1
|
Mursalimov S, Matsumoto M, Urakubo H, Deineko E, Ohno N. Unusual nuclear structures in male meiocytes of wild-type rye as revealed by volume microscopy. ANNALS OF BOTANY 2023; 132:1159-1174. [PMID: 37490684 PMCID: PMC10809220 DOI: 10.1093/aob/mcad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND AND AIMS During the analysis of plant male meiocytes coming from destroyed meiocyte columns (united multicellular structures formed by male meiocytes in each anther locule), a considerable amount of information becomes unavailable. Therefore, in this study intact meiocyte columns were studied by volume microscopy in wild-type rye for the most relevant presentation of 3-D structure of rye meiocytes throughout meiosis. METHODS We used two types of volume light microscopy: confocal laser scanning microscopy and non-confocal bright-field scanning microscopy combined with alcohol and aldehyde fixation, as well as serial block-face scanning electron microscopy. KEY RESULTS Unusual structures, called nuclear protuberances, were detected. At certain meiotic stages, nuclei formed protuberances that crossed the cell wall through intercellular channels and extended into the cytoplasm of neighbouring cells, while all other aspects of cell structure appeared to be normal. This phenomenon of intercellular nuclear migration (INM) was detected in most meiocytes at leptotene/zygotene. No cases of micronucleus formation or appearance of binucleated meiocytes were noticed. There were instances of direct contact between two nuclei during INM. No influence of fixation or of mechanical impact on the induction of INM was detected. CONCLUSIONS Intercellular nuclear migration in rye may be a programmed process (a normal part of rye male meiosis) or a tricky artefact that cannot be avoided in any way no matter which approach to meiocyte imaging is used. In both cases, INM seems to be an obligatory phenomenon that has previously been hidden by limitations of common microscopic techniques and by 2-D perception of plant male meiocytes. Intercellular nuclear migration cannot be ignored in any studies involving manipulations of rye anthers.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
- Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO)-Volcani Institute, Rishon LeZion, 7505101, Israel
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Hidetoshi Urakubo
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
- Department of Biomedical Data Science, School of Medicine, Fujita Health University, Toyoake, 470-1192, Japan
| | - Elena Deineko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, 329-0431, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| |
Collapse
|
2
|
Raina A, Tantray YR, Khan S. Assessment of Bio-physiological damages and cytological aberrations in cowpea varieties treated with gamma rays and sodium azide. PLoS One 2023; 18:e0288590. [PMID: 37471405 PMCID: PMC10358960 DOI: 10.1371/journal.pone.0288590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
The assessment of mutagen induced biological damage forms an important study in determining the mutagenic potency and genotypic sensitivity, a vital aspect in mutation breeding programs. A prior assessment of lethal dose (LD50), mutagen induced biological damage (alterations in bio-physiological traits and frequency of cytological aberrations) is a prerequisite for determining an optimum mutagen dose in a successful mutation breeding experiment. Therefore, in a multi-year project of mutation breeding, two widely cultivated varieties of cowpea viz., Gomati VU-89 and Pusa-578, were treated with gamma (γ) rays and sodium azide (SA) doses. The results reflected a proportionate increase in bio-physiological damages with the increase in mutagenic doses and caused a substantial reduction in mean seed germination and seedling height. Different cytological aberrations such as cytomixis, univalents, chromosome stickiness, precocious separation, unequal separation, bridges, laggards, disturbed polarity, dyads, triads, and polyads were observed in both varieties. All the mutagen doses induced a broader spectrum of cytological aberrations with varying frequencies.
Collapse
Affiliation(s)
- Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Botany Section, Women's College, Aligarh Muslim University, Aligarh, India
| | | | - Samiullah Khan
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Somashekar H, Nonomura KI. Genetic Regulation of Mitosis-Meiosis Fate Decision in Plants: Is Callose an Oversighted Polysaccharide in These Processes? PLANTS (BASEL, SWITZERLAND) 2023; 12:1936. [PMID: 37653853 PMCID: PMC10223186 DOI: 10.3390/plants12101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Timely progression of the meiotic cell cycle and synchronized establishment of male meiosis in anthers are key to ascertaining plant fertility. With the discovery of novel regulators of the plant cell cycle, the mechanisms underlying meiosis initiation and progression appear to be more complex than previously thought, requiring the conjunctive action of cyclins, cyclin-dependent kinases, transcription factors, protein-protein interactions, and several signaling components. Broadly, cell cycle regulators can be classified into two categories in plants based on the nature of their mutational effects: (1) those that completely arrest cell cycle progression; and (2) those that affect the timing (delay or accelerate) or synchrony of cell cycle progression but somehow complete the division process. Especially the latter effects reflect evasion or obstruction of major steps in the meiosis but have sometimes been overlooked due to their subtle phenotypes. In addition to meiotic regulators, very few signaling compounds have been discovered in plants to date. In this review, we discuss the current state of knowledge about genetic mechanisms to enter the meiotic processes, referred to as the mitosis-meiosis fate decision, as well as the importance of callose (β-1,3 glucan), which has been unsung for a long time in male meiosis in plants.
