1
|
Goeckeritz CZ, Zheng X, Harkess A, Dresselhaus T. Widespread application of apomixis in agriculture requires further study of natural apomicts. iScience 2024; 27:110720. [PMID: 39280618 PMCID: PMC11399699 DOI: 10.1016/j.isci.2024.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Apomixis, or asexual reproduction through seeds, is frequent in nature but does not exist in any major crop species, yet the phenomenon has captivated researchers for decades given its potential for clonal seed production and plant breeding. A discussion on whether this field will benefit from the continued study of natural apomicts is warranted given the recent outstanding progress in engineering apomixis. Here, we summarize what is known about its genetic control and the status of applying synthetic apomixis in agriculture. We argue there is still much to be learned from natural apomicts, and learning from them is necessary to improve on current progress and guarantee the effective application of apomixis beyond the few genera it has shown promise in so far. Specifically, we stress the value of studying the repeated evolution of natural apomicts in a phylogenetic and comparative -omics context. Finally, we identify outstanding questions in the field and discuss how technological advancements can be used to help close these knowledge gaps. In particular, genomic resources are lacking for apomicts, and this must be remedied for widespread use of apomixis in agriculture.
Collapse
Affiliation(s)
| | - Xixi Zheng
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
2
|
Niccolò T, Anderson AW, Emidio A. Apomixis: oh, what a tangled web we have! PLANTA 2023; 257:92. [PMID: 37000270 PMCID: PMC10066125 DOI: 10.1007/s00425-023-04124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Apomixis is a complex evolutionary trait with many possible origins. Here we discuss various clues and causes, ultimately proposing a model harmonizing the three working hypotheses on the topic. Asexual reproduction through seeds, i.e., apomixis, is the holy grail of plant biology. Its implementation in modern breeding could be a game-changer for agriculture. It has the potential to generate clonal crops and maintain valuable complex genotypes and their associated heterotic traits without inbreeding depression. The genetic basis and origins of apomixis are still unclear. There are three central hypothesis for the development of apomixis that could be: i) a deviation from the sexual developmental program caused by an asynchronous development, ii) environmentally triggered through epigenetic regulations (a polyphenism of sex), iii) relying on one or more genes/alleles. Because of the ever-increasing complexity of the topic, the path toward a detailed understanding of the mechanisms underlying apomixis remains unclear. Here, we discuss the most recent advances in the evolution perspective of this multifaceted trait. We incorporated our understanding of the effect of endogenous effectors, such as small RNAs, epigenetic regulation, hormonal pathways, protein turnover, and cell wall modification in response to an upside stress. This can be either endogenous (hybridization or polyploidization) or exogenous environmental stress, mainly due to oxidative stress and the corresponding ROS (Reacting Oxygen Species) effectors. Finally, we graphically represented this tangled web.
Collapse
Affiliation(s)
- Terzaroli Niccolò
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Aaron W Anderson
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Fulbright Scholar From Department of Plant Sciences, University of California, Davis, USA
| | - Albertini Emidio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Consorzio Interuniversitario per le Biotecnologie (CIB), Trieste, Italy
| |
Collapse
|
3
|
Chahal LS, Conner JA, Ozias-Akins P. Phylogenetically Distant BABY BOOM Genes From Setaria italica Induce Parthenogenesis in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:863908. [PMID: 35909735 PMCID: PMC9329937 DOI: 10.3389/fpls.2022.863908] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/13/2022] [Indexed: 06/02/2023]
Abstract
The combination of apomixis and hybrid production is hailed as the holy grail of agriculture for the ability of apomixis to fix heterosis of F1 hybrids in succeeding generations, thereby eliminating the need for repeated crosses to produce F1 hybrids. Apomixis, asexual reproduction through seed, achieves this feat by circumventing two processes that are fundamental to sexual reproduction (meiosis and fertilization) and replacing them with apomeiosis and parthenogenesis, resulting in seeds that are clonal to the maternal parent. Parthenogenesis, embryo development without fertilization, has been genetically engineered in rice, maize, and pearl millet using PsASGR-BABY BOOM-like (PsASGR-BBML) transgenes and in rice using the OsBABY BOOM1 (OsBBM1) cDNA sequence when expressed under the control of egg cell-specific promoters. A phylogenetic analysis revealed that BABY BOOM (BBM)/BBML genes from monocots cluster within three different clades. The BBM/BBML genes shown to induce parthenogenesis cluster within clade 1 (the ASGR-BBML clade) along with orthologs from other monocot species, such as Setaria italica. For this study, we tested the parthenogenetic potential of three BBM transgenes from S. italica, each a member of a different phylogenetic BBM clade. All transgenes were genomic constructs under the control of the AtDD45 egg cell-specific promoter. All SiBBM transgenes induced various levels of parthenogenetic embryo development, resulting in viable haploid T1 seedlings. Poor seed set and lower haploid seed production were characteristics of multiple transgenic lines. The results presented in this study illustrate that further functional characterization of BBMs in zygote/embryo development is warranted.
Collapse
Affiliation(s)
- Lovepreet Singh Chahal
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
| | - Joann A. Conner
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| |
Collapse
|
4
|
Sidhu GS, Conner JA, Ozias-Akins P. Controlled Induction of Parthenogenesis in Transgenic Rice via Post-translational Activation of PsASGR-BBML. FRONTIERS IN PLANT SCIENCE 2022; 13:925467. [PMID: 35873991 PMCID: PMC9305695 DOI: 10.3389/fpls.2022.925467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Modern plant breeding programs rely heavily on the generation of homozygous lines, with the traditional process requiring the inbreeding of a heterozygous cross for five to six generations. Doubled haploid (DH) technology, a process of generating haploid plants from an initial heterozygote, followed by chromosome doubling, reduces the process to two generations. Currently established in vitro methods of haploid induction include androgenesis and gynogenesis, while in vivo methods are based on uni-parental genome elimination. Parthenogenesis, embryogenesis from unfertilized egg cells, presents another potential method of haploid induction. PsASGR-BABY BOOM-like, an AP2 transcription factor, induces parthenogenesis in a natural apomictic species, Pennisetum squamulatum (Cenchrus squamulatus) and PsASGR-BBML transgenes promote parthenogenesis in several crop plants, including rice, maize, and pearl millet. The dominant nature of PsASGR-BBML transgenes impedes their use in DH technology. Using a glucocorticoid-based post-translational regulation system and watering with a 100 μM DEX solution before anthesis, PsASGR-BBML can be regulated at the flowering stage to promote parthenogenesis. Conditional expression presents a novel opportunity to use parthenogenetic genes in DH production technology and to elucidate the molecular mechanism underlying parthenogenetic embryogenesis.
