lee YM. Sphingolipids and antimicrobial peptides: function and roles in atopic dermatitis. Biomol Ther (Seoul) 2014; 21:251-7. [PMID: 24244808 PMCID: PMC3819896 DOI: 10.4062/biomolther.2013.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 12/14/2022] Open
Abstract
Inflammatory skin diseases such as atopic dermatitis (AD) and rosacea were complicated by barrier abrogation and deficiency in innate immunity. The first defender of epidermal innate immune response is the antimicrobial peptides (AMPs) that exhibit a broad-spectrum antimicrobial activity against multiple pathogens, including Gram-positive and Gram-negative bacteria, viruses, and fungi. The deficiency of these AMPs in the skin of AD fails to protect our body against virulent pathogen infections. In contrast to AD where there is a suppression of AMPs, rosacea is characterized by overexpression of cathelicidin antimicrobial peptide (CAMP), the products of which result in chronic epidermal inflammation. In this regard, AMP generation that is controlled by a key ceramide metabolite S1P-dependent mechanism could be considered as alternate therapeutic approaches to treat these skin disorders, i.e., Increased S1P levels strongly stimulated the CAMP expression which elevated the antimicrobial activity against multiple pathogens resulting the improved AD patient skin.
Collapse
Affiliation(s)
- Kyungho Park
- Department of Dermatology, School of Medicine, University of California, San Francisco, California CA94115, USA
| | | | | |
Collapse
|