Collapse
Affiliation(s)
- Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima 411-8540, Japan;
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima 411-8540, Japan;
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| |
Collapse
|
4
|
Somashekar H, Mimura M, Tsuda K, Nonomura KI. Rice GLUCAN SYNTHASE-LIKE5 promotes anther callose deposition to maintain meiosis initiation and progression. PLANT PHYSIOLOGY 2023; 191:400-413. [PMID: 36271865 PMCID: PMC9806566 DOI: 10.1093/plphys/kiac488] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Callose is a plant cell wall polysaccharide whose deposition is spatiotemporally regulated in various developmental processes and environmental stress responses. The appearance of callose in premeiotic anthers is a prominent histological hallmark for the onset of meiosis in flowering plants; however, the biological role of callose in meiosis remains unknown. Here, we show that rice (Oryza sativa) GLUCAN SYNTHASE LIKE5 (OsGSL5), a callose synthase, localizes on the plasma membrane of pollen mother cells (PMCs) and is responsible for biogenesis of callose in anther locules through premeiotic and meiotic stages. In Osgsl5 mutant anthers mostly lacking callose deposition, aberrant PMCs accompanied by aggregated, unpaired, or multivalent chromosomes were frequently observed and, furthermore, a considerable number of mutant PMCs had untimely progress into meiosis compared to that of wild-type PMCs. Immunostaining of meiosis-specific protein HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS2 in premeiotic PMCs revealed precocious meiosis entry in Osgsl5 anthers. These findings provide insights into the function of callose in controlling the timing of male meiosis initiation and progression, in addition to roles in microsporogenesis, in flowering plants.
Collapse
Affiliation(s)
- Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Manaki Mimura
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Katsutoshi Tsuda
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, The Graduate University of Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | | |
Collapse
|
5
|
Kravets EA, Plohovskaya SH, Horyunova II, Yemets AI, Blume YB. Sources of Chromosomal Polymorphism of Microsporocytes in Species of Lilium L. and Allium L.: Cytomixis, Extra Chromosomes, and Chromatin Diminution. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721020080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Dukowic-Schulze S, van der Linde K. Oxygen, secreted proteins and small RNAs: mobile elements that govern anther development. PLANT REPRODUCTION 2021; 34:1-19. [PMID: 33492519 PMCID: PMC7902584 DOI: 10.1007/s00497-020-00401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 05/24/2023]
Abstract
Correct anther development is essential for male fertility and subsequently agricultural yield. Defects in anther development range from the early stage of stamen formation until the late stage of tapetum degeneration. In particular, the specification of the four distinct somatic layers and the inner sporogenous cells need perfect orchestration relying on precise cell-cell communication. Up to now, several signals, which coordinate the anther´s developmental program, have been identified. Among the known signals are phytohormones, environmental conditions sensed via glutaredoxins, several receptor-like kinases triggered by ligands like MAC1, and small RNAs such as miRNAs and the monocot-prevalent reproductive phasiRNAs. Rather than giving a full review on anther development, here we discuss anther development with an emphasis on mobile elements like ROS/oxygen, secreted proteins and small RNAs (only briefly touching on phytohormones), how they might act and interact, and what the future of this research area might reveal.
Collapse
Affiliation(s)
- Stefanie Dukowic-Schulze
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
7
|
Mursalimov S, Ohno N, Matsumoto M, Bayborodin S, Deineko E. Serial Block-Face Scanning Electron Microscopy Reveals That Intercellular Nuclear Migration Occurs in Most Normal Tobacco Male Meiocytes. FRONTIERS IN PLANT SCIENCE 2021; 12:672642. [PMID: 34025709 PMCID: PMC8138938 DOI: 10.3389/fpls.2021.672642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 05/14/2023]
Abstract
Serial block-face scanning electron microscopy (SBF-SEM) was used here to study tobacco male meiosis. Three-dimensional ultrastructural analyses revealed that intercellular nuclear migration (INM) occurs in 90-100% of tobacco meiocytes. At the very beginning of meiosis, every meiocyte connected with neighboring cells by more than 100 channels was capable of INM. At leptotene and zygotene, the nucleus in most tobacco meiocytes approached the cell wall and formed nuclear protuberances (NPs) that crossed the cell wall through the channels and extended into the cytoplasm of a neighboring cell. The separation of NPs from the migrating nuclei and micronuclei formation were not observed. In some cases, the NPs and nuclei of neighboring cells appeared apposed to each other, and the gap between their nuclear membranes became invisible. At pachytene, NPs retracted into their own cells. After that, the INM stopped. We consider INM a normal part of tobacco meiosis, but the reason for such behavior of nuclei is unclear. The results obtained by SBF-SEM suggest that there are still many unexplored features of plant meiosis hidden by limitations of common types of microscopy and that SBF-SEM can turn over a new leaf in plant meiosis research.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Laboratory of Plant Bioengineering, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- *Correspondence: Sergey Mursalimov