Collapse
Affiliation(s)
- Gurjot Singh Sidhu
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
| | - Joann A. Conner
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Peggy Ozias-Akins
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Tifton, GA, United States
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| |
Collapse
|
5
|
Roy AK, Chakraborti M, Radhakrishna A, Dwivedi KK, Srivastava MK, Saxena S, Paul S, Khare A, Malaviya DR, Kaushal P. Alien genome mobilization and fixation utilizing an apomixis mediated genome addition (AMGA) strategy in Pennisetum to improve domestication traits of P. squamulatum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2555-2575. [PMID: 35726065 DOI: 10.1007/s00122-022-04138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
An approach to release 'frozen' variability in apomictic species using sexuality of another species, eventually its utilization in crop improvement and de-novo domestication of crop wild relatives is presented. Pennisetum squamulatum, a secondary gene pool species of pearl millet (P. glaucum), harbours many desirable traits. However, it was neither utilized to improve pearl millet fodder traits nor improvement of its own domestication traits was attempted, due to the complexities of genomes and apomictic reproduction. To overcome this, we followed an Apomixis Mediated Genome Addition (AMGA) strategy and utilized the contrasting reproductive capacities (sexuality and apomixis) of both the species to access the otherwise un-available variability embedded in P. squamulatum. Segregating population of interspecific hybrids exhibited significant variability and heterosis for desired morphological, agronomical, and nutritional traits. Elite apomictic and perennial hybrids were evaluated in breeding trials, and eventually a novel grass cultivar was released for commercial cultivation in India. The performance of newly developed cultivar was superior to other adapted perennial grasses of arid and semi-arid rangelands. Through AMGA, the sexuality of one species was successfully utilized to 'release' the 'frozen' variability embedded in another species. Subsequently, the hybrids representing desirable trait combinations were again 'fixed' utilizing the apomixis alleles from the male parent in a back-and-forth apomixis-sexual-apomixis selection cycle. This study also demonstrated the potential of AMGA to improve crop relatives through genomes introgression as well as de novo domestication of new crops from wild species.
Collapse
Affiliation(s)
- A K Roy
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - M Chakraborti
- ICAR - National Rice Research Institute, Cuttack, 753006, India
| | - A Radhakrishna
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - K K Dwivedi
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - M K Srivastava
- ICAR - Indian Institute of Soybean Research, Indore, 452001, India
| | - S Saxena
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - S Paul
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - Aarti Khare
- ICAR - Indian Grassland and Fodder Research Institute, Jhansi, 284003, India
| | - D R Malaviya
- ICAR - Indian Institute of Sugarcane Research, Lucknow, 226002, India
| | - P Kaushal
- ICAR - National Institute of Biotic Stress Management, Raipur, 493225, India.
| |
Collapse
|
6
|
Xu Y, Jia H, Tan C, Wu X, Deng X, Xu Q. Apomixis: genetic basis and controlling genes. HORTICULTURE RESEARCH 2022; 9:uhac150. [PMID: 36072837 PMCID: PMC9437720 DOI: 10.1093/hr/uhac150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 05/12/2023]
Abstract
Apomixis is the phenomenon of clonal reproduction by seed. As apomixis can produce clonal progeny with exactly the same genotype as the maternal plant, it has an important application in genotype fixation and accelerating agricultural breeding strategies. The introduction of apomixis to major crops would bring many benefits to agriculture, including permanent fixation of superior genotypes and simplifying the procedures of hybrid seed production, as well as purification and rejuvenation of crops propagated vegetatively. Although apomixis naturally occurs in more than 400 plant species, it is rare among the major crops. Currently, with better understanding of apomixis, some achievements have been made in synthetic apomixis. However, due to prevailing limitations, there is still a long way to go to achieve large-scale application of apomixis to crop breeding. Here, we compare the developmental features of apomixis and sexual plant reproduction and review the recent identification of apomixis genes, transposons, epigenetic regulation, and genetic events leading to apomixis. We also summarize the possible strategies and potential genes for engineering apomixis into crop plants.
Collapse
Affiliation(s)
- Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huihui Jia
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chunming Tan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaomeng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | |
Collapse
|
7
|
Fiaz S, Wang X, Younas A, Alharthi B, Riaz A, Ali H. Apomixis and strategies to induce apomixis to preserve hybrid vigor for multiple generations. GM CROPS & FOOD 2021; 12:57-70. [PMID: 32877304 PMCID: PMC7553744 DOI: 10.1080/21645698.2020.1808423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Hybrid seeds of several important crops with supreme qualities including yield, biotic and abiotic stress tolerance have been cultivated for decades. Thus far, a major challenge with hybrid seeds is that they do not have the ability to produce plants with the same qualities over subsequent generations. Apomixis, an asexual mode of reproduction by avoiding meiosis, exists naturally in flowering plants, and ultimately leads to seed production. Apomixis has the potential to preserve hybrid vigor for multiple generations in economically important plant genotypes. The evolution and genetics of asexual seed production are unclear, and much more effort will be required to determine the genetic architecture of this phenomenon. To fix hybrid vigor, synthetic apomixis has been suggested. The development of MiMe (mitosis instead of meiosis) genotypes has been utilized for clonal gamete production. However, the identification and parental origin of genes responsible for synthetic apomixis are little known and need further clarification. Genome modifications utilizing genome editing technologies (GETs), such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (cas), a reverse genetics tool, have paved the way toward the utilization of emerging technologies in plant molecular biology. Over the last decade, several genes in important crops have been successfully edited. The vast availability of GETs has made functional genomics studies easy to conduct in crops important for food security. Disruption in the expression of genes specific to egg cell MATRILINEAL (MTL) through the CRISPR/Cas genome editing system promotes the induction of haploid seed, whereas triple knockout of the Baby Boom (BBM) genes BBM1, BBM2, and BBM3 cause embryo arrest and abortion, which can be fully rescued by male-transmitted BBM1. The establishment of synthetic apomixis by engineering the MiMe genotype by genome editing of BBM1 expression or disruption of MTL leads to clonal seed production and heritability for multiple generations. In the present review, we discuss current developments related to the use of CRISPR/Cas technology in plants and the possibility of promoting apomixis in crops to preserve hybrid vigor. In addition, genetics, evolution, epigenetic modifications, and strategies for MiMe genotype development are discussed in detail.
