1
|
Bayramova E, Petrova D, Marchenkov A, Morozov A, Galachyants Y, Zakharova Y, Bedoshvili Y, Likhoshway Y. Differential Expression of Stress Adaptation Genes in a Diatom Ulnaria acus under Different Culture Conditions. Int J Mol Sci 2024; 25:2314. [PMID: 38396992 PMCID: PMC10888605 DOI: 10.3390/ijms25042314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Diatoms are a group of unicellular eukaryotes that are essential primary producers in aquatic ecosystems. The dynamic nature of their habitat necessitates a quick and specific response to various stresses. However, the molecular mechanisms of their physiological adaptations are still underexplored. In this work, we study the response of the cosmopolitan freshwater diatom Ulnaria acus (Bacillariophyceae, Fragilariophycidae, Licmophorales, Ulnariaceae, Ulnaria) in relation to a range of stress factors, namely silica deficiency, prolonged cultivation, and interaction with an algicidal bacterium. Fluorescent staining and light microscopy were used to determine the physiological state of cells under these stresses. To explore molecular reactions, we studied the genes involved in the stress response-type III metacaspase (MC), metacaspase-like proteases (MCP), death-specific protein (DSP), delta-1-pyrroline-5-carboxylate dehydrogenase (ALDH12), and glutathione synthetase (GSHS). We have described the structure of these genes, analyzed the predicted amino acid sequences, and measured their expression dynamics in vitro using qRT-PCR. We demonstrated that the expression of UaMC1, UaMC3, and UaDSP increased during the first five days of silicon starvation. On the seventh day, it was replaced with the expression of UaMC2, UaGSHS, and UaALDH. After 45 days of culture, cells stopped growing, and the expression of UaMC1, UaMC2, UaGSHS, and UaDSP increased. Exposure to an algicidal bacterial filtrate induced a higher expression of UaMC1 and UaGSHS. Thus, we can conclude that these proteins are involved in diatoms' adaptions to environmental changes. Further, these data show that the molecular adaptation mechanisms in diatoms depend on the nature and exposure duration of a stress factor.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yekaterina Bedoshvili
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (E.B.); (D.P.); (A.M.); (A.M.); (Y.G.); (Y.Z.); (Y.L.)
| | | |
Collapse
|
2
|
Conchou L, Doumèche B, Galisson F, Violot S, Dugelay C, Diesis E, Page A, Bienvenu AL, Picot S, Aghajari N, Ballut L. Structural and molecular determinants of Candida glabrata metacaspase maturation and activation by calcium. Commun Biol 2022; 5:1158. [PMID: 36316540 PMCID: PMC9622860 DOI: 10.1038/s42003-022-04091-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Metacaspases are caspase-like homologs which undergo a complex maturation process involving multiple intra-chain cleavages resulting in a composite enzyme made of a p10 and a p20 domain. Their proteolytic activity involving a cysteine-histidine catalytic dyad, show peptide bond cleavage specificity in the C-terminal to lysine and arginine, with both maturation- and catalytic processes being calcium-dependent. Here, we present the structure of a metacaspase from the yeast Candida glabrata, CgMCA-I, in complex with a unique calcium along with a structure in which three magnesium ions are bound. We show that the Ca2+ ion interacts with a loop in the vicinity of the catalytic site. The reorganization of this cation binding loop, by bringing together the two catalytic residues, could be one of the main structural determinants triggering metacaspase activation. Enzymatic exploration of CgMCA-I confirmed that the maturation process implies a trans mechanism with sequential cleavages. Structural and functional analyses of yeast metacaspase reveal unique Ca2+ and Mg2+ binding sites and provide insights into Ca2+-dependent maturation of metacaspases along with the inhibitory effects of Mg2+ and Zn2+.