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Mami Matsumoto
- Section of Electron Microscopy, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Sergey Bayborodin
- Laboratory of Plant Bioengineering, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena Deineko
- Laboratory of Plant Bioengineering, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
8
|
Heikal YM, Şuţan NA, Rizwan M, Elsayed A. Green synthesized silver nanoparticles induced cytogenotoxic and genotoxic changes in Allium cepa L. varies with nanoparticles doses and duration of exposure. CHEMOSPHERE 2020; 243:125430. [PMID: 31995881 DOI: 10.1016/j.chemosphere.2019.125430] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 05/25/2023]
Abstract
This study aimed to test the ability of aqueous leaf extract of Eichhornia crassipes (Mart.) Solms-Laubach to synthesize silver nanoparticles (AgNPs) and to estimate the cytotoxicity and genotoxicity of AgNPs using Allium cepa assay. Fresh Eichhornia crassipes plants were collected from the Nile River of Egypt. The mixed-shaped structures of the biogenic AgNPs were qualitatively characterized by UV-vis spectroscopy, scanning electron microscopy and transmission electron microscopy. Selected area electron diffraction confirmed the crystalline structure of AgNPs and energy dispersive X-ray analysis clarified the presence of the elemental silver in a percentage of 83.29%. The biogenic AgNPs were quite stable (0.316) and negatively charged (-18.5 mV) based on the polydispersity index values. Allium cepa L. roots were exposed to several AgNPs concentrations (0, 5, 10, 20, 40 and 80 mg L-1) for different time intervals 2, 4 and 6 h. Cytotoxicity measured by both the spectrophotometric and macroscopic techniques recorded the maximum cell death of root tips of A. cepa after 20 mg L-1 treatment. The analysis of comet assay output images showed an alteration of DNA repair kinetics. The use of aqueous leaf extract of E. crassipes (Mart.) Solms-Laubach in the large-scale production of AgNPs by the method proposed in this study may be a step in improving the water loss in the Nile River. At the same time, a sensitive approach to the cytogenotoxicity of AgNPs must be considered.
Collapse
Affiliation(s)
- Yasmin M Heikal
- Department of Botany, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| | - Nicoleta Anca Şuţan
- University of Piteşti, Faculty of Sciences, Physical Education and Informatics, Department of Natural Sciences, 1 Targu din Vale Str., 110040, Pitesti, Romania
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan.
| | - Ashraf Elsayed
- Department of Botany, Faculty of Science, Mansoura University, 35516, Mansoura, Egypt
| |
Collapse
|
9
|
Mursalimov SR, Sidorchuk YV, Deineko EV. Cytological Techniques to Study Cytomixis in Plant Male Meiosis. Methods Mol Biol 2020; 2061:117-129. [PMID: 31583656 DOI: 10.1007/978-1-4939-9818-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
In this chapter we describe cytological techniques to study cytomixis, a process of nuclear migration between plant cells, in squashed plant male meiocytes of Nicotiana tabacum and Secale cereale. To perform immunostaining or fluorescence in situ hybridization (FISH) on meiotic cells involved in cytomixis common protocols are modified. During preparation of specimens for subsequent cytological analysis, it is necessary not only to make DNA and proteins accessible to DNA probes and antibodies, but also to preserve cell cytoplasm. There are also some important modifications in the protocols applied for meiocytes of different plant species. Here we describe protocols for immunostaining and FISH in rigid tobacco male meiocytes with dense cytoplasm and thick callose wall, that tolerate hard squashing, and in soft rye male meiocytes, that are easily damaged upon squashing, both to study cytomixis.
Collapse
Affiliation(s)
- Sergey R Mursalimov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation.
| | - Yuriy V Sidorchuk
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| | - Elena V Deineko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| |
Collapse
|
10
|
Baluška F, Lyons S. Energide-cell body as smallest unit of eukaryotic life. ANNALS OF BOTANY 2018; 122:741-745. [PMID: 29474513 PMCID: PMC6215040 DOI: 10.1093/aob/mcy022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Background The evolutionary origin of the eukaryotic nucleus is obscure and controversial. Currently preferred are autogenic concepts; ideas of a symbiotic origin are mostly discarded and forgotten. Here we briefly discuss these issues and propose a new version of the symbiotic and archaeal origin of the eukaryotic nucleus. Scope and Conclusions The nucleus of eukaryotic cells forms via its perinuclear microtubules, the primary eukaryotic unit known also as the Energide-cell body. As for all other endosymbiotic organelles, new Energides are generated only from other Energides. While the Energide cannot be generated de novo, it can use its secretory apparatus to generate de novo the cell periphery apparatus. We suggest that Virchow's tenet Omnis cellula e cellula should be updated as Omnis Energide e Energide to reflect the status of the Energide as the primary unit of the eukaryotic cell, and life. In addition, the plasma membrane provides feedback to the Energide and renders it protection via the plasma membrane-derived endosomal network. New discoveries suggest archaeal origins of both the Energide and its host cell.