Collapse
Affiliation(s)
- Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur 22620 , Khyber Pakhtunkhwa, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University , Yan'an, Shaanxi, China
| | - Afifa Younas
- Department of Botany, Lahore College for Women University , Lahore, Pakistan
| | - Badr Alharthi
- College of Science and Engineering, Flinders University , Adelaide, Australia
- University College of Khurma, Taif University , Taif, Saudi Arabia
| | - Adeel Riaz
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences , Beijing, China
| | - Habib Ali
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology , Rahim Yar Khan, Pakistan
- Department of Entomology, Sub-Campus Depalpur, University of Agriculture Faisalabad , Faisalabad, Pakistan
| |
Collapse
|
8
|
Barcaccia G, Palumbo F, Sgorbati S, Albertini E, Pupilli F. A Reappraisal of the Evolutionary and Developmental Pathway of Apomixis and Its Genetic Control in Angiosperms. Genes (Basel) 2020; 11:E859. [PMID: 32731368 PMCID: PMC7466056 DOI: 10.3390/genes11080859] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Apomixis sensu stricto (agamospermy) is asexual reproduction by seed. In angiosperms it represents an easy byway of life cycle renewal through gamete-like cells that give rise to maternal embryos without ploidy reduction (meiosis) and ploidy restitution (syngamy). The origin of apomixis still represents an unsolved problem, as it may be either evolved from sex or the other way around. This review deals with a reappraisal of the origin of apomixis in order to deepen knowledge on such asexual mode of reproduction which seems mainly lacking in the most basal angiosperm orders (i.e., Amborellales, Nymphaeales and Austrobaileyales, also known as ANA-grade), while it clearly occurs in different forms and variants in many unrelated families of monocots and eudicots. Overall findings strengthen the hypothesis that apomixis as a whole may have evolved multiple times in angiosperm evolution following different developmental pathways deviating to different extents from sexuality. Recent developments on the genetic control of apomixis in model species are also presented and adequately discussed in order to shed additional light on the antagonist theories of gain- and loss-of-function over sexuality.
Collapse
Affiliation(s)
- Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals Environment, University of Padova, Campus of Agripolis, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals Environment, University of Padova, Campus of Agripolis, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Sergio Sgorbati
- Department of Environmental and Territory Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy;
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy;
| | - Fulvio Pupilli
- Research Division of Perugia, Institute of Biosciences and Bioresources, National Research Council (CNR), Via Madonna Alta 130, 06128 Perugia, Italy;
| |
Collapse
|
9
|
Controlling Apomixis: Shared Features and Distinct Characteristics of Gene Regulation. Genes (Basel) 2020; 11:genes11030329. [PMID: 32245021 PMCID: PMC7140868 DOI: 10.3390/genes11030329] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023] Open
Abstract
In higher plants, sexual and asexual reproduction through seeds (apomixis) have evolved as alternative strategies. As apomixis leads to the formation of clonal offspring, its great potential for agricultural applications has long been recognized. However, the genetic basis and the molecular control underlying apomixis and its evolutionary origin are to date not fully understood. Both in sexual and apomictic plants, reproduction is tightly controlled by versatile mechanisms regulating gene expression, translation, and protein abundance and activity. Increasing evidence suggests that interrelated pathways including epigenetic regulation, cell-cycle control, hormonal pathways, and signal transduction processes are relevant for apomixis. Additional molecular mechanisms are being identified that involve the activity of DNA- and RNA-binding proteins, such as RNA helicases which are increasingly recognized as important regulators of reproduction. Together with other factors including non-coding RNAs, their association with ribosomes is likely to be relevant for the formation and specification of the apomictic reproductive lineage. Subsequent seed formation appears to involve an interplay of transcriptional activation and repression of developmental programs by epigenetic regulatory mechanisms. In this review, insights into the genetic basis and molecular control of apomixis are presented, also taking into account potential relations to environmental stress, and considering aspects of evolution.
Collapse
|
10
|
Ozias-Akins P, Conner JA. Clonal Reproduction through Seeds in Sight for Crops. Trends Genet 2020; 36:215-226. [PMID: 31973878 DOI: 10.1016/j.tig.2019.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Apomixis or asexual reproduction through seeds, enables the preservation of hybrid vigor. Hybrids are heterozygous and segregate for genotype and phenotype upon sexual reproduction. While apomixis, that is, clonal reproduction, is intuitively antithetical to diversity, it is rarely obligate and actually provides a mechanism to recover and maintain superior hybrid gene combinations for which sexual reproduction would reveal deleterious alleles in less fit genotypes. Apomixis, widespread across flowering plant orders, does not occur in major crop species, yet its introduction could add a valuable tool to the breeder's toolbox. In the past decade, discovery of genetic mechanisms regulating meiosis, embryo and endosperm development have facilitated proof-of-concept for the synthesis of apomixis, bringing apomictic crops closer to reality.
Collapse
Affiliation(s)
- Peggy Ozias-Akins
- Department of Horticulture and Institute of Plant Breeding and Genomics, University of Georgia, Tifton, GA 31793, USA.
| | - Joann A Conner
- Department of Horticulture and Institute of Plant Breeding and Genomics, University of Georgia, Tifton, GA 31793, USA
| |
Collapse
|
11
|
Albertini E, Barcaccia G, Carman JG, Pupilli F. Did apomixis evolve from sex or was it the other way around? JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2951-2964. [PMID: 30854543 DOI: 10.1093/jxb/erz109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/25/2019] [Indexed: 05/20/2023]
Abstract
In angiosperms, there are two pathways of reproduction through seeds: sexual, or amphimictic, and asexual, or apomictic. The essential feature of apomixis is that an embryo in an ovule is formed autonomously. It may form from a cell of the nucellus or integuments in an otherwise sexual ovule, a process referred to as adventitious embryony. Alternatively, the embryo may form by parthenogenesis from an unreduced egg that forms in an unreduced embryo sac. The latter may form from an ameiotic megasporocyte, in which case it is referred to as diplospory, or from a cell of the nucellus or integument, in which case it is referred to as apospory. Progeny of apomictic plants are generally identical to the mother plant. Apomixis has been seen over the years as either a gain- or loss-of-function over sexuality, implying that the latter is the default condition. Here, we consider an additional point of view, that apomixis may be anciently polyphenic with sex and that both reproductive phenisms involve anciently canalized components of complex molecular processes. This polyphenism viewpoint suggests that apomixis fails to occur in obligately sexual eukaryotes because genetic or epigenetic modifications have silenced the primitive sex apomixis switch and/or disrupted molecular capacities for apomixis. In eukaryotes where sex and apomixis are clearly polyphenic, apomixis exponentially drives clonal fecundity during reproductively favorable conditions, while stress induces sex for stress-tolerant spore or egg formation. The latter often guarantees species survival during environmentally harsh seasons.
