1
|
Huang S, Zhang S, Ma X, Zheng X, Liu Y, Zhu Q, Luo X, Cui J, Song C. Glycoside-specific metabolomics reveals the novel mechanism of glycinebetaine-induced cold tolerance by regulating apigenin glycosylation in tea plants. THE NEW PHYTOLOGIST 2025. [PMID: 39856009 DOI: 10.1111/nph.20410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025]
Abstract
Glycosylation is a key modification that affects secondary metabolites under stress and is influenced by glycinebetaine (GB) to regulate plant stress tolerance. However, the complexity and detection challenges of glycosides hinder our understanding of the regulatory mechanisms of their metabolic interaction with GB during stress. A glycoside-specific metabolomic approach utilizing cone voltage-induced in-source dissociation was developed, achieving precise and high-throughput detection of glycosides in tea plants by narrowing the target ion range by 94.3%. Combined with enzyme activity assays, exogenous spraying, and gene silencing, this approach helps investigate the role of GB-glycosides cascade effect in enhancing cold tolerance of tea plants. Our method demonstrated that silencing betaine aldehyde dehydrogenase (CsBADH1) in tea plants altered 60 glycoside ions while reducing GB content and cold tolerance, indicating that glycosylation affects GB-mediated cold tolerance. By combining glycoside-specific with conventional metabolomics, isorhoifolin, a GB-regulated cold response metabolite was discovered, and its precursor apigenin was found to be a new cold tolerance metabolite that enhanced cold tolerance by scavenging reactive oxygen species. This study reveals a new mechanism by which GB mediated cold tolerance in tea plants through regulating apigenin glycosylation, broadening our understanding of the role of glycosylation in plant cold tolerance.
Collapse
Affiliation(s)
- Shan Huang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Sasa Zhang
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xuejing Ma
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xin Zheng
- Anhui Provincial Academy of Eco-Environmental Science Research, Hefei, 230061, China
| | - Yaojia Liu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Qinghua Zhu
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoqin Luo
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jilai Cui
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Chuankui Song
- National Key Laboratory for Tea Plant Germplasm Innovation and Resource Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
2
|
Moldovan I, Cotoz AP, Rózsa S, Magyari K, Lehel L, Baia M, Cantor M. The Influence of Technological Factors on the Structure and Chemical Composition of Tuberous Dahlia Roots Determined Using Vibrational Spectroscopy. PLANTS (BASEL, SWITZERLAND) 2024; 13:1955. [PMID: 39065482 PMCID: PMC11281116 DOI: 10.3390/plants13141955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
This research investigated the structural and chemical modifications of Dahlia 'Kennemerland' across different technological conditions and throughout the vegetation period. Using FT-IR imaging, this study focused on the changes in the inulin, lignin, and suberin contents of tuberous roots. FT-IR maps were generated to visualize the distribution of these compounds across scanned areas, highlighting variations across cultivation methods and seasonal stages. The key compounds analyzed included inulin, lignin, and suberin, which were identified in different root zones. The results showed that inulin was distributed in all analyzed areas, predominantly in zone 1 (periderm), with a distribution that increased with forced cultivation, while lignin and suberin distributions varied with zone and season. Forced tuberous root lignin was detected in all four areas analyzed, in the fall accumulating mainly in area 4 and in suberin starting from summer until autumn. Based on the evaluation of the maps obtained by representing the area ratios of specific bands (inulin/lignin and inulin/suberin), we established where the inulin was present in the highest quantity and concluded that suberin was the constituent with the lowest concentration in tuberous Dahlia roots. These findings emphasize the influence of technological factors and seasonal changes on the biochemical makeup of tuberous Dahlia roots. This detailed biochemical mapping provides insights for optimizing Dahlia cultivation and storage for various industrial applications. This study concludes that FT-IR spectroscopy is an effective tool for monitoring and understanding the biochemical dynamics of Dahlia roots, aiding their agricultural and industrial utilization.
Collapse
Affiliation(s)
- Ioana Moldovan
- Horticultural Research Station, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (I.M.); (L.L.)
| | - Alex-Péter Cotoz
- Department of Horticulture and Landscape Design, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-P.C.); (S.R.)
| | - Sándor Rózsa
- Department of Horticulture and Landscape Design, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-P.C.); (S.R.)
| | - Klara Magyari
- Institute for Interdisciplinary Research, Bio-Nano-Sciences Babes-Bolyai University, Treboniu Laurean 42, 400271 Cluj-Napoca, Romania;
| | - Lukács Lehel
- Horticultural Research Station, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (I.M.); (L.L.)
| | - Monica Baia
- Institute for Interdisciplinary Research, Bio-Nano-Sciences Babes-Bolyai University, Treboniu Laurean 42, 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, M. Kogâlniceanu 1, 400084 Cluj-Napoca, Romania
| | - Maria Cantor
- Department of Horticulture and Landscape Design, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-P.C.); (S.R.)
| |
Collapse
|
3
|
Maruyama K, Yamada H, Doi M, Ohno S. Identification of two 6'-deoxychalcone 4'-glucosyltransferase genes in dahlia (Dahlia variabilis). PLANTA 2024; 259:114. [PMID: 38587670 DOI: 10.1007/s00425-024-04395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
MAIN CONCLUSION Two glycosyltransferase genes belonging to UGT88 family were identified to have 6'-deoxychalcone 4'-glucosyltransferase activity in dahlia. 6'-Deoxychalcones (isoliquiritigenin and butein) are important pigments for yellow and orange to red flower color. 6'-Deoxychalcones are glucosylated at the 4'-position in vivo, but the genes encoding 6'-deoxychalcone 4'-glucosyltransferase have not yet been identified. In our previous study, it was indicated that snapdragon (Antirrhinum majus) chalcone 4'-O-glucosyltransferase (Am4'CGT) has isoliquiritigenin 4'-glucosylation activity. Therefore, to identify genes encoding 6'-deoxychalcone 4'-glucosyltransferase in dahlia (Dahlia variabilis), genes expressed in ray florets that shared high homology with Am4'CGT were explored. As a result, c34671_g1_i1 and c35662_g1_i1 were selected as candidate genes for 6'-deoxychalcone 4'-glucosyltransferases in dahlia. We conducted transient co-overexpression of three genes (c34671_g1_i1 or c35662_g1_i1, dahlia aldo-keto reductase1 (DvAKR1) or soybean (Glycine max) chalcone reductase5 (GmCHR5), and chili pepper (Capsicum annuum) MYB transcription factor (CaMYBA)) in Nicotiana benthamiana by agroinfiltration. Transient overexpression of c34671_g1_i1, DvAKR1, and CaMYBA resulted in increase in the accumulation of isoliquiritigenin 4'-glucosides, isoliquiritigenin 4'-O-glucoside, and isoliquiritigenin 4'-O-[6-O-(malonyl)-glucoside]. However, transient overexpression of c35662_g1_i1, DvAKR1, and CaMYBA did not increase accumulation of isoliquiritigenin 4'-glucosides. Using GmCHR5 instead of DvAKR1 showed similar results suggesting that c34671_g1_i1 has isoliquiritigenin 4'-glucosyltransferase activity. In addition, we conducted co-overexpression of four genes (c34671_g1_i1, c35662_g1_i1 or Am4'CGT, DvAKR1 or GmCHR5, CaMYBA, and chalcone 3-hydroxylase from dahlia). Accumulation of butein 4'-O-glucoside and butein 4'-O-[6-O-(malonyl)-glucoside] was detected for c35662_g1_i1, suggesting that c35662_g1_i1 has butein 4'-glucosyltransferase activity. Recombinant enzyme analysis also supported butein 4'-glucosyltransferases activity of c35662_g1_i1. Therefore, our results suggested that both c34671_g1_i1 and c35662_g1_i1 are 6'-deoxychalcone 4'-glucosyltransferases but with different substrate preference.