Collapse
|
11
|
Singhal VK, Tantray YR, Gupta H, Rana PK, Kaur M, Gupta RC. Male Meiosis and Chromosomal Status in the Genus Lactuca L. from Western Himalayas (India). CYTOLOGIA 2018. [DOI: 10.1508/cytologia.83.311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Lu KJ, Danila FR, Cho Y, Faulkner C. Peeking at a plant through the holes in the wall - exploring the roles of plasmodesmata. THE NEW PHYTOLOGIST 2018; 218:1310-1314. [PMID: 29574753 DOI: 10.1111/nph.15130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plasmodesmata (PD) are membrane-lined pores that connect neighbouring plant cells and allow molecular exchange via the symplast. Past studies have revealed the basic structure of PD, some of the transport mechanisms for molecules through PD, and a variety of physiological processes in which they function. Recently, with the help of newly developed technologies, several exciting new features of PD have been revealed. New PD structures were observed during early formation of PD and between phloem sieve elements and phloem pole pericycle cells in roots. Both observations challenge our current understanding of PD structure and function. Research into novel physiological responses, which are regulated by PD, indicates that we have not yet fully explored the potential contribution of PD to overall plant function. In this Viewpoint article, we summarize some of the recent advances in understanding the structure and function of PD and propose the challenges ahead for the community.
Collapse
Affiliation(s)
- Kuan-Ju Lu
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Florence R Danila
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Yueh Cho
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Programme, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | | |
Collapse
|
13
|
Mursalimov SR, Sidorchuk YV, Zagorskaya AA, Deineko EV. Migration of DNA-Containing Organelles between Tobacco Microsporocytes during Cytomixis. Russ J Dev Biol 2018. [DOI: 10.1134/s1062360418030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Mursalimov S, Deineko E. Cytomixis in plants: facts and doubts. PROTOPLASMA 2018; 255:719-731. [PMID: 29192339 DOI: 10.1007/s00709-017-1188-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/21/2017] [Indexed: 05/12/2023]
Abstract
The migration of nuclei between plant cells (cytomixis) is a mysterious cellular phenomenon frequently observable in the male meiosis of higher plants. Cytomixis attracts attention because of unknown cellular mechanisms underlying migration of nuclei and its potential evolutionary significance, since the genetic material is transferred between the cells that form pollen. Although cytomixis was discovered over a century ago, the advance in our understanding of this process has been rather insignificant because of methodological difficulties. The data that allowed for a new insight into this phenomenon were obtained by examining the migrating nuclei with electron and confocal laser microscopy, immunostaining, and fluorescence in situ hybridization. As has been shown, the chromatin migrating between cells is surrounded by an undamaged nuclear membrane. Such chromatin does not undergo heterochromatization and contains normal euchromatin markers. The condensation degree of the migrating chromatin corresponds to the current meiotic stage, and normal structures of synaptonemal complex are present in the migrating part of the nucleus. The cells involved in cytomixis lack any detectable morphological and molecular markers of programmed cell death. It has been shown that individual chromosomes and genomes (in the case of allopolyploids) have no predisposition to the migration between cells, i.e., parts of the nucleus are involved in cytomixis in a random manner. However, the fate of migrating chromatin after it has entered the recipient cell is still vague. A huge amount of indirect data suggests that migrating chromatin is incorporated into the nucleus of the recipient cell; nonetheless, the corresponding direct evidences are still absent. No specific markers of cytomictic chromatin have been yet discovered. Thus, the causes and consequences of cytomixis are still disputable. This review briefs the recent data on the relevant issues, describes the classical and modern methodological approaches to analysis of the intercellular migration of nuclei, and discusses the problems in cytomixis research and its prospects.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, pr. Lavrentieva 10, Novosibirsk, Russian Federation, 630090.
| | - Elena Deineko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, pr. Lavrentieva 10, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
15
|
Mursalimov S, Zagorskaya A, Deineko E. Evaluation of DNA damage in tobacco male meiocytes involved in cytomixis using comet assay. PROTOPLASMA 2018; 255:413-417. [PMID: 28702759 DOI: 10.1007/s00709-017-1144-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Cytomixis is a process of nuclear migration between plant cells. As a rule, it is detectable in male meiocytes and gives rise to the cells with micronuclei. Examination of the integrity and functional state of migrating chromatin is of great interest, since cytomixis is assumed to change the gamete karyotype. We, for the first time, used comet assay to assess the DNA integrity in the chromatin that migrates between plant meiocytes. As was shown, the cells involved in cytomixis are viable and display no signs of DNA damage. Any comet tails are undetectable in both the main nuclei of the cells involved in cytomixis and cytomictic micronuclei. On the other hand, the cytomictic micronuclei after heat shock (positive control) form typical comet tails.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Siberian Branch, Russian Academy of Sciences, Institute of Cytology and Genetics, pr. Lavrentieva 10, Novosibirsk, Russian Federation, 630090.