Collapse
Affiliation(s)
- Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Gianni Barcaccia
- Laboratory of Genomics, Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova Legnaro, PD, Italy
| | - John G Carman
- Department of Plants, Soils and Climate, Utah State University, Logan, Utah, USA
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources, Research Division of Perugia, National Research Council (CNR), Perugia, Italy
| |
Collapse
|
12
|
Kaushal P, Dwivedi KK, Radhakrishna A, Srivastava MK, Kumar V, Roy AK, Malaviya DR. Partitioning Apomixis Components to Understand and Utilize Gametophytic Apomixis. FRONTIERS IN PLANT SCIENCE 2019; 10:256. [PMID: 30906306 PMCID: PMC6418048 DOI: 10.3389/fpls.2019.00256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/18/2019] [Indexed: 05/07/2023]
Abstract
Apomixis is a method of reproduction to generate clonal seeds and offers tremendous potential to fix heterozygosity and hybrid vigor. The process of apomictic seed development is complex and comprises three distinct components, viz., apomeiosis (leading to formation of unreduced egg cell), parthenogenesis (development of embryo without fertilization) and functional endosperm development. Recently, in many crops, these three components are reported to be uncoupled leading to their partitioning. This review provides insight into the recent status of our understanding surrounding partitioning apomixis components in gametophytic apomictic plants and research avenues that it offers to help understand the biology of apomixis. Possible consequences leading to diversity in seed developmental pathways, resources to understand apomixis, inheritance and identification of candidate gene(s) for partitioned components, as well as contribution towards creation of variability are all discussed. The potential of Panicum maximum, an aposporous crop, is also discussed as a model crop to study partitioning principle and effects. Modifications in cytogenetic status, as well as endosperm imprinting effects arising due to partitioning effects, opens up new opportunities to understand and utilize apomixis components, especially towards synthesizing apomixis in crops.
Collapse
Affiliation(s)
- Pankaj Kaushal
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | | | | | | | - Vinay Kumar
- ICAR-National Institute of Biotic Stress Management, Raipur, India
| | - Ajoy Kumar Roy
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, India
| | | |
Collapse
|
13
|
León-Martínez G, Vielle-Calzada JP. Apomixis in flowering plants: Developmental and evolutionary considerations. Curr Top Dev Biol 2019; 131:565-604. [DOI: 10.1016/bs.ctdb.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Vijverberg K, Ozias-Akins P, Schranz ME. Identifying and Engineering Genes for Parthenogenesis in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:128. [PMID: 30838007 PMCID: PMC6389702 DOI: 10.3389/fpls.2019.00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/24/2019] [Indexed: 05/16/2023]
Abstract
Parthenogenesis is the spontaneous development of an embryo from an unfertilized egg cell. It naturally occurs in a variety of plant and animal species. In plants, parthenogenesis usually is found in combination with apomeiosis (the omission of meiosis) and pseudogamous or autonomous (with or without central cell fertilization) endosperm formation, together known as apomixis (clonal seed production). The initiation of embryogenesis in vivo and in vitro has high potential in plant breeding methods, particularly for the instant production of homozygous lines from haploid gametes [doubled haploids (DHs)], the maintenance of vigorous F1-hybrids through clonal seed production after combining it with apomeiosis, reverse breeding approaches, and for linking diploid and polyploid gene pools. Because of this large interest, efforts to identify gene(s) for parthenogenesis from natural apomicts have been undertaken by using map-based cloning strategies and comparative gene expression studies. In addition, engineering parthenogenesis in sexual model species has been investigated via mutagenesis and gain-of-function strategies. These efforts have started to pay off, particularly by the isolation of the PsASGR-BabyBoom-Like from apomictic Pennisetum, a gene proven to be transferable to and functional in sexual pearl millet, rice, and maize. This review aims to summarize the current knowledge on parthenogenesis, the possible gene candidates also outside the grasses, and the use of these genes in plant breeding protocols. It shows that parthenogenesis is able to inherit and function independently from apomeiosis and endosperm formation, is expressed and active in the egg cell, and can induce embryogenesis in polyploid, diploid as well as haploid egg cells in plants. It also shows the importance of genes involved in the suppression of transcription and modifications thereof at one hand, and in embryogenesis for which transcription is allowed or artificially overexpressed on the other, in parthenogenetic reproduction. Finally, it emphasizes the importance of functional endosperm to allow for successful embryo growth and viable seed production.
Collapse
Affiliation(s)
- Kitty Vijverberg
- Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Kitty Vijverberg,
| | - Peggy Ozias-Akins
- Department of Horticulture, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Tifton Campus, Tifton, GA, United States
| | - M. Eric Schranz
- Biosystematics Group, Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
15
|
De novo transcriptome sequencing and assembly from apomictic and sexual Eragrostis curvula genotypes. PLoS One 2017; 12:e0185595. [PMID: 29091722 PMCID: PMC5665505 DOI: 10.1371/journal.pone.0185595] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
A long-standing goal in plant breeding has been the ability to confer apomixis to agriculturally relevant species, which would require a deeper comprehension of the molecular basis of apomictic regulatory mechanisms. Eragrostis curvula (Schrad.) Nees is a perennial grass that includes both sexual and apomictic cytotypes. The availability of a reference transcriptome for this species would constitute a very important tool toward the identification of genes controlling key steps of the apomictic pathway. Here, we used Roche/454 sequencing technologies to generate reads from inflorescences of E. curvula apomictic and sexual genotypes that were de novo assembled into a reference transcriptome. Near 90% of the 49568 assembled isotigs showed sequence similarity to sequences deposited in the public databases. A gene ontology analysis categorized 27448 isotigs into at least one of the three main GO categories. We identified 11475 SSRs, and several of them were assayed in E curvula germoplasm using SSR-based primers, providing a valuable set of molecular markers that could allow direct allele selection. The differential contribution to each library of the spliced forms of several transcripts revealed the existence of several isotigs produced via alternative splicing of single genes. The reference transcriptome presented and validated in this work will be useful for the identification of a wide range of gene(s) related to agronomic traits of E. curvula, including those controlling key steps of the apomictic pathway in this species, allowing the extrapolation of the findings to other plant species.