Collapse
Affiliation(s)
- Kei Maruyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Haruka Yamada
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
| |
Collapse
|
4
|
Wang Y, Zhou LJ, Song A, Wang Y, Geng Z, Zhao K, Jiang J, Chen S, Chen F. Comparative transcriptome analysis and flavonoid profiling of floral mutants reveals CmMYB11 regulating flavonoid biosynthesis in chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111837. [PMID: 37611834 DOI: 10.1016/j.plantsci.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Flavonoids, of which the major groups are flavones, flavonols, and anthocyanins, confer a variety of colors on plants. Bud sports with variation of floral colors occur occasionally during chrysanthemum cultivation. Although it has been reported that methylation at the promoter of CmMYB6 was related to anthocyanin contents, the regulatory networks of flavonoid biosynthesis still remain largely unknown in mutation of chrysanthemum. We compared phenotypes, pigment composition and transcriptomes in two chrysanthemum cultivars, 'Anastasia Dark Green' and 'Anastasia Pink', and regenerated bud sports of these cultivars with altered floral colors. Increased anthocyanins turned the 'Anastasia Dark Green' mutant red, while decreased anthocyanins turned the 'Anastasia Pink' mutant white. Moreover, total flavonoids were reduced in both mutants. Multiple flavonoid biosynthetic genes and regulatory genes encoding MYBs and bHLHs transcription factors were differentially expressed in pairwise comparisons of transcriptomes in 'Anastasia Dark Green' or 'Anastasia Pink' and their mutants at different flowering stages. Among these regulatory genes, the expression patterns of CmMYB6 and CmbHLH2 correlated to changes of anthocyanin contents, and down-regulation of CmMYB11 correlated to decreased total flavonoid contents in two mutants. CmMYB11 was shown to directly activate the promoter activities of CmCHS2, CmCHI, CmDFR, CmANS, CmFNS, and CmFLS. Furthermore, overexpression of CmMYB11 increased both flavonols and anthocyanins in tobacco petals. Our work provides new insights into regulatory networks involved in flavonoid biosynthesis and coloration in chrysanthemum.
Collapse
Affiliation(s)
- Yiguang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Li-Jie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhiqiang Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
5
|
Wang F, Chen J, Tang R, Wang R, Ahmad S, Liu Z, Peng D. Research Progress on Anthocyanin-Mediated Regulation of 'Black' Phenotypes of Plant Organs. Curr Issues Mol Biol 2023; 45:7242-7256. [PMID: 37754242 PMCID: PMC10527681 DOI: 10.3390/cimb45090458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
The color pattern is one of the most important characteristics of plants. Black stands out among the vibrant colors due to its rare and distinctive nature. While some plant organs appear black, they are, in fact, dark purple. Anthocyanins are the key compounds responsible for the diverse hues in plant organs. Cyanidin plays an important role in the deposition of black pigments in various plant organs, such as flower, leaf, and fruit. A number of structural genes and transcription factors are involved in the metabolism of anthocyanins in black organs. It has been shown that the high expression of R2R3-MYB transcription factors, such as PeMYB7, PeMYB11, and CsMYB90, regulates black pigmentation in plants. This review provides a comprehensive overview of the anthocyanin pathways that are involved in the regulation of black pigments in plant organs, including flower, leaf, and fruit. It is a great starting point for further investigation into the molecular regulation mechanism of plant color and the development of novel cultivars with black plant organs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.W.); (J.C.); (R.T.); (R.W.); (S.A.)
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.W.); (J.C.); (R.T.); (R.W.); (S.A.)
| |
Collapse
|
6
|
Zheng J, Zhao C, Liao Z, Liu X, Gong Q, Zhou C, Liu Y, Wang Y, Cao J, Liu L, Wang D, Sun C. Functional characterization of two flavone synthase II members in citrus. HORTICULTURE RESEARCH 2023; 10:uhad113. [PMID: 37577395 PMCID: PMC10419818 DOI: 10.1093/hr/uhad113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Polymethoxylated flavones (PMFs), the main form of flavones in citrus, are derived from the flavone branch of the flavonoid biosynthesis pathway. Flavone synthases (FNSs) are enzymes that catalyze the synthesis of flavones from flavanones. However, the FNS in citrus has not been characterized yet. Here, we identified two type II FNSs, designated CitFNSII-1 and CitFNSII-2, based on phylogenetics and transcriptome analysis. Both recombinant CitFNSII-1 and CitFNSII-2 proteins directly converted naringenin, pinocembrin, and liquiritigenin to the corresponding flavones in yeast. In addition, transient overexpression of CitFNSII-1 and CitFNSII-2, respectively, in citrus peel significantly enhanced the accumulation of total PMFs, while virus-induced CitFNSII-1 and CitFNSII-2 genes silencing simultaneously significantly reduced the expression levels of both genes and total PMF content in citrus seedlings. CitFNSII-1 and CitFNSII-2 presented distinct expression patterns in different cultivars as well as different developmental stages. Methyl salicylate (MeSA) treatment reduced the CitFNSII-2 expression as well as the PMFs content in the peel of Citrus sinensis fruit but did not affect the CitFNSII-1 expression. These results indicated that both CitFNSII-1 and CitFNSII-2 participated in the flavone biosynthesis in citrus while the regulatory mechanism governing their expression might be specific. Our findings improved the understanding of the PMFs biosynthesis pathway in citrus and laid the foundation for further investigation on flavone synthesis regulation.
Collapse
Affiliation(s)
- Juan Zheng
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Chenning Zhao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Zhenkun Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Xiaojuan Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Qin Gong
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Chenwen Zhou
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Yilong Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Yue Wang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Jinping Cao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Lili Liu
- Quzhou Academy of Agriculture and Forestry Science, Quzhou, 324000, China
| | - Dengliang Wang
- Quzhou Academy of Agriculture and Forestry Science, Quzhou, 324000, China
| | - Chongde Sun
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
7
|
Ohno S, Yamada H, Maruyama K, Deguchi A, Kato Y, Yokota M, Tatsuzawa F, Hosokawa M, Doi M. A novel aldo-keto reductase gene is involved in 6'-deoxychalcone biosynthesis in dahlia (Dahlia variabilis). PLANTA 2022; 256:47. [PMID: 35871668 DOI: 10.1007/s00425-022-03958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
A novel gene belonging to the aldo-keto reductase 13 family is involved in isoliquiritigenin biosynthesis in dahlia. The yellow pigments of dahlia flowers are derived from 6'-deoxychalcones, which are synthesized via a two-step process, involving the conversion of 3-malonyl-CoA and 4-coumaloyl-CoA into isoliquiritigenin in the first step, and the subsequent generation of butein from isoliquiritigenin. The first step reaction is catalyzed by chalcone synthase (CHS) and aldo-keto reductase (AKR). AKR has been implicated in the isoflavone biosynthesis in legumes, however, isolation of butein biosynthesis related AKR members are yet to be reported. A comparative RNA-seq analysis between two dahlia cultivars, 'Shukuhai' and its butein-deficient lateral mutant 'Rinka', was used in this study to identify a novel AKR gene involved in 6'-deoxychalcone biosynthesis. DvAKR1 encoded a AKR 13 sub-family protein with significant differential expression levels, and was phylogenetically distinct from the chalcone reductases, which belongs to the AKR 4A sub-family in legumes. DNA sequence variation and expression profiles of DvAKR1 gene were correlated with 6'-deoxychalcone accumulation in the tested dahlia cultivars. A single over-expression analysis of DvAKR1 was not sufficient to initiate the accumulation of isoliquiritigenin in tobacco, in contrast, its co-overexpression with a chalcone 4'-O-glucosyltransferase (Am4'CGT) from Antirrhinum majus and a MYB transcription factor, CaMYBA from Capsicum annuum successfully induced isoliquiritigenin accumulation. In addition, DvAKR1 homologous gene expression was detected in Coreopsideae species accumulating 6'-deoxychalcone, but not in Asteraceae species lacking 6'-deoxychalcone production. These results not only demonstrate the involvement of DvAKR1 in the biosynthesis of 6'-deoxychalcone in dahlia, but also show that 6'-deoxychalcone occurrence in Coreopsideae species developed evolutionarily independent from legume species.
Collapse
Affiliation(s)
- Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
| | - Haruka Yamada
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Kei Maruyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Ayumi Deguchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
- Chiba University, Chiba, 271-8510, Japan
| | - Yasunari Kato
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Mizuki Yokota
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Fumi Tatsuzawa
- Faculty of Agriculture, Iwate University, Iwate, Morioka, 020-8550, Japan
| | - Munetaka Hosokawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
- Kindai University, Nara, 631-0052, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| |
Collapse
|
8
|
Silencing of Dihydroflavonol 4-reductase in Chrysanthemum Ray Florets Enhances Flavonoid Biosynthesis and Antioxidant Capacity. PLANTS 2022; 11:plants11131681. [PMID: 35807633 PMCID: PMC9269342 DOI: 10.3390/plants11131681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 01/08/2023]
Abstract
Flavonoid biosynthesis requires the activities of several enzymes, which form weakly-bound, ordered protein complexes termed metabolons. To decipher flux regulation in the flavonoid biosynthetic pathway of chrysanthemum (Chrysanthemum morifolium Ramat), we suppressed the gene-encoding dihydroflavonol 4-reductase (DFR) through RNA interference (RNAi)-mediated post-transcriptional gene silencing under a floral-specific promoter. Transgenic CmDFR-RNAi chrysanthemum plants were obtained by Agrobacterium-mediated transformation. Genomic PCR analysis of CmDFR-RNAi chrysanthemums propagated by several rounds of stem cuttings verified stable transgene integration into the genome. CmDFR mRNA levels were reduced by 60–80% in CmDFR-RNAi lines compared to those in wild-type (WT) plants in ray florets, but not leaves. Additionally, transcript levels of flavonoid biosynthetic genes were highly upregulated in ray florets of CmDFR-RNAi chrysanthemum relative to those in WT plants, while transcript levels in leaves were similar to WT. Total flavonoid contents were high in ray florets of CmDFR-RNAi chrysanthemums, but flavonoid contents of leaves were similar to WT, consistent with transcript levels of flavonoid biosynthetic genes. Ray florets of CmDFR-RNAi chrysanthemums exhibited stronger antioxidant capacity than those of WT plants. We propose that post-transcriptional silencing of CmDFR in ray florets modifies metabolic flux, resulting in enhanced flavonoid content and antioxidant activity.