| | - Alla Zagorskaya
- Siberian Branch, Russian Academy of Sciences, Institute of Cytology and Genetics, pr. Lavrentieva 10, Novosibirsk, Russian Federation, 630090
| | - Elena Deineko
- Siberian Branch, Russian Academy of Sciences, Institute of Cytology and Genetics, pr. Lavrentieva 10, Novosibirsk, Russian Federation, 630090
| |
Collapse
|
16
|
Sarma S, Pandey AK, Sharma K, Ravi M, Sreelakshmi Y, Sharma R. MutS-Homolog2 silencing generates tetraploid meiocytes in tomato ( Solanum lycopersicum). PLANT DIRECT 2018; 2:e00017. [PMID: 31245679 PMCID: PMC6508528 DOI: 10.1002/pld3.17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 05/16/2023]
Abstract
MSH2 is the core protein of MutS-homolog family involved in recognition and repair of the errors in the DNA. While other members of MutS-homolog family reportedly regulate mitochondrial stability, meiosis, and fertility, MSH2 is believed to participate mainly in mismatch repair. The search for polymorphism in MSH2 sequence in tomato accessions revealed both synonymous and nonsynonymous SNPs; however, SIFT algorithm predicted that none of the SNPs influenced MSH2 protein function. The silencing of MSH2 gene expression by RNAi led to phenotypic abnormalities in highly silenced lines, particularly in the stamens with highly reduced pollen formation. MSH2 silencing exacerbated formation of UV-B-induced thymine dimers and blocked light-induced repair of the dimers. The MSH2 silencing also affected the progression of male meiosis to a varying degree with either halt of meiosis at zygotene stage or formation of diploid tetrads. The immunostaining of male meiocytes with centromere localized CENPC (centromere protein C) antibody showed the presence of 48 univalent along with 24 bivalent chromosomes suggesting abnormal tetraploid meiosis. The mitotic cells of root tips of silenced lines showed diploid nuclei but lacked intervening cell plates leading to cells with syncytial nuclei. Thus, we speculate that tetraploid pollen mother cells may have arisen due to the fusion of syncytial nuclei before the onset of meiosis. It is likely that in addition to mismatch repair (MMR), MSH2 may have an additional role in regulating ploidy stability.
Collapse
Affiliation(s)
- Supriya Sarma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
- Present address:
Centre for Cellular and Molecular BiologyHyderabadIndia
| | - Arun Kumar Pandey
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
- Present address:
International Crops Research Institute for the Semi‐Arid Tropics (ICRISAT)HyderabadIndia
| | - Kapil Sharma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
| | - Maruthachalam Ravi
- School of BiologyIndian Institute of Science Education and ResearchThiruvananthapuramKeralaIndia
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
| | - Rameshwar Sharma
- Repository of Tomato Genomics ResourcesDepartment of Plant SciencesSchool of Life SciencesUniversity of HyderabadHyderabadIndia
| |
Collapse
|
17
|
Zhang X, Cao Q, Zhou P, Jia G. Meiotic chromosome behavior of the male-fertile allotriploid lily cultivar 'Cocossa'. PLANT CELL REPORTS 2017; 36:1641-1653. [PMID: 28741131 DOI: 10.1007/s00299-017-2180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Cytological observations of microsporogenesis in the allotriploid lily cultivar 'Cocossa' showed that viable pollen production could be attributed mainly to disoriented spindles, abnormal cytokinesis, and cytomixis during male meiosis. To identify the reasons why the allotriploid lily cultivar 'Cocossa' can produce aneuploid and euploid functional male gametes and can be used as the paternal parent in lily introgression breeding, we performed a detailed investigation of microsporogenesis using the conventional cytological methods. The allotriploid not only produced single pollen grains with variable sizes but also produced adherent pollen grains. Pollen viability was estimated at 50.1% based on staining and 30.8% based on germination. Based on the chromosomal analysis of BC2 plants derived from Oriental cultivars (♀) crossed with the OOT cultivar 'Cocossa' (♂), it was concluded that the objective allotriploid contributed haploid (x), diploid (2x), and aneuploid chromosome complements. Common meiotic abnormalities were observed, indicating the high genetic imbalance of this allotriploid. In addition to normally oriented metaphase II spindles (linear and perpendicular), abnormal spindles, such as parallel, tripolar, fused, and multiple spindles, accounted for 6.21, 6.41, 14.27, and 1.17%, respectively. Tripolar and fused spindles resulted in the production of triads and dyads, which contributed to unreduced pollen production. Some microsporocytes exhibited complete or partial absence of cytokinesis, which led to relatively high frequencies of monads, dyads, and triads. Furthermore, the phenomenon of cytomixis during microsporogenesis occurred mainly in the first meiotic prophase and early development of pollen grains, which we assume is a possible cause of unreduced gamete generation. Our study offers a new resource for lily introgression breeding.