Collapse
|
16
|
|
17
|
Ortiz JPA, Revale S, Siena LA, Podio M, Delgado L, Stein J, Leblanc O, Pessino SC. A reference floral transcriptome of sexual and apomictic Paspalum notatum. BMC Genomics 2017; 18:318. [PMID: 28431521 PMCID: PMC5399859 DOI: 10.1186/s12864-017-3700-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Paspalum notatum Flügge is a subtropical grass native to South America, which includes sexual diploid and apomictic polyploid biotypes. In the past decade, a number of apomixis-associated genes were discovered in this species through genetic mapping and differential expression surveys. However, the scarce information on Paspalum sequences available in public databanks limited annotations and functional predictions for these candidates. RESULTS We used a long-read 454/Roche FLX+ sequencing strategy to produce robust reference transcriptome datasets from florets of sexual and apomictic Paspalum notatum genotypes and delivered a list of transcripts showing differential representation in both reproductive types. Raw data originated from floral samples collected from premeiosis to anthesis was assembled in three libraries: i) sexual (SEX), ii) apomictic (APO) and iii) global (SEX + APO). A group of physically-supported Paspalum mRNA and EST sequences matched with high level of confidence to both sexual and apomictic libraries. A preliminary trial allowed discovery of the whole set of putative alleles/paralogs corresponding to 23 previously identified apomixis-associated candidate genes. Moreover, a list of 3,732 transcripts and several co-expression and protein -protein interaction networks associated with apomixis were identified. CONCLUSIONS The use of the 454/Roche FLX+ transcriptome database will allow the detailed characterization of floral alleles/paralogs of apomixis candidate genes identified in prior and future work. Moreover, it was used to reveal additional candidate genes differentially represented in apomictic and sexual flowers. Gene ontology (GO) analyses of this set of transcripts indicated that the main molecular pathways altered in the apomictic genotype correspond to specific biological processes, like biotic and abiotic stress responses, growth, development, cell death and senescence. This data collection will be of interest to the plant reproduction research community and, particularly, to Paspalum breeding projects.
Collapse
Affiliation(s)
- Juan Pablo A Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Santiago Revale
- Instituto de Agrobiotecnología de Rosario (INDEAR), Ocampo 210 bis, Provincia de Santa Fe, Rosario, 2000, Argentina.,Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Lorena A Siena
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Maricel Podio
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Luciana Delgado
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Juliana Stein
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina
| | - Olivier Leblanc
- UMR 232, Institut de Recherche pour le Développement, Université de Montpellier, Montpellier, 34394, France
| | - Silvina C Pessino
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)-CONICET/Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, Provincia de Santa Fe, Zavalla, S2125ZAA, Argentina.
| |
Collapse
|
18
|
Rodrigo JM, Zappacosta DC, Selva JP, Garbus I, Albertini E, Echenique V. Apomixis frequency under stress conditions in weeping lovegrass (Eragrostis curvula). PLoS One 2017; 12:e0175852. [PMID: 28419145 PMCID: PMC5395188 DOI: 10.1371/journal.pone.0175852] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/31/2017] [Indexed: 01/17/2023] Open
Abstract
To overcome environmental stress, plants develop physiological responses that are triggered by genetic or epigenetic changes, some of which involve DNA methylation. It has been proposed that apomixis, the formation of asexual seeds without meiosis, occurs through the temporal or spatial deregulation of the sexual process mediated by genetic and epigenetic factors influenced by the environment. Here, we explored whether there was a link between the occurrence of apomixis and various factors that generate stress, including drought stress, in vitro culture, and intraspecific hybridization. For this purpose, we monitored the embryo sacs of different weeping lovegrass (Eragrostis curvula [Schrad.] Nees) genotypes after the plants were subjected to these stress conditions. Progeny tests based on molecular markers and genome methylation status were analyzed following the stress treatment. When grown in the greenhouse, the cultivar Tanganyika INTA generated less than 2% of its progeny by sexual reproduction. Plants of this cultivar subjected to different stresses showed an increase of sexual embryo sacs, demonstrating an increased expression of sexuality compared to control plants. Plants of the cv. Tanganyika USDA did not demonstrate the ability to generate sexual embryo sacs under any conditions and is therefore classified as a fully apomictic cultivar. We found that this change in the prevalence of sexuality was correlated with genetic and epigenetic changes analyzed by MSAP and AFLPs profiles. Our results demonstrate that different stress conditions can alter the expression of sexual reproduction in facultative tetraploid apomictic cultivars and when the stress stops the reproductive mode shift back to the apomixis original level. These data together with previous observations allow us to generate a hypothetical model of the regulation of apomixis in weeping lovegrass in which the genetic/s region/s that condition apomixis, is/are affected by ploidy, and is/are subjected to epigenetic control.
Collapse
Affiliation(s)
- Juan Manuel Rodrigo
- CERZOS-CONICET, CCT-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Diego Carlos Zappacosta
- CERZOS-CONICET, CCT-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Juan Pablo Selva
- CERZOS-CONICET, CCT-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Ingrid Garbus
- CERZOS-CONICET, CCT-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Ciencias de la Salud, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Science, University of Perugia, Perugia, Italy
| | - Viviana Echenique
- CERZOS-CONICET, CCT-Bahía Blanca, Bahía Blanca, Argentina
- Departamento de Agronomía, Universidad Nacional del Sur, Bahía Blanca, Argentina
- * E-mail:
| |
Collapse
|
19
|
Abstract
Apomixis, commonly defined as asexual reproduction through seed, is a reproductive trait that occurs in only a few minor crops, but would be highly valuable in major crops. Apomixis results in seed-derived progenies that are genetically identical to their maternal parent. The advantage of apomixis would lie in seed propagation of elite food, feed, and biofuel crops that are heterozygous such as hybrid corn and switchgrass or self-pollinating crops for which no commercial-scale hybrid production system is available. While hybrid plants often outperform parental lines in growth and higher yields, production of hybrid seed is accomplished through carefully controlled, labor intensive crosses. Both small farmers in developing countries who produce their own seed and commercial companies that market hybrid seed could benefit from the establishment of engineered apomixis in plants. In this chapter, we review what has been learned from studying natural apomicts and mutations in sexual plants leading to apomixis-like development, plus discuss how the components of apomixis could be successfully engineered in plants.