Collapse
|
9
|
Song J, Zhang H, Wang ZX, Wang J. The antioxidant activity, α-glucosidase and acetylcholinesterase inhibition activity, and chemical composition of Paeonia delavayi petal. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Objectives
This study aimed to evaluate the functional activity and phytochemical compositions in the flower petals of Paeonia delavayi with different colors.
Materials and Methods
P. delavayi petal extracts were prepared by maceration in methanol, including purple petal extract (PPE), red petal extract (RPE) and yellow petal extract (YPE), and their antioxidant activity, α-glucosidase and acetylcholinesterase inhibition activities were evaluated. To correlate these measured activities to phytochemicals in the petals, UPLC-MS/MS-based metabolomics method was applied to profile the compositions in the petals of different colors. Finally, the KEGG metabolic pathways database was used to identify the related metabolic pathways that are responsible for the production of these polyphenolic phytochemicals in the petals.
Results
The results showed that PPE had the highest total phenolic content (TPC), total flavonoid content (TFC), and the strongest ABTS· + scavenging ability, ferric reducing antioxidant power, and acetylcholinesterase inhibition ability in all three samples, while YPE showed the strongest DPPH· scavenging activity and α-glucosidase inhibition ability. A total of 232 metabolites were detected in the metabolomic analysis, 198 of which were flavonoids, chalcones, flavonols, and anthocyanins. Correlation analysis indicated that Peonidin-3-O-arabinoside and cyanidin-3-O-arabinoside were the major contributors to their antioxidant activity. Principal component analysis showed a clear separation between these three petals. In addition, a total of 38, 98, and 96 differential metabolites were identified in PPE, RPE, and YPE, respectively. Pathway enrichment revealed 6 KEGG pathways displayed significant enrichment differences, of which the anthocyanin biosynthesis, flavone and flavonol biosynthesis were the most enriched signaling pathways. It revealed the potential reason for the differences in metabolic and functional levels between different colors of P. delavayi petals.
Conclusions
P. delavayi petals of different colors have different metabolite contents and functional activities, of which the anthocyanin, flavone, and flavonol metabolites are critical in its functional activities, suggesting the anthocyanin biosynthesis, flavone and flavonol biosynthesis pathways be the key pathways responsible for both the petal color and bioactive phytochemicals in P. delavayi flowers.
Collapse
|
10
|
Granados-Balbuena SY, Santacruz-Juárez E, Canseco-González D, Aztatzi-Rugerio L, Sánchez-Minutti L, Ramírez-López C, Ocaranza-Sánchez E. Identification of anthocyanic profile and determination of antioxidant activity of Dahlia pinnata petals: A potential source of anthocyanins. J Food Sci 2022; 87:957-967. [PMID: 35157324 DOI: 10.1111/1750-3841.16072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 11/30/2022]
Abstract
In recent decades, the food industry has focused on the search for potential sources of anthocyanins that are able to provide color to replace synthetic dyes and at the same time provide health benefits through food products. Thus, in the present work, we propose the Dahlia pinnata flower as a potential source of anthocyanins. The dahlia is a native, annual flower from Mexico with a wide diversity of shapes and colors. The ancestral use of the flower in several dishes, its abundance, and the intense color of the flowers known as black make the D. pinnata flower a suitable candidate to be considered as a potential source of anthocyanins. Thus, the aim of this research is the determination of its nutritional composition, anthocyanin profile, and antioxidant activity. For this purpose, proximate composition of petals was determined by the AOAC standard methods. Anthocyanins were extracted from the dried petals of the flower with 0.1% HCl in methanol and 70% aqueous acetone solution and purified through Amberlite-XAD7-HP resin. Then, the purified extracts were analyzed for antioxidant activity by the DPPH method and the anthocyanin profile was characterized by HPLC and UPLC-MS/MS. Results showed that D. pinnata flowers have a proximate composition similar to other important edible flowers with a high level of moisture (87%-92%) and fiber (6%-7%). The antioxidant activity of both purified extracts was considerable (2.6-12 g/ml) compared to other sources of anthocyanins. The anthocyanin profile of the purified extracts contains four main anthocyanins: delphinidin-3-glucoside, delphinidin-3-rutinoside, pelargonidin-3-sambubioside-5-glucoside, and peonidin-3-sambubioside-5-glucoside, the last two being uncommon as major anthocyanin components in other plant sources. PRACTICAL APPLICATION: We present a potential and novel source of anthocyanins based on anthocyanin content and antioxidant activity of Dahlia pinnata petals. On the basis of UPLC-MS/MS studies, we identified four main anthocyanins, so this information provides the opportunity to study the source in many areas such as natural pigment stabilization, food additives, and antioxidants.
Collapse
Affiliation(s)
| | | | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, México
| | - Lucía Aztatzi-Rugerio
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México
| | - Lilia Sánchez-Minutti
- Universidad Politécnica de Tlaxcala, Av. Universidad Politécnica No.1, Tlaxcala, México
| | - Carolina Ramírez-López
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México
| | - Erik Ocaranza-Sánchez
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México
| |
Collapse
|
11
|
Gan S, Zheng G, Zhu S, Qian J, Liang L. Integrative Analysis of Metabolome and Transcriptome Reveals the Mechanism of Color Formation in Liriope spicata Fruit. Metabolites 2022; 12:metabo12020144. [PMID: 35208218 PMCID: PMC8879266 DOI: 10.3390/metabo12020144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Liriope spicata is an important ornamental ground cover plant, with a fruit color that turns from green to black during the development and ripening stages. However, the material basis and regulatory mechanism of the color variation remains unclear. In this study, a total of 31 anthocyanins and 2 flavonols were identified from the skin of L. spicata fruit via integrative analysis on the metabolome and transcriptome of three developmental stages. The pigments of black/mature fruits are composed of five common anthocyanin compounds, of which Peonidin 3–O–rutinoside and Delphinidin 3–O–glucoside are the most differential metabolites for color conversion. Using dual-omics joint analysis, the mechanism of color formation was obtained as follows. The expression of structural genes including 4CL, F3H, F3′H, F3′5′H and UFGT were activated due to the upregulation of transcription factor genes MYB and bHLH. As a result, a large amount of precursor substances for the synthesis of flavonoids accumulated. After glycosylation, stable pigments were generated which promoted the accumulation of anthocyanins and the formation of black skin.