Collapse
Affiliation(s)
- Xiqing Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qinzheng Cao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Peng Zhou
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Guixia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
18
|
Kravets EA, Yemets AI, Blume YB. Cytoskeleton and nucleoskeleton involvement in processes of cytomixis in plants. Cell Biol Int 2017; 43:999-1009. [DOI: 10.1002/cbin.10842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/12/2017] [Indexed: 12/13/2022]
Affiliation(s)
| | - Alla Ivanovna Yemets
- Institute of Food Biotechnology and GenomicsNatl. Academy of Sciences of UkraineKyiv Ukraine
| | | |
Collapse
|
19
|
|
20
|
Mursalimov S, Deineko E. Cytomixis in tobacco microsporogenesis: are there any genome parts predisposed to migration? PROTOPLASMA 2017; 254:1379-1384. [PMID: 27677800 DOI: 10.1007/s00709-016-1028-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Cytomixis is a poorly studied process of nuclear migration between plant cells, discovered in microsporogenesis of several hundreds of plant species. The chromosomes that migrate between tobacco microsporocytes have been for the first time identified using fluorescence in situ hybridization (FISH), and the question whether cytomixis is a random or a targeted process is answered. The distribution of four repetitive sequences used for identifying the tobacco chromosomes-NTRS, 5S rDNA, GRS, and HSR60-has been examined in the migrating chromatin, and the micronuclei formed after cytomixis. The distribution of tobacco S and T genomes has been analyzed in the cytomictic chromatin using genomic in situ hybridization (GISH). As has been shown (χ 2 test), the labeled DNA probes marking the listed sequences in tobacco genome are observed in the micronuclei formed after cytomixis with the probability not exceeding the theoretically expected value if cytomixis considered as a random process. Thus, it is shown that cytomixis is not a targeted process, and the chromosomes migrate between microsporocytes in a random manner.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russian Federation.
| | - Elena Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
21
|
Mursalimov S, Sidorchuk Y, Deineko E. Behavior of nucleolus in the tobacco male meiocytes involved in cytomixis. Cell Biol Int 2017; 41:340-344. [PMID: 28032378 DOI: 10.1002/cbin.10718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/17/2016] [Indexed: 11/11/2022]
Abstract
Behavior of nucleolus during the nuclear migration between plant cells (cytomixis) is studied for the first time in the tobacco male meiosis. As is shown, the nucleolus is located in a nonrandom manner in the migrating nuclei. In the majority of cases, the nucleolus resides on the nuclear pole strictly opposite to the cytomictic channel. Owing to this localization, the nucleolus extremely rare enters the recipient cell, so that the nucleolar material is in most cases undetectable in the micronuclei formed after cytomixis. When a whole nucleus migrates from a donor cell to recipient, the nucleolus can leave the nucleus and remain in the donor cells either alone or with a small amount of chromatin. The causes underlying a nonrandom location of the nucleolus in cytomictic cells are discussed. It is assumed that the nucleolar material contacts the cytoplasmic cytoskeleton, which prevents migration of the nucleolus into another cell within the nucleus. The potential use of cytomixis as a model for studying the nuclear motion is discussed.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Yuriy Sidorchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| | - Elena Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russia
| |
Collapse
|
22
|
Lin C, Feng Y, Chen Q, Li X, Song Z. Meiotic Studies and Cytomixis in Pollen Mother Cells of Salvia przewalskii Maxim. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Caicai Lin
- Agronomy College, Shandong Agricultural University
| | | | | | - Xingfeng Li
- Agronomy College, Shandong Agricultural University
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University
| | - Zhenqiao Song
- Agronomy College, Shandong Agricultural University
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University
| |
Collapse
|
23
|
Himshikha, Gupta RC, Kumar R, Singhal VK. Cytomixis and Intraspecific Polyploidy (2 x, 4 x) in Inula grandiflora Willd. from Malana Valley, Kullu District, Himachal Pradesh. CYTOLOGIA 2017. [DOI: 10.1508/cytologia.82.273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Himshikha
- Department of Botany, Punjabi University
| | | | | | | |
Collapse
|
24
|
Mursalimov S, Sidorchuk Y, Deineko E. Analysis of cytomixis in tobacco microsporocytes with confocal laser scanning microscopy. PROTOPLASMA 2017; 254:539-545. [PMID: 27072984 DOI: 10.1007/s00709-016-0973-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
Confocal laser scanning microscopy for the first time is used to examine the structure of the tobacco microsporocytes involved in the intercellular migration of nuclei (cytomixis). As is observed, the cytomictic channels are distributed over the surface of tobacco microsporocytes in a non-random manner and their number depends on the meiotic stage. Analysis of non-squash cells demonstrates the differences in cytological patterns of cytomixis in a normal meiosis of control tobacco plants (SR1 line) and the abnormal meiosis of polyploids. As a rule, two to three adjacent cells are involved in cytomixis during meiosis of control tobacco plants; after cytomixis, several micronuclei are formed in recipient cells; cytoplasts (enucleated cells) are rare; and polyads are undetectable. In the meiosis of polyploids, cytomixis is massive, with a larger number of cells (sometimes, over ten) involved in nuclear migration simultaneously; recipient cells on completion of cytomixis develop tens of micronuclei; cytoplasts and polyads are frequently detectable.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russian Federation.