Collapse
Affiliation(s)
- Joann A Conner
- Horticulture Department, NESPAL/University of Georgia-Tifton Campus, 2356 Rainwater Road, Tifton, GA, 31794, USA.
| | - Peggy Ozias-Akins
- Horticulture Department, NESPAL/University of Georgia-Tifton Campus, 2356 Rainwater Road, Tifton, GA, 31794, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia-Tifton Campus, Tifton, GA, USA
| |
Collapse
|
20
|
Bicknell R, Catanach A, Hand M, Koltunow A. Seeds of doubt: Mendel's choice of Hieracium to study inheritance, a case of right plant, wrong trait. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2253-2266. [PMID: 27695890 PMCID: PMC5121183 DOI: 10.1007/s00122-016-2788-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/12/2016] [Indexed: 05/14/2023]
Abstract
KEY MESSAGE In this review, we explore Gregor Mendel's hybridization experiments with Hieracium , update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops. From our perspective, it is easy to conclude that Gregor Mendel's work on pea was insightful, but his peers clearly did not regard it as being either very convincing or of much importance. One apparent criticism was that his findings only applied to pea. We know from a letter he wrote to Carl von Nägeli, a leading botanist, that he believed he needed to "verify, with other plants, the results obtained with Pisum". For this purpose, Mendel adopted Hieracium subgenus Pilosella, a phenotypically diverse taxon under botanical study at the time. What Mendel could not have known, however, is that the majority of these plants are not sexual plants like pea, but instead are facultatively apomictic. In these forms, the majority of seed arises asexually, and such progeny are, therefore, clones of the maternal parent. Mendel obtained very few hybrids in his Hieracium crosses, yet we calculate that he probably emasculated in excess of 5000 Hieracium florets to even obtain the numbers he did. Despite that effort, he was perplexed by the results, and they ultimately led him to conclude that "the hybrids of Hieracium show a behaviour exactly opposite to those of Pisum". Apomixis is now a topic of intense research interest, and in an ironic twist of history, Hieracium subgenus Pilosella has been developed as a molecular model to study this trait. In this paper, we explore further Mendel's hybridization experiments with Hieracium, update current knowledge on apomictic reproduction and describe approaches now being used to develop true-breeding hybrid crops.
Collapse
Affiliation(s)
- Ross Bicknell
- Plant and Food Research, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Andrew Catanach
- Plant and Food Research, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Melanie Hand
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Anna Koltunow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Private Bag 2, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
21
|
A Parthenogenesis Gene Candidate and Evidence for Segmental Allopolyploidy in Apomictic Brachiaria decumbens. Genetics 2016; 203:1117-32. [PMID: 27206716 PMCID: PMC4937464 DOI: 10.1534/genetics.116.190314] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/14/2016] [Indexed: 12/19/2022] Open
Abstract
Apomixis, asexual reproduction through seed, enables breeders to identify and faithfully propagate superior heterozygous genotypes by seed without the disadvantages of vegetative propagation or the expense and complexity of hybrid seed production. The availability of new tools such as genotyping by sequencing and bioinformatics pipelines for species lacking reference genomes now makes the construction of dense maps possible in apomictic species, despite complications including polyploidy, multisomic inheritance, self-incompatibility, and high levels of heterozygosity. In this study, we developed saturated linkage maps for the maternal and paternal genomes of an interspecific Brachiaria ruziziensis (R. Germ. and C. M. Evrard) × B. decumbens Stapf. F1 mapping population in order to identify markers linked to apomixis. High-resolution molecular karyotyping and comparative genomics with Setaria italica (L.) P. Beauv provided conclusive evidence for segmental allopolyploidy in B. decumbens, with strong preferential pairing of homologs across the genome and multisomic segregation relatively more common in chromosome 8. The apospory-specific genomic region (ASGR) was mapped to a region of reduced recombination on B. decumbens chromosome 5. The Pennisetum squamulatum (L.) R.Br. PsASGR-BABY BOOM-like (psASGR–BBML)-specific primer pair p779/p780 was in perfect linkage with the ASGR in the F1 mapping population and diagnostic for reproductive mode in a diversity panel of known sexual and apomict Brachiaria (Trin.) Griseb. and P. maximum Jacq. germplasm accessions and cultivars. These findings indicate that ASGR–BBML gene sequences are highly conserved across the Paniceae and add further support for the postulation of the ASGR–BBML as candidate genes for the apomictic function of parthenogenesis.
Collapse
|
22
|
Sapkota S, Conner JA, Hanna WW, Simon B, Fengler K, Deschamps S, Cigan M, Ozias-Akins P. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet. PLoS One 2016; 11:e0152411. [PMID: 27031857 PMCID: PMC4816547 DOI: 10.1371/journal.pone.0152411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae). The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus) and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass) is the apospory-specific genomic region (ASGR). Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH) and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen.