Collapse
|
12
|
Ahmad S, Chen J, Chen G, Huang J, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Why Black Flowers? An Extreme Environment and Molecular Perspective of Black Color Accumulation in the Ornamental and Food Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:885176. [PMID: 35498642 PMCID: PMC9047182 DOI: 10.3389/fpls.2022.885176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 05/04/2023]
Abstract
Pollinators are attracted to vibrant flower colors. That is why flower color is the key agent to allow successful fruit set in food or ornamental crops. However, black flower color is the least attractive to pollinators, although a number of plant species produce black flowers. Cyanidin-based anthocyanins are thought to be the key agents to induce black color in the ornamental and fruit crops. R2R3-MYB transcription factors (TFs) play key roles for the tissue-specific accumulation of anthocyanin. MYB1 and MYB11 are the key TFs regulating the expression of anthocyanin biosynthesis genes for black color accumulation. Post-transcriptional silencing of flavone synthase II (FNS) gene is the technological method to stimulate the accumulation of cyanidin-based anthocyanins in black cultivars. Type 1 promoter of DvIVS takes the advantage of FNS silencing to produce large amounts of black anthocyanins. Exogenous ethylene application triggers anthocyanin accumulation in the fruit skin at ripening. Environment cues have been the pivotal regulators to allow differential accumulation of anthocyanins to regulate black color. Heat stress is one of the most important environmental stimulus that regulates concentration gradient of anthocyanins in various plant parts, thereby affecting the color pattern of flowers. Stability of black anthocyanins in the extreme environments can save the damage, especially in fruits, caused by abiotic stress. White flowers without anthocyanin face more damages from abiotic stress than dark color flowers. The intensity and pattern of flower color accumulation determine the overall fruit set, thereby controlling crop yield and human food needs. This review paper presents comprehensive knowledge of black flower regulation as affected by high temperature stress, and the molecular regulators of anthocyanin for black color in ornamental and food crops. It also discusses the black color-pollination interaction pattern affected by heat stress for food and ornamental crops.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhongjian Liu,
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Donghui Peng,
| |
Collapse
|
13
|
Wang Y, Zhou LJ, Wang Y, Geng Z, Liu S, Chen C, Chen S, Jiang J, Chen F. CmMYB9a activates floral coloration by positively regulating anthocyanin biosynthesis in chrysanthemum. PLANT MOLECULAR BIOLOGY 2022; 108:51-63. [PMID: 34714494 DOI: 10.1007/s11103-021-01206-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE An R2R3-MYB transcription factor, CmMYB9a, activates floral coloration in chrysanthemum by positively regulating CmCHS, CmDFR and CmFNS, but inhibiting the expression of CmFLS. Chrysanthemum is one of the most popular ornamental plants worldwide. Flavonoids, such as anthocyanins, flavones, and flavonols, are important secondary metabolites for coloration and are involved in many biological processes in plants, like petunia, snapdragon, Gerbera hybrida, as well as chrysanthemum. However, the metabolic regulation of flavonoids contributing to chrysanthemum floral coloration remains largely unexplored. Here, an R2R3-MYB transcription factor, CmMYB9a, was found to be involved in flavonoid biosynthesis. Phylogenetic analysis and amino acid sequence analysis suggested that CmMYB9a belonged to subgroup 7. Transient overexpression of CmMYB9a in flowers of chrysanthemum cultivar 'Anastasia Pink' upregulated the anthocyanin-related and flavone-related genes and downregulated CmFLS, which led to the accumulation of anthocyanins and flavones. We further demonstrated that CmMYB9a independently activates the expression of CmCHS, CmDFR and CmFNS, but inhibits the expression of CmFLS. Overexpression of CmMYB9a in tobacco resulted in increased anthocyanins and decreased flavonols in the petals by upregulating NtDFR and downregulating NtFLS. These results suggest that CmMYB9a facilitates metabolic flux into anthocyanin and flavone biosynthesis. Taken together, this study functionally characterizes the role of CmMYB9a in regulating the branched pathways of flavonoids in chrysanthemum flowers.
Collapse
Affiliation(s)
- Yiguang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Li-Jie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Zhiqiang Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Shenhui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Chuwen Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
14
|
Ohno S, Makishima R, Doi M. Post-transcriptional gene silencing of CYP76AD controls betalain biosynthesis in bracts of bougainvillea. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6949-6962. [PMID: 34279632 DOI: 10.1093/jxb/erab340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Betalain is one of four major plant pigments and shares some features with anthocyanin; however, no plant has been found to biosynthesize both pigments. Previous studies have reported that anthocyanin biosynthesis in some plants is regulated by post-transcriptional gene-silencing (PTGS), but the importance of PTGS in betalain biosynthesis remains unclear. In this study, we report the occurrence of PTGS in betalain biosynthesis in bougainvillea (Bougainvillea peruviana) 'Thimma', which produces bracts of three different color on the same plant, namely pink, white, and pink-white. This resembles the unstable anthocyanin pigmentation phenotype that is associated with PTGS, and hence we anticipated the presence of PTGS in the betalain biosynthetic pathway. To test this, we analysed pigments, gene expression, small RNAs, and transient overexpression. Our results demonstrated that PTGS of BpCYP76AD1, a gene encoding one of the betalain biosynthesis enzymes, is responsible for the loss of betalain biosynthesis in 'Thimma'. Neither the genetic background nor DNA methylation in the BpCYP76AD1 sequence could explain the induction of PTGS, implying that another locus controls the unstable pigmentation. Our results indicate that naturally occurring PTGS contributes to the diversification of color patterns not only in anthocyanin biosynthesis but also in betalain biosynthesis.
Collapse
Affiliation(s)
- Sho Ohno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Rikako Makishima
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
15
|
Yang J, Meng J, Liu X, Hu J, Zhu Y, Zhao Y, Jia G, He H, Yuan T. Integrated mRNA and small RNA sequencing reveals a regulatory network associated with flower color in oriental hybrid lily. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:103-114. [PMID: 34091210 DOI: 10.1016/j.plaphy.2021.05.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Anthocyanins are one of the main components of pigments, that are responsible for a wide range of colors in plants. To clarify the regulatory mechanism of anthocyanin biosynthesis in oriental hybrid lily, UPLC/MS analysis was performed to identify the pigments in two cultivars (white and pink). Four major anthocyanins were identified in pink cultivar, and no anthocyanins were detected in white cultivar. Transcriptome and small RNA sequencing (sRNAseq) analyses were performed using tepal tissues at two floral developmental stages from the two cultivars. In total, 55,698 transcripts were assembled, among which 233 were annotated as putative anthocyanin-related transcripts. Differential expression analysis and qRT-PCR results confirmed that most of the anthocyanin-related structural genes had higher expression levels in pink cultivar than in white cultivar. Conversely, LhANR showed a significantly high expression level in white cultivar. Annotated transcription factors (TFs), including MYB activators, MYB repressors and bHLHs, that putatively inhibit or enhance the expression of anthocyanin-related genes were identified. LhMYBA1, an anthocyanin activator, was isolated, and its heterologous expression resulted in a remarkably high level of anthocyanin accumulation. Additionally, 73 differentially expressed microRNAs (miRNAs), including 23 known miRNAs, were detected through sRNAseq. The miRNA target prediction showed that several anthocyanin-related genes might be targeted by miRNAs. Expression profile analysis revealed that these miRNAs showed higher expression levels at later floral developmental stages in white cultivar than in pink cultivar. The results indicated that anthocyanin deficiency in white cultivar might be influenced by multiple levels of suppressive mechanisms, including mRNAs and sRNAs.
Collapse
Affiliation(s)
- Jie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Juan Meng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xiaolin Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Junshu Hu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yuntao Zhu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yiran Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Guixia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Hengbin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Tao Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
16
|
Wang Y, Zhou LJ, Wang Y, Liu S, Geng Z, Song A, Jiang J, Chen S, Chen F. Functional identification of a flavone synthase and a flavonol synthase genes affecting flower color formation in Chrysanthemum morifolium. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:1109-1120. [PMID: 34328869 DOI: 10.1016/j.plaphy.2021.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Flavonoids confer a wide color range to plants, thus influencing the flower quality and commercial value of various ornamental plants. Flavones and flavonols are colorless pigments that are distinct from the colored anthocyanins. Flavones and flavonols are transformed from flavanones and dihydrokaempferol, which are catalyzed by flavone synthase (FNS) and flavonol synthase (FLS), respectively, and play important roles in regulating plant growth and development, and resistance to various stresses, in addition to coloration. However, few studies have been conducted on CmFNS and CmFLS genes in chrysanthemums. In this study, we isolated and identified CmFNS and CmFLS from Chrysanthemum morifolium. CmFNS and CmFLS were constitutively expressed at different levels in various C. morifolium organs, and in vitro catalytic activity of CmFNS and CmFLS was verified. CmFNS- and CmFLS-overexpressing tobacco plants exhibited phenotypes that accumulated more flavones and flavonols, respectively, but less anthocyanins. Moreover, the transcripts of CmFNS were negatively correlated with flower color, whereas CmFLS presented an opposite trend compared to CmFNS in five flower color cultivars with different anthocyanin levels. These findings suggest that CmFNS and CmFLS act as important regulators of flavone and flavonol biosynthesis, respectively, and dicate flower coloration in chrysanthemums.
Collapse
Affiliation(s)
- Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nan-Jing, Jiangsu, 210095, China
| | - Li-Jie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nan-Jing, Jiangsu, 210095, China
| | - Yiguang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nan-Jing, Jiangsu, 210095, China
| | - Shenhui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nan-Jing, Jiangsu, 210095, China
| | - Zhiqiang Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nan-Jing, Jiangsu, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nan-Jing, Jiangsu, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nan-Jing, Jiangsu, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nan-Jing, Jiangsu, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, The Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nan-Jing, Jiangsu, 210095, China.
| |
Collapse
|
17
|
Li C, Wang M, Qiu X, Zhou H, Lu S. Noncoding RNAs in Medicinal Plants and their Regulatory Roles in Bioactive Compound Production. Curr Pharm Biotechnol 2021; 22:341-359. [PMID: 32469697 DOI: 10.2174/1389201021666200529101942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/14/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. OBJECTIVE This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. RESULTS So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. CONCLUSION The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.