| | - Yuri Sidorchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russian Federation
| | - Elena Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
25
|
|
26
|
Sidorchuk YV, Kravets EA, Mursalimov SR, Plokhovskaya SG, Goryunova II, Yemets AI, Blume YB, Deineko EV. Efficiency of the induction of cytomixis in the microsporogenesis of dicotyledonous (N. tabacum L.) and monocotyledonous (H. distichum L.) plants by thermal stress. Russ J Dev Biol 2016. [DOI: 10.1134/s1062360416060072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Mursalimov S, Sidorchuk Y, Demidov D, Meister A, Deineko E. A rise of ploidy level influences the rate of cytomixis in tobacco male meiosis. PROTOPLASMA 2016; 253:1583-1588. [PMID: 26553378 DOI: 10.1007/s00709-015-0907-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
The effect of plant ploidy level on the rate of cytomixis in microsporogenesis has been analyzed with the help of a unique model, the collection of tobacco plants of different ploidies (2n = 2x = 24, 4x = 48, 6x = 72, and 8x = 96). As has been shown, the rate of cytomixis proportionally increases in 6x and 8x cytotypes, being rather similar in 2x and 4x plants. The rate of cytomixis is highly variable, differing even in the genetically identical plants grown under the same conditions. The cytological pattern of cytomixis in the microsporogenesis of control 4x plants has been compared with the corresponding patterns of 2x, 6x, and 8x plants. Involvement of cytomixis in production of unreduced gametes and stabilization of the newly formed hybrid and polyploidy genomes is discussed.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russia.
| | - Yuri Sidorchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russia
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466, Stadt Seeland, Germany
| | - Elena Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090, Russia
| |
Collapse
|
28
|
Kravets EA, Sidorchuk YV, Horyunova II, Plohovskaya SH, Mursalimov SR, Deineko EV, Yemets AI, Blume YB. Intra- and intertissular cytomictic interactions in the microsporogenesis of mono- and dicotyledonous plants. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716050054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Sidorchuk YV, Novikovskaya AA, Deineko EV. Cytomixis in the cereal (Gramineae) microsporogenesis. PROTOPLASMA 2016; 253:291-8. [PMID: 25860793 DOI: 10.1007/s00709-015-0807-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/17/2015] [Indexed: 05/27/2023]
Abstract
The specific features in behavior of the nuclei and chromatin migrating through cytomictic channels as well as in formation of micronuclei in the cereal microsporogenesis have been studied. Immunofluorescence microscopy has allowed for demonstration that the tubulin cytoskeleton does not play a significant role in the intercellular migration of nuclei. Potential involvement of the actin cytoskeleton and SUN-KASH linker complexes in cytomixis is discussed. Comparative analysis of the published and own data suggests that the cytological patterns of cytomixis in monocots and dicots are conserved. As has been shown, each higher ploidy level in the polyploid series of the family Gramineae is accompanied by an increase in the rate of cytomixis independently of individual species. The results confirm the assumption on a correlation between the rate of cytomixis, ploidy level, and genome balance.
Collapse
Affiliation(s)
- Yuri V Sidorchuk
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk, 630090, Russia.
| | - Anna A Novikovskaya
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk, 630090, Russia
| | - Elena V Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrentieva 10, Novosibirsk, 630090, Russia
| |
Collapse
|
30
|
Kumar P, Singhal VK. Morphological and Ecological Adaptations, and Cytological Studies in Astragalus rhizanthus Royle ex Benth. (Papilionaceae), an Endemic to Himalayas. CYTOLOGIA 2016. [DOI: 10.1508/cytologia.81.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Puneet Kumar
- Botanical Survey of India, Northern Regional Centre
| | | |
Collapse
|
31
|
Mursalimov S, Sidorchuk Y, Baiborodin S, Deineko E. Distribution of telomeres in the tobacco meiotic nuclei during cytomixis. Cell Biol Int 2015; 39:491-5. [PMID: 25492305 DOI: 10.1002/cbin.10406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/07/2014] [Indexed: 11/09/2022]
Abstract
Cytomixis is the migration of nuclei from one cell to another in higher plants, most frequently observable during microsporogenesis, which has a potential evolutionary significance. Currently, a major challenge is to label the chromatin migrating between cells to clarify its further fate. We have for the first time succeeded in visualizing the telomeric chromatin regions in the nuclei migrating between cells using fluorescent in situ hybridization. It has been shown that the telomeric signals in tobacco microsporocytes are randomly distributed in migrating nuclei without any deviations from their normal meiotic dynamics. According to our data, the chromatin migrating during cytomixis always contains telomeres and the telomeric signals are retained in the micronuclei formed after cytomixis.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentyeva 10, Novosibirsk, 630090, Russian Federation
| | | | | | | |
Collapse
|
32
|
Mursalimov S, Permyakova N, Deineko E, Houben A, Demidov D. Cytomixis doesn't induce obvious changes in chromatin modifications and programmed cell death in tobacco male meiocytes. FRONTIERS IN PLANT SCIENCE 2015; 6:846. [PMID: 26528310 PMCID: PMC4600909 DOI: 10.3389/fpls.2015.00846] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/25/2015] [Indexed: 05/16/2023]
Abstract
Cytomixis is a poorly studied process of nuclear migration between plant cells. It is so far unknown what drives cytomixis and what is the functional state of the chromatin migrating between cells. Using immunostaining, we have analyzed the distribution of posttranslational histone modifications (methylation, acetylation, and phosphorylation) that reflect the functional state of chromatin in the tobacco microsporocytes involved in cytomixis. We demonstrate that the chromatin in the cytomictic cells does not differ from the chromatin in intact microsporocytes according to all 14 analyzed histone modification types. We have also for the first time demonstrated that the migrating chromatin contains normal structures of the synaptonemal complex (SC) and lacks any signs of apoptosis. As has been shown, the chromatin migrating between cells in cytomixis is neither selectively heterochromatized nor degraded both before its migration to another cell and after it enters a recipient cell as micronuclei. We also showed that cytomictic chromatin contains marks typical for transcriptionally active chromatin as well as heterochromatin. Moreover, marks typical for chromosome condensation, SC formation and key proteins required for the formation of bivalents were also detected at migrated chromatin.