Collapse
Affiliation(s)
- Sirjan Sapkota
- Department of Horticulture, University of Georgia-Tifton Campus, Tifton, Georgia, 31793, United States of America
| | - Joann A Conner
- Department of Horticulture, University of Georgia-Tifton Campus, Tifton, Georgia, 31793, United States of America
| | - Wayne W Hanna
- Department of Crop and Soil Sciences, University of Georgia-Tifton Campus, Tifton, Georgia, 31793, United States of America
| | - Bindu Simon
- Department of Horticulture, University of Georgia-Tifton Campus, Tifton, Georgia, 31793, United States of America
| | - Kevin Fengler
- DuPont Pioneer, DuPont Pioneer, Johnston, Iowa, 50131, United States of America
| | - Stéphane Deschamps
- DuPont Experimental Station, Wilmington, Delaware, 19803, United States of America
| | - Mark Cigan
- DuPont Pioneer, DuPont Pioneer, Johnston, Iowa, 50131, United States of America
| | - Peggy Ozias-Akins
- Department of Horticulture, University of Georgia-Tifton Campus, Tifton, Georgia, 31793, United States of America
| |
Collapse
|
23
|
Syamaladevi DP, Meena SS, Nagar RP. Molecular understandings on 'the never thirsty' and apomictic Cenchrus grass. Biotechnol Lett 2015; 38:369-76. [PMID: 26601981 DOI: 10.1007/s10529-015-2004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/16/2015] [Indexed: 12/31/2022]
Abstract
The genus Cenchrus comprises around 25 species of 'bristle clade' grasses. Cenchrus ciliaris (buffel grass) is a hardy, perennial range grass that survives in poor sandy soils and limiting soil moisture conditions and, due to the very same reasons, this grass is one of the most prevalent fodder grasses of the arid and semi-arid regions. Most of the germplasms of Cenchrus produce seeds asexually through the process of apomeiosis. Therefore, the lack of sufficient sexual lines has hindered the crop improvement efforts in Cenchrus being confined to simple selection methods. Many attempts have been initiated in buffel grass to investigate the various molecular aspects such as genomic signatures of different species and genotypes, molecular basis of abiotic stress tolerance and reproductive performance. Even though it is an important fodder crop, molecular investigations in Cenchrus lack focus and the molecular information available on this grass is scanty. Cenchrus is a very good gene source for abiotic stress tolerance and apomixis studies. Biotechnological interventions in Cenchrus can help in crop improvement in Cenchrus as well as other crops through transgenic technology or marker assisted selection. To date no consolidated review on biotechnological interventions in Cenchrus grass has been published. Therefore we provide a thorough and in depth review on molecular research in Cenchrus focusing on molecular signatures of evolution, tolerance to abiotic stress and apomictic reproductive mechanism.
Collapse
Affiliation(s)
- Divya P Syamaladevi
- Western Regional Research Station, Indian Grassland and Fodder Research Institute, Avikanagar, Rajasthan, 304501, India. .,Indian Institute of Rice Research, Rajendranagar, Hyderabad, India.
| | - S S Meena
- Western Regional Research Station, Indian Grassland and Fodder Research Institute, Avikanagar, Rajasthan, 304501, India
| | - R P Nagar
- Western Regional Research Station, Indian Grassland and Fodder Research Institute, Avikanagar, Rajasthan, 304501, India
| |
Collapse
|
24
|
A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci U S A 2015; 112:11205-10. [PMID: 26305939 DOI: 10.1073/pnas.1505856112] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apomixis is a naturally occurring mode of asexual reproduction in flowering plants that results in seed formation without the involvement of meiosis or fertilization of the egg. Seeds formed on an apomictic plant contain offspring genetically identical to the maternal plant. Apomixis has significant potential for preserving hybrid vigor from one generation to the next in highly productive crop plant genotypes. Apomictic Pennisetum/Cenchrus species, members of the Poaceae (grass) family, reproduce by apospory. Apospory is characterized by apomeiosis, the formation of unreduced embryo sacs derived from nucellar cells of the ovary and, by parthenogenesis, the development of the unreduced egg into an embryo without fertilization. In Pennisetum squamulatum (L.) R.Br., apospory segregates as a single dominant locus, the apospory-specific genomic region (ASGR). In this study, we demonstrate that the PsASGR-BABY BOOM-like (PsASGR-BBML) gene is expressed in egg cells before fertilization and can induce parthenogenesis and the production of haploid offspring in transgenic sexual pearl millet. A reduction of PsASGR-BBML expression in apomictic F1 RNAi transgenic plants results in fewer visible parthenogenetic embryos and a reduction of embryo cell number compared with controls. Our results endorse a key role for PsASGR-BBML in parthenogenesis and a newly discovered role for a member of the BBM-like clade of APETALA 2 transcription factors. Induction of parthenogenesis by PsASGR-BBML will be valuable for installing parthenogenesis to synthesize apomixis in crops and will have further application for haploid induction to rapidly obtain homozygous lines for breeding.
Collapse
|
25
|
Abstract
Apomixis (asexual seed formation) is the result of a plant gaining the ability to bypass the most fundamental aspects of sexual reproduction: meiosis and fertilization. Without the need for male fertilization, the resulting seed germinates a plant that develops as a maternal clone. This dramatic shift in reproductive process has been documented in many flowering plant species, although no major seed crops have been shown to be capable of apomixis. The ability to generate maternal clones and therefore rapidly fix desirable genotypes in crop species could accelerate agricultural breeding strategies. The potential of apomixis as a next-generation breeding technology has contributed to increasing interest in the mechanisms controlling apomixis. In this review, we discuss the progress made toward understanding the genetic and molecular control of apomixis. Research is currently focused on two fronts. One aims to identify and characterize genes causing apomixis in apomictic species that have been developed as model species. The other aims to engineer or switch the sexual seed formation pathway in non-apomictic species, to one that mimics apomixis. Here we describe the major apomictic mechanisms and update knowledge concerning the loci that control them, in addition to presenting candidate genes that may be used as tools for switching the sexual pathway to an apomictic mode of reproduction in crops.
Collapse
|
26
|
Vašut RJ, Vijverberg K, van Dijk PJ, de Jong H. Fluorescent in situ hybridization shows DIPLOSPOROUS located on one of the NOR chromosomes in apomictic dandelions (Taraxacum) in the absence of a large hemizygous chromosomal region. Genome 2015; 57:609-20. [PMID: 25760668 DOI: 10.1139/gen-2014-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apomixis in dandelions (Taraxacum: Asteraceae) is encoded by two unlinked dominant loci and a third yet undefined genetic factor: diplosporous omission of meiosis (DIPLOSPOROUS, DIP), parthenogenetic embryo development (PARTHENOGENESIS, PAR), and autonomous endosperm formation, respectively. In this study, we determined the chromosomal position of the DIP locus in Taraxacum by using fluorescent in situ hybridization (FISH) with bacterial artificial chromosomes (BACs) that genetically map within 1.2-0.2 cM of DIP. The BACs showed dispersed fluorescent signals, except for S4-BAC 83 that displayed strong unique signals as well. Under stringent blocking of repeats by C0t-DNA fragments, only a few fluorescent foci restricted to defined chromosome regions remained, including one on the nucleolus organizer region (NOR) chromosomes that contains the 45S rDNAs. FISH with S4-BAC 83 alone and optimal blocking showed discrete foci in the middle of the long arm of one of the NOR chromosomes only in triploid and tetraploid diplosporous dandelions, while signals in sexual diploids were lacking. This agrees with the genetic model of a single dose, dominant DIP allele, absent in sexuals. The length of the DIP region is estimated to cover a region of 1-10 Mb. FISH in various accessions of Taraxacum and the apomictic sister species Chondrilla juncea, confirmed the chromosomal position of DIP within Taraxacum but not outside the genus. Our results endorse that, compared to other model apomictic species, expressing either diplospory or apospory, the genome of Taraxacum shows a more similar and less diverged chromosome structure at the DIP locus. The different levels of allele sequence divergence at apomeiosis loci may reflect different terms of asexual reproduction. The association of apomeiosis loci with repetitiveness, dispersed repeats, and retrotransposons commonly observed in apomictic species may imply a functional role of these shared features in apomictic reproduction, as is discussed.