Collapse
Affiliation(s)
- Caili Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meizhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Xiaoxiao Qiu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Hong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
18
|
Deng C, Wang J, Lu C, Li Y, Kong D, Hong Y, Huang H, Dai S. CcMYB6-1 and CcbHLH1, two novel transcription factors synergistically involved in regulating anthocyanin biosynthesis in cornflower. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:271-283. [PMID: 32247249 DOI: 10.1016/j.plaphy.2020.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Anthocyanins in cornflower (Centaurea cyanus) is catalysed by a set of biosynthesis genes, however, the potential mechanism of transcriptional regulation remains unclear. In the present study, we traced the dynamic changes of petal colour development from white to violet and finally to blue on the same petal in cornflower. Pigment analysis showed that anthocyanin accumulation dramatically increased with petal colour development. Subsequently, nine libraries from above three colour regions were constructed for RNA-seq and 105,506 unigenes were obtained by de novo assembling. The differentially expressed genes among three colour regions were significantly enriched in the phenylpropanoid biosynthesis and flavonoid biosynthesis pathways, leading to the excavation and analysis of 46 biosynthesis genes involved in this process. Furthermore, four R2R3-CcMYBs clustered into subgroup 4 or subgroup 6 and one CcbHLH1 clustered into IIIf subgroup were screened out by phylogenetic analysis with Arabidopsis homologues. The promoters of flavanone 3-hydroxylase (CcF3H) and dihydroflavonol 4-reductase (CcDFR) were further isolated to investigate upstream regulation mechanism. CcMYB6-1 significantly upregulated the activity of above two promoters and stimulated anthocyanin accumulation by dual luciferase assay and transient expression in tobacco leaves, and its activity was obviously enhanced when co-infiltrated with CcbHLH1. Moreover, both yeast two-hybrid and bimolecular fluorescence complementation assays indicated the protein-protein interaction between these two activators. Based on these obtained results, it reveals that CcMYB6-1 and CcbHLH1 are two novel transcription factors synergistically involved in regulating anthocyanin biosynthesis. This study provides insights into the regulatory mechanism of anthocyanin accumulation in cornflower.
Collapse
Affiliation(s)
- Chengyan Deng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Jiaying Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Yanfei Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Deyuan Kong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Yan Hong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
19
|
Bannoud F, Ellison S, Paolinelli M, Horejsi T, Senalik D, Fanzone M, Iorizzo M, Simon PW, Cavagnaro PF. Dissecting the genetic control of root and leaf tissue-specific anthocyanin pigmentation in carrot (Daucus carota L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2485-2507. [PMID: 31144001 DOI: 10.1007/s00122-019-03366-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/17/2019] [Indexed: 05/08/2023]
Abstract
Inheritance, QTL mapping, phylogenetic, and transcriptome (RNA-Seq) analyses provide insight into the genetic control underlying carrot root and leaf tissue-specific anthocyanin pigmentation and identify candidate genes for root phloem pigmentation. Purple carrots can accumulate large quantities of anthocyanins in their root tissues, as well as in other plant parts. This work investigated the genetic control underlying tissue-specific anthocyanin pigmentation in the carrot root phloem and xylem, and in leaf petioles. Inheritance of anthocyanin pigmentation in these three tissues was first studied in segregating F2 and F4 populations, followed by QTL mapping of phloem and xylem anthocyanin pigments (independently) onto two genotyping by sequencing-based linkage maps, to reveal two regions in chromosome 3, namely P1 and P3, controlling pigmentation in these three tissues. Both P1 and P3 condition pigmentation in the phloem, with P3 also conditioning pigmentation in the xylem and petioles. By means of linkage mapping, phylogenetic analysis, and comparative transcriptome (RNA-Seq) analysis among carrot roots with differing purple pigmentation phenotypes, we identified candidate genes conditioning pigmentation in the phloem, the main tissue influencing total anthocyanin levels in the root. Among them, a MYB transcription factor, DcMYB7, and two cytochrome CYP450 genes with putative flavone synthase activity were identified as candidates regulating both the presence/absence of pigmentation and the concentration of anthocyanins in the root phloem. Concomitant expression patterns of DcMYB7 and eight anthocyanin structural genes were found, suggesting that DcMYB7 regulates transcription levels in the latter. Another MYB, DcMYB6, was upregulated in specific purple-rooted samples, suggesting a genotype-specific regulatory activity for this gene. These data contribute to the understanding of anthocyanin regulation in the carrot root at a tissue-specific level and maybe instrumental for improving carrot nutritional value.
Collapse
Affiliation(s)
- Florencia Bannoud
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Shelby Ellison
- USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA
| | - Marcos Paolinelli
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria INTA EEA Mendoza, San Martin 3853, Luján de Cuyo, 5507, Mendoza, Argentina
| | - Thomas Horejsi
- USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA
| | - Douglas Senalik
- USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA
| | - Martín Fanzone
- Instituto Nacional de Tecnología Agropecuaria INTA EEA Mendoza, San Martin 3853, Luján de Cuyo, 5507, Mendoza, Argentina
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Philipp W Simon
- USDA-Agricultural Research Service, Vegetable Crops Research Unit, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA.
- Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706-1590, USA.
| | - Pablo F Cavagnaro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina.
- Instituto de Horticultura, Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo, Mendoza, Argentina.
- Instituto Nacional de Tecnología Agropecuaria (INTA) - E.E.A. La Consulta, Ex Ruta 40 km 96, La Consulta, 5567, San Carlos, Mendoza, Argentina.
| |
Collapse
|
20
|
Li Z, Vickrey TL, McNally MG, Sato SJ, Clemente TE, Mower JP. Assessing Anthocyanin Biosynthesis in Solanaceae as a Model Pathway for Secondary Metabolism. Genes (Basel) 2019; 10:genes10080559. [PMID: 31349565 PMCID: PMC6723469 DOI: 10.3390/genes10080559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 01/25/2023] Open
Abstract
Solanaceae have played an important role in elucidating how flower color is specified by the flavonoid biosynthesis pathway (FBP), which produces anthocyanins and other secondary metabolites. With well-established reverse genetics tools and rich genomic resources, Solanaceae provide a robust framework to examine the diversification of this well-studied pathway over short evolutionary timescales and to evaluate the predictability of genetic perturbation on pathway flux. Genomes of eight Solanaceae species, nine related asterids, and four rosids were mined to evaluate variation in copy number of the suite of FBP enzymes involved in anthocyanin biosynthesis. Comparison of annotation sources indicated that the NCBI annotation pipeline generated more and longer FBP annotations on average than genome-specific annotation pipelines. The pattern of diversification of each enzyme among asterids was assessed by phylogenetic analysis, showing that the CHS superfamily encompasses a large paralogous family of ancient and recent duplicates, whereas other FBP enzymes have diversified via recent duplications in particular lineages. Heterologous expression of a pansy F3′5′H gene in tobacco changed flower color from pink to dark purple, demonstrating that anthocyanin production can be predictably modified using reverse genetics. These results suggest that the Solanaceae FBP could be an ideal system to model genotype-to-phenotype interactions for secondary metabolism.
Collapse
Affiliation(s)
- Zuo Li
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Trisha L Vickrey
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Moira G McNally
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Biology Department, University of Jamestown, Jamestown, ND 58405, USA
| | - Shirley J Sato
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Center for Biotechnology, University of Nebraska, Lincoln, NE 68588, USA
| | - Tom Elmo Clemente
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA.
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| |
Collapse
|
21
|
Nakayama T, Takahashi S, Waki T. Formation of Flavonoid Metabolons: Functional Significance of Protein-Protein Interactions and Impact on Flavonoid Chemodiversity. FRONTIERS IN PLANT SCIENCE 2019; 10:821. [PMID: 31338097 PMCID: PMC6629762 DOI: 10.3389/fpls.2019.00821] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/07/2019] [Indexed: 05/21/2023]
Abstract
Flavonoids are a class of plant specialized metabolites with more than 6,900 known structures and play important roles in plant survival and reproduction. These metabolites are derived from p-coumaroyl-CoA via the sequential actions of a variety of flavonoid enzymes, which have been proposed to form weakly bound, ordered protein complexes termed flavonoid metabolons. This review discusses the impacts of the formation of flavonoid metabolons on the chemodiversity of flavonoids. Specific protein-protein interactions in the metabolons of Arabidopsis thaliana and other plant species have been studied for two decades. In many cases, metabolons are associated with the ER membrane, with ER-bound cytochromes P450 hypothesized to serve as nuclei for metabolon formation. Indeed, cytochromes P450 have been found to be components of flavonoid metabolons in rice, snapdragon, torenia, and soybean. Recent studies illustrate the importance of specific interactions for the efficient production and temporal/spatial distribution of flavonoids. For example, in diverse plant species, catalytically inactive type-IV chalcone isomerase-like protein serves as an enhancer of flavonoid production via its involvement in flavonoid metabolons. In soybean roots, a specific isozyme of chalcone reductase (CHR) interacts with 2-hydroxyisoflavanone synthase, to which chalcone synthase (CHS) can also bind, providing a mechanism to prevent the loss of the unstable CHR substrate during its transfer from CHS to CHR. Thus, diversification in chemical structures and temporal/spatial distribution patterns of flavonoids in plants is likely to be mediated by the formation of specific flavonoid metabolons via specific protein-protein interactions.