Collapse
Affiliation(s)
- Sergey Mursalimov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
| | - Natalya Permyakova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
| | - Elena Deineko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of SciencesNovosibirsk, Russia
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant ResearchStadt Seeland, Germany
| | - Dmitri Demidov
- Leibniz Institute of Plant Genetics and Crop Plant ResearchStadt Seeland, Germany
- *Correspondence: Dmitri Demidov,
| |
Collapse
|
33
|
Barton DA, Cantrill LC, Law AMK, Phillips CG, Sutton BG, Overall RL. Chilling to zero degrees disrupts pollen formation but not meiotic microtubule arrays in Triticum aestivum L. PLANT, CELL & ENVIRONMENT 2014; 37:2781-94. [PMID: 24762030 DOI: 10.1111/pce.12358] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/13/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
Throughout the wheat-growing regions of Australia, chilling temperatures below 2 °C occur periodically on consecutive nights during the period of floral development in spring wheat (Triticum aestivum L.). In this study, wheat plants showed significant reductions in fertility when exposed to prolonged chilling temperatures in controlled environment experiments. Among the cultivars tested, the Australian cultivars Kite and Hartog had among the lowest levels of seed set due to chilling and their responses were investigated further. The developmental stage at exposure, the chilling temperature and length of exposure all influenced the level of sterility. The early period of booting, and specifically the +4 cm auricle distance class, was the most sensitive and corresponded to meiosis within the anthers. The response of microtubules to chilling during meiosis in Hartog was monitored, but there was little difference between chilled and control plants. Other abnormalities, such as plasmolysis and cytomixis increased in frequency, were associated with death of developing pollen cells, and could contribute to loss of fertility. The potential for an above-zero chilling sensitivity in Australian spring wheat varieties could have implications for exploring the tolerance of wheat flower development to chilling and freezing conditions in the field.
Collapse
Affiliation(s)
- Deborah A Barton
- School of Biological Sciences, University of Sydney, Macleay Building, A12, Camperdown, New South Wales, 2006, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Fuentes I, Stegemann S, Golczyk H, Karcher D, Bock R. Horizontal genome transfer as an asexual path to the formation of new species. Nature 2014; 511:232-5. [PMID: 24909992 DOI: 10.1038/nature13291] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/31/2014] [Indexed: 11/08/2022]
Abstract
Allopolyploidization, the combination of the genomes from two different species, has been a major source of evolutionary innovation and a driver of speciation and environmental adaptation. In plants, it has also contributed greatly to crop domestication, as the superior properties of many modern crop plants were conferred by ancient allopolyploidization events. It is generally thought that allopolyploidization occurred through hybridization events between species, accompanied or followed by genome duplication. Although many allopolyploids arose from closely related species (congeners), there are also allopolyploid species that were formed from more distantly related progenitor species belonging to different genera or even different tribes. Here we have examined the possibility that allopolyploidization can also occur by asexual mechanisms. We show that upon grafting--a mechanism of plant-plant interaction that is widespread in nature--entire nuclear genomes can be transferred between plant cells. We provide direct evidence for this process resulting in speciation by creating a new allopolyploid plant species from a herbaceous species and a woody species in the nightshade family. The new species is fertile and produces fertile progeny. Our data highlight natural grafting as a potential asexual mechanism of speciation and also provide a method for the generation of novel allopolyploid crop species.
Collapse
Affiliation(s)
- Ignacia Fuentes
- 1] Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany [2]
| | - Sandra Stegemann
- 1] Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany [2]
| | - Hieronim Golczyk
- Department of Molecular Biology, Institute of Biotechnology, John Paul II Catholic University of Lublin, Konstantynow 1I, 20-708 Lublin, Poland
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
35
|
Rana PK, Kumar P, Singhal VK. Cytomixis and Associated Abnormalities during Male Meiosis in Lindelofia longiflora var. falconeri (Boraginaceae). CYTOLOGIA 2014. [DOI: 10.1508/cytologia.79.535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|