Collapse
Affiliation(s)
- Radim J Vašut
- Laboratory of Genetics, Wageningen University and Research Centre, P.O. Box 309, NL-6700 AH Wageningen, the Netherlands
| | | | | | | |
Collapse
|
27
|
Kaushal P, Dwivedi KK, Radhakrishna A, Srivastava MK, Malaviya DR, Roy AK, Saxena S, Paul S. Development and Characterization of a Hexaploid Pennisetum orientale (2 n=6 x=54) Cytotype Recovered through B III Hybridization. CYTOLOGIA 2015. [DOI: 10.1508/cytologia.80.37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Pankaj Kaushal
- Crop Improvement Division, Indian Grassland and Fodder Research Institute
| | - Krishna K. Dwivedi
- Crop Improvement Division, Indian Grassland and Fodder Research Institute
| | - Auji Radhakrishna
- Crop Improvement Division, Indian Grassland and Fodder Research Institute
| | | | | | - Ajoy K. Roy
- Crop Improvement Division, Indian Grassland and Fodder Research Institute
| | - Saurabh Saxena
- Crop Improvement Division, Indian Grassland and Fodder Research Institute
| | - Sharmishtha Paul
- Crop Improvement Division, Indian Grassland and Fodder Research Institute
| |
Collapse
|
28
|
Kotani Y, Henderson ST, Suzuki G, Johnson SD, Okada T, Siddons H, Mukai Y, Koltunow AMG. The LOSS OF APOMEIOSIS (LOA) locus in Hieracium praealtum can function independently of the associated large-scale repetitive chromosomal structure. THE NEW PHYTOLOGIST 2014; 201:973-981. [PMID: 24400904 DOI: 10.1111/nph.12574] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/26/2013] [Indexed: 05/14/2023]
Abstract
Apomixis or asexual seed formation in Hieracium praealtum (Asteraceae) is controlled by two independent dominant loci. One of these, the LOSS OF APOMEIOSIS (LOA) locus, controls apomixis initiation, mitotic embryo sac formation (apospory) and suppression of the sexual pathway. The LOA locus is found near the end of a hemizygous chromosome surrounded by extensive repeats extending along the chromosome arm. Similar apomixis-carrying chromosome structures have been found in some apomictic grasses, suggesting that the extensive repetitive sequences may be functionally relevant to apomixis. Fluorescence in situ hybridization (FISH) was used to examine chromosomes of apomeiosis deletion mutants and rare recombinants in the critical LOA region arising from a cross between sexual Hieracium pilosella and apomictic H. praealtum. The combined analyses of aposporous and nonaposporous recombinant progeny and chromosomal karyotypes were used to determine that the functional LOA locus can be genetically separated from the very extensive repeat regions found on the LOA-carrying chromosome. The large-scale repetitive sequences associated with the LOA locus in H. praealtum are not essential for apospory or suppression of sexual megasporogenesis (female meiosis).
Collapse
Affiliation(s)
- Yoshiko Kotani
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Steven T Henderson
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Go Suzuki
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Susan D Johnson
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Takashi Okada
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Hayley Siddons
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| | - Yasuhiko Mukai
- Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, Kashiwara, Osaka, 582-8582, Japan
| | - Anna M G Koltunow
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Waite Campus, Hartley Grove, Urrbrae, Adelaide, SA, 5064, Australia
| |
Collapse
|
29
|
Barcaccia G, Albertini E. Apomixis in plant reproduction: a novel perspective on an old dilemma. PLANT REPRODUCTION 2013; 26:159-79. [PMID: 23852378 PMCID: PMC3747320 DOI: 10.1007/s00497-013-0222-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/23/2013] [Indexed: 05/19/2023]
Abstract
Seed is one of the key factors of crop productivity. Therefore, a comprehension of the mechanisms underlying seed formation in cultivated plants is crucial for the quantitative and qualitative progress of agricultural production. In angiosperms, two pathways of reproduction through seed exist: sexual or amphimictic, and asexual or apomictic; the former is largely exploited by seed companies for breeding new varieties, whereas the latter is receiving continuously increasing attention from both scientific and industrial sectors in basic research projects. If apomixis is engineered into sexual crops in a controlled manner, its impact on agriculture will be broad and profound. In fact, apomixis will allow clonal seed production and thus enable efficient and consistent yields of high-quality seeds, fruits, and vegetables at lower costs. The development of apomixis technology is expected to have a revolutionary impact on agricultural and food production by reducing cost and breeding time, and avoiding the complications that are typical of sexual reproduction (e.g., incompatibility barriers) and vegetative propagation (e.g., viral transfer). However, the development of apomixis technology in agriculture requires a deeper knowledge of the mechanisms that regulate reproductive development in plants. This knowledge is a necessary prerequisite to understanding the genetic control of the apomictic process and its deviations from the sexual process. Our molecular understanding of apomixis will be greatly advanced when genes that are specifically or differentially expressed during embryo and embryo sac formation are discovered. In our review, we report the main findings on this subject by examining two approaches: i) analysis of the apomictic process in natural apomictic species to search for genes controlling apomixis and ii) analysis of gene mutations resembling apomixis or its components in species that normally reproduce sexually. In fact, our opinion is that a novel perspective on this old dilemma pertaining to the molecular control of apomixis can emerge from a cross-check among candidate genes in natural apomicts and a high-throughput analysis of sexual mutants.
Collapse
Affiliation(s)
- Gianni Barcaccia
- Laboratory of Genetics and Genomics, DAFNAE, University of Padova, Campus of Agripolis, Viale dell’Università 16, 35020 Legnaro, Italy
| | - Emidio Albertini
- Department of Applied Biology, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| |
Collapse
|