Collapse
|
22
|
Pires TC, Dias MI, Barros L, Barreira JC, Santos-Buelga C, Ferreira IC. Incorporation of natural colorants obtained from edible flowers in yogurts. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Fujino N, Tenma N, Waki T, Ito K, Komatsuzaki Y, Sugiyama K, Yamazaki T, Yoshida S, Hatayama M, Yamashita S, Tanaka Y, Motohashi R, Denessiouk K, Takahashi S, Nakayama T. Physical interactions among flavonoid enzymes in snapdragon and torenia reveal the diversity in the flavonoid metabolon organization of different plant species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:372-392. [PMID: 29421843 DOI: 10.1111/tpj.13864] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/04/2018] [Accepted: 01/31/2018] [Indexed: 05/02/2023]
Abstract
Flavonoid metabolons (weakly-bound multi-enzyme complexes of flavonoid enzymes) are believed to occur in diverse plant species. However, how flavonoid enzymes are organized to form a metabolon is unknown for most plant species. We analyzed the physical interaction partnerships of the flavonoid enzymes from two lamiales plants (snapdragon and torenia) that produce flavones and anthocyanins. In snapdragon, protein-protein interaction assays using yeast and plant systems revealed the following binary interactions: flavone synthase II (FNSII)/chalcone synthase (CHS); FNSII/chalcone isomerase (CHI); FNSII/dihydroflavonol 4-reductase (DFR); CHS/CHI; CHI/DFR; and flavonoid 3'-hydroxylase/CHI. These results along with the subcellular localizations and membrane associations of snapdragon flavonoid enzymes suggested that FNSII serves as a component of the flavonoid metabolon tethered to the endoplasmic reticulum (ER). The observed interaction partnerships and temporal gene expression patterns of flavonoid enzymes in red snapdragon petal cells suggested the flower stage-dependent formation of the flavonoid metabolon, which accounted for the sequential flavone and anthocyanin accumulation patterns therein. We also identified interactions between FNSII and other flavonoid enzymes in torenia, in which the co-suppression of FNSII expression was previously reported to diminish petal anthocyanin contents. The observed physical interactions among flavonoid enzymes of these plant species provided further evidence supporting the long-suspected organization of flavonoid metabolons as enzyme complexes tethered to the ER via cytochrome P450, and illustrated how flavonoid metabolons mediate flower coloration. Moreover, the observed interaction partnerships were distinct from those previously identified in other plant species (Arabidopsis thaliana and soybean), suggesting that the organization of flavonoid metabolons may differ among plant species.
Collapse
Affiliation(s)
- Naoto Fujino
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Natsuki Tenma
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Toshiyuki Waki
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Keisuke Ito
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Yuki Komatsuzaki
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Keigo Sugiyama
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Tatsuya Yamazaki
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Saori Yoshida
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Masayoshi Hatayama
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Satoshi Yamashita
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Yoshikazu Tanaka
- Suntory World Research Center, Suntory Holdings Ltd., Soraku-gun, Kyoto, 619-0284, Japan
| | - Reiko Motohashi
- Department of Biological and Environmental Science, Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | | | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| | - Toru Nakayama
- Graduate School of Engineering, Tohoku University, Aza Aoba, Aramaki, Aoba 6-6-11, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
24
|
Feng K, Xu ZS, Que F, Liu JX, Wang F, Xiong AS. An R2R3-MYB transcription factor, OjMYB1, functions in anthocyanin biosynthesis in Oenanthe javanica. PLANTA 2018; 247:301-315. [PMID: 28965159 DOI: 10.1007/s00425-017-2783-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
This study showed that an R2R3-MYB transcription factor, OjMYB1, is involved in anthocyanin biosynthesis and accumulation in Oenanthe javanica. Anthocyanins can be used as safe natural food colorants, obtained from many plants. R2R3-MYB transcription factors (TFs) play important roles in anthocyanins biosynthesis during plant development. Oenanthe javanica is a popular vegetable with high nutritional values and numerous medical functions. O. javanica has purple petioles that are mainly due to anthocyanins accumulation. In the present study, the gene encoding an R2R3-MYB TF, OjMYB1, was isolated from purple O. javanica. Sequencing results showed that OjMYB1 contained a 912-bp open reading frame encoding 303 amino acids. Sequence alignments revealed that OjMYB1 contained bHLH-interaction motif ([DE]Lx2[RK]x3Lx6Lx3R) and ANDV motif ([A/G]NDV). Phylogenetic analysis indicated that the OjMYB1 classified into the anthocyanins biosynthesis clade. Subcellular localization assay showed that OjMYB1 was a nuclear protein in vivo. The heterologous expression of OjMYB1 in Arabidopsis could enhance the anthocyanins content and up-regulate the expression levels of the structural genes-related anthocyanins biosynthesis. Yeast two-hybrid assay indicated that OjMYB1 could interact with AtTT8 and AtEGL3 proteins. Enzymatic analysis revealed that overexpression of OjMYB1 gene up-regulated the enzyme activity of 3-O-glycosyltransferase encoded by AtUGT78D2 in transgenic Arabidopsis. Our results provided a comprehensive understanding of the structure and function of OjMYB1 TF in O. javanica.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Ohno S, Hori W, Hosokawa M, Tatsuzawa F, Doi M. Post-transcriptional silencing of chalcone synthase is involved in phenotypic lability in petals and leaves of bicolor dahlia (Dahlia variabilis) 'Yuino'. PLANTA 2018; 247:413-428. [PMID: 29063185 DOI: 10.1007/s00425-017-2796-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Post-transcriptional gene silencing (PTGS) of a chalcone synthase ( DvCHS2 ) occurred in the white part of bicolor petals and flavonoid-poor leaves; however, it did not in red petals and flavonoid-rich leaves. Petal color lability is a prominent feature of bicolor dahlia cultivars, and causes plants to produce not only original bicolor petals with colored bases and pure white tips, but also frequently single-colored petals without white tips. In this study, we analysed the molecular mechanisms that are associated with petal color lability using the red-white bicolor cultivar 'Yuino'. Red single-colored petals lose their white tips as a result of recover of flavonoid biosynthesis. Among flavonoid biosynthetic genes including four chalcone synthase (CHS)-like genes (DvCHS1, DvCHS2, DvCHS3, and DvCHS4), DvCHS1 and DvCHS2 had significantly lower expression levels in the white part of bicolor petals than in red petals, while DvCHS3, DvCHS4, and other flavonoid biosynthetic genes had almost the same expression levels. Small RNAs from the white part of a bicolor petal were mapped onto DvCHS1 and DvCHS2, while small RNAs from a red single-colored petal were not mapped onto any of the four CHS genes. A relationship between petal color and leaf flavonoid accumulation has previously been demonstrated, whereby red petal-producing plants accumulate flavonoids in their leaves, while bicolor petal-producing plants tend not to. The expression level of DvCHS2 was down-regulated in flavonoid-poor leaves and small RNAs from flavonoid-poor leaves were mapped onto DvCHS2, suggesting that the down-regulation of DvCHS2 in flavonoid-poor leaves occurs post-transcriptionally. Genomic analysis also suggested that DvCHS2 is the key gene involved in bicolor formation. Together, these results suggest that post-transcriptional gene silencing of DvCHS2 plays a key role in phenotypic lability in this bicolor dahlia.
Collapse
Affiliation(s)
- Sho Ohno
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Wakako Hori
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Munetaka Hosokawa
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Fumi Tatsuzawa
- Faculty of Agriculture, Iwate University, Morioka, 020-8550, Japan
| | - Motoaki Doi
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
26
|
Okitsu N, Noda N, Chandler S, Tanaka Y. Flower Color and Its Engineering by Genetic Modification. HANDBOOK OF PLANT BREEDING 2018. [DOI: 10.1007/978-3-319-90698-0_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Tan GF, Ma J, Zhang XY, Xu ZS, Xiong AS. AgFNS overexpression increase apigenin and decrease anthocyanins in petioles of transgenic celery. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:31-38. [PMID: 28818381 DOI: 10.1016/j.plantsci.2017.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 05/18/2023]
Abstract
Apigenin and anthocyanin biosyntheses share common precursors in plants. Flavone synthase (FNS) converts naringenin into apigenin in higher plants. Celery is an important edible and medical vegetable crop that contains apigenin in its tissues. However, the effect of high AgFNS gene expression on the apigenin and anthocyanins contents of purple celery remains to be elucidated. In this study, the AgFNS gene was cloned from purple celery ('Nanxuan liuhe purple celery') and overexpressed in this purple celery to determine its influence on anthocyanins and apigenin contents. Results showed that the AgFNS gene was 1068bp, which encodes 355 amino acid residues. Evolution analysis showed that the AgFNS protein belongs to the FSN I type. In AgFNS transgenic celery, the anthocyanins content in petioles was lower than that wild-type celery plants. Apigenin content increased in the petioles of AgFNS transgenic celery. The transcript levels of the AgPAL, AgC4H, AgCHS, and AgCHI genes were up-regulated, whereas those of the AgF3H, AgF3'H, AgDFR, AgANS, and Ag3GT genes were down-regulated in the petioles of AgFNS transgenic plants compared with wild-type celery plants. This work provides basic knowledge about the function of the AgFNS gene in the anthocyanin and apigenin biosyntheses of celery.
Collapse
Affiliation(s)
- Guo-Fei Tan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jing Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xin-Yue Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
28
|
Jin X, Huang H, Wang L, Sun Y, Dai S. Transcriptomics and Metabolite Analysis Reveals the Molecular Mechanism of Anthocyanin Biosynthesis Branch Pathway in Different Senecio cruentus Cultivars. FRONTIERS IN PLANT SCIENCE 2016; 7:1307. [PMID: 27656188 PMCID: PMC5012328 DOI: 10.3389/fpls.2016.01307] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/15/2016] [Indexed: 05/23/2023]
Abstract
The cyanidin (Cy), pelargonidin (Pg), and delphinidin (Dp) pathways are the three major branching anthocyanin biosynthesis pathways that regulate flavonoid metabolic flux and are responsible for red, orange, and blue flower colors, respectively. Different species have evolved to develop multiple regulation mechanisms that form the branched pathways. In the current study, five Senecio cruentus cultivars with different colors were investigated. We found that the white and yellow cultivars do not accumulate anthocyanin and that the blue, pink, and carmine cultivars mainly accumulate Dp, Pg, and Cy in differing densities. Subsequent transcriptome analysis determined that there were 43 unigenes encoding anthocyanin biosynthesis genes in the blue cultivar. We also combined chemical and transcriptomic analyses to investigate the major metabolic pathways that are related to the observed differences in flower pigmentation in the series of S. cruentus. The results showed that mutations of the ScbHLH17 and ScCHI1/2 coding regions abolish anthocyanin formation in the white and the yellow cultivars; the competition of the ScF3'H1, ScF3'5'H, and ScDFR1/2 genes for naringenin determines the differences in branching metabolic flux of the Cy, Dp, and Pg pathways. Our findings provide new insights into the regulation of anthocyanin branching and also supplement gene resources (including ScF3'5 'H, ScF3'H, and ScDFRs) for flower color modification of ornamentals.
Collapse
Affiliation(s)
- Xuehua Jin
- College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
- Faculty of Architecture and City Planning, Kunming University of Science and TechnologyKunming, China
| | - He Huang
- College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Lu Wang
- College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Yi Sun
- College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Silan Dai
- College of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
29
|
Amamiya K, Iwashina T. Qualitative and Quantitative Analysis of Flower Pigments in Chocolate Cosmos, Cosmos Atrosanguineus, and its Hybrids. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two major anthocyanins, cyanidin 3- O-glucoside and 3- O-rutinoside, were isolated from the black flowers of Cosmos atrosanguineus cultivar ‘Choco Mocha’, together with three minor anthocyanins, cyanidin 3- O-malonylglucoside, pelargonidin 3- O-glucoside and 3- O-rutinoside. A chalcone, butein 4′- O-glucoside and three minor flavanones were isolated from the red flowers of C. atrosanguineus x C. sulphureus cultivar ‘Rouge Rouge'. The anthocyanins and chalcone accumulation of cultivar ‘Choco Mocha’ and its hybrid cultivars ‘Brown Rouge’, ‘Forte Rouge’, ‘Rouge Rouge’ and ‘Noel Rouge’ was surveyed by quantitative HPLC. Total anthocyanins of black flower cultivars ‘Choco Mocha’ and ‘Brown Rouge’ were 3-4-folds higher than that of the red flower cultivar ‘Noel Rouge'. On the other hand, total chalcone of ‘Noel Rouge’ was 10–77-folds higher compared with those of other cultivars, ‘Brown Rouge’, ‘Forte Rouge’ and ‘Rouge Rouge'. It was shown that the flower color variations from red to black of Chocolate Cosmos and its hybrids are due to the difference in the relative amounts of anthocyanins and chalcone.
Collapse
Affiliation(s)
- Kotarou Amamiya
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
| | - Tsukasa Iwashina
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan
- Department of Botany, National Museum of Nature and Science, Tsukuba, Amakubo 4-1-1, Ibaraki 305-0005, Japan
| |
Collapse
|
30
|
Deguchi A, Tatsuzawa F, Hosokawa M, Doi M, Ohno S. Tobacco streak virus (strain dahlia) suppresses post-transcriptional gene silencing of flavone synthase II in black dahlia cultivars and causes a drastic flower color change. PLANTA 2015; 242:663-75. [PMID: 26186968 DOI: 10.1007/s00425-015-2365-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/03/2015] [Indexed: 05/21/2023]
Abstract
Tobacco streak virus suppressed post-transcriptional gene silencing and caused a flower color change in black dahlias, which supported the role of cyanidin-based anthocyanins for black flower appearance. Black flower color of dahlia (Dahlia variabilis) has been attributed, in part, to the high accumulation of cyanidin-based anthocyanins that occurs when flavone synthesis is reduced because of post-transcriptional gene silencing (PTGS) of flavone synthase II (DvFNS). There are also purple-flowering plants that have emerged from a black cultivar 'Kokucho'. We report that the purple color is not caused by a mutation, as previously thought, but by infection with tobacco streak virus (TSVdahlia), which suppresses the PTGS of DvFNS. When TSVdahlia was eliminated from the purple-flowering 'Kokucho' by leaf primordia-free shoot apical meristem culture, the resulting flowers were black. TSVdahlia-infected purple flowers had lower numbers of siRNAs to DvFNS than black flowers, suggesting that TSVdahlia has a silencing suppressor. The graft inoculation of other black cultivars with TSVdahlia altered their flower color drastically except for 'Fidalgo Blacky', a very deep black cultivar with the highest amount of cyanidin-based anthocyanins. The flowers of all six TSVdahlia-infected cultivars accumulated increased amounts of flavones and reduced amounts of cyanidin-based anthocyanins. 'Fidalgo Blacky' remained black despite the change in pigment accumulation, and the amounts of cyanidin-based anthocyanins in its TSVdahlia-infected plants were still higher than those of other cultivars. We propose that black flower color in dahlia is controlled by two different mechanisms that increase the amount of cyanidin-based anthocyanins: DvFNS PTGS-dependent and -independent mechanisms. If both mechanisms occur simultaneously, the flower color will be blacker than if only a single mechanism is active.
Collapse
Affiliation(s)
- Ayumi Deguchi
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
31
|
Durand-Hulak M, Dugrand A, Duval T, Bidel LPR, Jay-Allemand C, Froelicher Y, Bourgaud F, Fanciullino AL. Mapping the genetic and tissular diversity of 64 phenolic compounds in Citrus species using a UPLC-MS approach. ANNALS OF BOTANY 2015; 115:861-77. [PMID: 25757470 PMCID: PMC4373293 DOI: 10.1093/aob/mcv012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/10/2014] [Accepted: 01/13/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND AND AIMS Phenolic compounds contribute to food quality and have potential health benefits. Consequently, they are an important target of selection for Citrus species. Numerous studies on this subject have revealed new molecules, potential biosynthetic pathways and linkage between species. Although polyphenol profiles are correlated with gene expression, which is responsive to developmental and environmental cues, these factors are not monitored in most studies. A better understanding of the biosynthetic pathway and its regulation requires more information about environmental conditions, tissue specificity and connections between competing sub-pathways. This study proposes a rapid method, from sampling to analysis, that allows the quantitation of multiclass phenolic compounds across contrasting tissues and cultivars. METHODS Leaves and fruits of 11 cultivated citrus of commercial interest were collected from adult trees grown in an experimental orchard. Sixty-four phenolic compounds were simultaneously quantified by ultra-high-performance liquid chromatography coupled with mass spectrometry. KEY RESULTS Combining data from vegetative tissues with data from fruit tissues improved cultivar classification based on polyphenols. The analysis of metabolite distribution highlighted the massive accumulation of specific phenolic compounds in leaves and the external part of the fruit pericarp, which reflects their involvement in plant defence. The overview of the biosynthetic pathway obtained confirmed some regulatory steps, for example those catalysed by rhamnosyltransferases. The results suggest that three other steps are responsible for the different metabolite profiles in 'Clementine' and 'Star Ruby' grapefruit. CONCLUSIONS The method described provides a high-throughput method to study the distribution of phenolic compounds across contrasting tissues and cultivars in Citrus, and offers the opportunity to investigate their regulation and physiological roles. The method was validated in four different tissues and allowed the identification and quantitation of 64 phenolic compounds in 20 min, which represents an improvement over existing methods of analysing multiclass polyphenols.
Collapse
Affiliation(s)
- Marie Durand-Hulak
- CIRAD, UMR AGAP, F-20230 San Giuliano, France, INRA, UMR AGAP, F-20230 San Giuliano, France, Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France, Université Montpellier II, UMR DIADE, F-34394 Montpellier, France and INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Domaine St-Paul - Site Agroparc, F-84914 Avignon, France CIRAD, UMR AGAP, F-20230 San Giuliano, France, INRA, UMR AGAP, F-20230 San Giuliano, France, Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France, Université Montpellier II, UMR DIADE, F-34394 Montpellier, France and INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Domaine St-Paul - Site Agroparc, F-84914 Avignon, France
| | - Audray Dugrand
- CIRAD, UMR AGAP, F-20230 San Giuliano, France, INRA, UMR AGAP, F-20230 San Giuliano, France, Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France, Université Montpellier II, UMR DIADE, F-34394 Montpellier, France and INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Domaine St-Paul - Site Agroparc, F-84914 Avignon, France
| | - Thibault Duval
- CIRAD, UMR AGAP, F-20230 San Giuliano, France, INRA, UMR AGAP, F-20230 San Giuliano, France, Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France, Université Montpellier II, UMR DIADE, F-34394 Montpellier, France and INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Domaine St-Paul - Site Agroparc, F-84914 Avignon, France
| | - Luc P R Bidel
- CIRAD, UMR AGAP, F-20230 San Giuliano, France, INRA, UMR AGAP, F-20230 San Giuliano, France, Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France, Université Montpellier II, UMR DIADE, F-34394 Montpellier, France and INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Domaine St-Paul - Site Agroparc, F-84914 Avignon, France
| | - Christian Jay-Allemand
- CIRAD, UMR AGAP, F-20230 San Giuliano, France, INRA, UMR AGAP, F-20230 San Giuliano, France, Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France, Université Montpellier II, UMR DIADE, F-34394 Montpellier, France and INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Domaine St-Paul - Site Agroparc, F-84914 Avignon, France
| | - Yann Froelicher
- CIRAD, UMR AGAP, F-20230 San Giuliano, France, INRA, UMR AGAP, F-20230 San Giuliano, France, Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France, Université Montpellier II, UMR DIADE, F-34394 Montpellier, France and INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Domaine St-Paul - Site Agroparc, F-84914 Avignon, France
| | - Frédéric Bourgaud
- CIRAD, UMR AGAP, F-20230 San Giuliano, France, INRA, UMR AGAP, F-20230 San Giuliano, France, Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France, Université Montpellier II, UMR DIADE, F-34394 Montpellier, France and INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Domaine St-Paul - Site Agroparc, F-84914 Avignon, France
| | - Anne-Laure Fanciullino
- CIRAD, UMR AGAP, F-20230 San Giuliano, France, INRA, UMR AGAP, F-20230 San Giuliano, France, Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France, Université Montpellier II, UMR DIADE, F-34394 Montpellier, France and INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Domaine St-Paul - Site Agroparc, F-84914 Avignon, France CIRAD, UMR AGAP, F-20230 San Giuliano, France, INRA, UMR AGAP, F-20230 San Giuliano, France, Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye, TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France, Université Montpellier II, UMR DIADE, F-34394 Montpellier, France and INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Domaine St-Paul - Site Agroparc, F-84914 Avignon, France
| |
Collapse
|
32
|
Gosch C, Nagesh KM, Thill J, Miosic S, Plaschil S, Milosevic M, Olbricht K, Ejaz S, Rompel A, Stich K, Halbwirth H. Isolation of dihydroflavonol 4-reductase cDNA clones from Angelonia x angustifolia and heterologous expression as GST fusion protein in Escherichia coli. PLoS One 2014; 9:e107755. [PMID: 25238248 PMCID: PMC4169556 DOI: 10.1371/journal.pone.0107755] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/15/2014] [Indexed: 11/25/2022] Open
Abstract
Blue Angelonia × angustifolia flowers can show spontaneous mutations resulting in white/blue and white flower colourations. In such a white line, a loss of dihydroflavonol 4-reductase (DFR) activity was observed whereas chalcone synthase and flavanone 3-hydroxylase activity remained unchanged. Thus, cloning and characterization of a DFR of Angelonia flowers was carried out for the first time. Two full length DFR cDNA clones, Ang.DFR1 and Ang.DFR2, were obtained from a diploid chimeral white/blue Angelonia × angustifolia which demonstrated a 99% identity in their translated amino acid sequence. In comparison to Ang.DFR2, Ang.DFR1 was shown to contain an extra proline in a proline-rich region at the N-terminus along with two exchanges at the amino acids 12 and 26 in the translated amino acid sequence. The recombinant Ang.DFR2 obtained by heterologous expression in yeast was functionally active catalyzing the NADPH dependent reduction of dihydroquercetin (DHQ) and dihydromyricetin (DHM) to leucocyanidin and leucomyricetin, respectively. Dihydrokaempferol (DHK) in contrast was not accepted as a substrate despite the presence of asparagine in a position assumed to determine DHK acceptance. We show that substrate acceptance testing of DFRs provides biased results for DHM conversion if products are extracted with ethyl acetate. Recombinant Ang.DFR1 was inactive and functional activity could only be restored via exchanges of the amino acids in position 12 and 26 as well as the deletion of the extra proline. E. coli transformation of the pGEX-6P-1 vector harbouring the Ang.DFR2 and heterologous expression in E. coli resulted in functionally active enzymes before and after GST tag removal. Both the GST fusion protein and purified DFR minus the GST tag could be stored at -80°C for several months without loss of enzyme activity and demonstrated identical substrate specificity as the recombinant enzyme obtained from heterologous expression in yeast.
Collapse
Affiliation(s)
- Christian Gosch
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | | | - Jana Thill
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Silvija Miosic
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Sylvia Plaschil
- Julius Kühn-Institut, Institute for Breeding Research on Horticultural Crops, Quedlinburg, Germany
| | - Malvina Milosevic
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
- University of Vienna, Department of Biophysical Chemistry, Vienna, Austria
| | - Klaus Olbricht
- Humboldt University Berlin, Institute of Agriculture and Horticulture, Berlin, Germany
| | - Shaghef Ejaz
- Bahauddin Zakariya University, Department of Horticulture, Multan, Pakistan
| | - Annette Rompel
- University of Vienna, Department of Biophysical Chemistry, Vienna, Austria
| | - Karl Stich
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| | - Heidi Halbwirth
- Vienna University of Technology, Institute of Chemical Engineering, Vienna, Austria
| |
Collapse
|
33
|
Ohno S, Deguchi A, Hosokawa M, Tatsuzawa F, Doi M. A basic helix-loop-helix transcription factor DvIVS determines flower color intensity in cyanic dahlia cultivars. PLANTA 2013; 238:331-43. [PMID: 23689377 DOI: 10.1007/s00425-013-1897-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 05/06/2013] [Indexed: 05/20/2023]
Abstract
The study was aimed to identify the factors that regulate the intensity of flower color in cyanic dahlia (Dahlia variabilis), using fifteen cultivars with different color intensities in their petals. The cultivars were classified into three groups based on their flavonoid composition: ivory white cultivars with flavones; purple and pink cultivars with flavones and anthocyanins; and red cultivars with flavones, anthocyanins, and chalcones. Among the purple, pink, and ivory white cultivars, an inverse relationship was detected between lightness, which was used as an indicator for color intensity and anthocyanin content. A positive correlation was detected between anthocyanin contents and the expression of some structural genes in the anthocyanin synthesis pathway that are regulated by DvIVS, a basic helix-loop-helix transcription factor. A positive correlation between anthocyanin content and expression of DvIVS was also found. The promoter region of DvIVS was classified into three types, with cultivars carrying Type 1 promoter exhibited deep coloring, those carrying Type 2 and/or Type 3 exhibited pale coloring, and those carrying Type 1 and Type 2 and/or Type 3 exhibited medium coloring. The transcripts of the genes from these promoters encoded full-length predicted proteins. These results suggested that the genotype of the promoter region in DvIVS is one of the key factors determining the flower color intensity.
Collapse
Affiliation(s)
- Sho Ohno
- Laboratory of Vegetable and Ornamental Horticulture, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|