Collapse
Affiliation(s)
- Léa Conchou
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Bastien Doumèche
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaire, ICBMS UMR 5246, CNRS, F-69622 Lyon, France
| | - Frédéric Galisson
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Sébastien Violot
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Chloé Dugelay
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Eric Diesis
- grid.15140.310000 0001 2175 9188University of Lyon, INSERM, ENS Lyon, CNRS, Protein Science Facility, SFR BioSciences, UAR3444/US8, F-69366 Lyon, France
| | - Adeline Page
- grid.15140.310000 0001 2175 9188University of Lyon, INSERM, ENS Lyon, CNRS, Protein Science Facility, SFR BioSciences, UAR3444/US8, F-69366 Lyon, France
| | - Anne-Lise Bienvenu
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaire, ICBMS UMR 5246, CNRS, F-69622 Lyon, France ,grid.413852.90000 0001 2163 3825Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, F-69004 Lyon, France
| | - Stéphane Picot
- grid.25697.3f0000 0001 2172 4233Université de Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaire, ICBMS UMR 5246, CNRS, F-69622 Lyon, France ,grid.413306.30000 0004 4685 6736Institute of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, F-69004 Lyon, France
| | - Nushin Aghajari
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| | - Lionel Ballut
- grid.25697.3f0000 0001 2172 4233Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, F-69367 Lyon, France
| |
Collapse
|
3
|
Sabljić I, Zou Y, Klemenčič M, Funk C, Ståhlberg J, Bozhkov P. Expression and Purification of the Type II Metacaspase from a Unicellular Green Alga Chlamydomonas reinhardtii. Methods Mol Biol 2022; 2447:13-20. [PMID: 35583769 DOI: 10.1007/978-1-0716-2079-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Type II metacaspases (MCAs) are proteases, belonging to the C14B MEROPS family. Like the MCAs of type I and type III, they preferentially cleave their substrates after the positively charged amino acid residues (Arg or Lys) at the P1 position. Type II MCAs from various higher plants have already been successfully overexpressed in E. coli mostly as His-tagged proteins and were shown to be proteolytically active after the purification. Here we present a protocol for expression and purification of the only type II MCA from the model green alga Chlamydomonas reinhardtii. The two-step purification, which consists of immobilized metal affinity chromatography using cobalt as ion followed by size-exclusion chromatography, can be performed in 1 day and yields 4 mg CrMCA-II protein per liter of overexpression culture.
Collapse
Affiliation(s)
- Igor Sabljić
- Uppsala BioCenter, Department of Molecular Science, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Yong Zou
- Uppsala BioCenter, Department of Molecular Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marina Klemenčič
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Ljubljana, Slovenia
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Jerry Ståhlberg
- Uppsala BioCenter, Department of Molecular Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Peter Bozhkov
- Uppsala BioCenter, Department of Molecular Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
van Midden KP, Peric T, Klemenčič M. Plant type I metacaspases are proteolytically active proteases despite their hydrophobic nature. FEBS Lett 2021; 595:2237-2247. [PMID: 34318487 DOI: 10.1002/1873-3468.14165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022]
Abstract
Plant metacaspases type I (MCA-Is), the closest structural homologs of caspases, are key proteases in stress-induced regulated cell death processes in plants. However, no plant MCA-Is have been characterized in vitro to date. Here, we show that only plant MCA-Is contain a highly hydrophobic loop within the C terminus of their p10 domain. When removed, soluble and proteolytically active plant MCA-Is can be designed and recombinantly produced. We show that the activity of MCA-I depends on calcium ions and that removal of the hydrophobic loop does not affect cleavage and covalent binding to its inhibitor SERPIN. This novel approach will finally allow the development of tools to detect and manipulate the activity of these cysteine proteases in vivo and in planta.
Collapse
Affiliation(s)
- Katarina Petra van Midden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Tanja Peric
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
| |
Collapse
|
5
|
Bhattacharjee S, Kharwar S, Mishra AK. Insights Into the Phylogenetic Distribution, Diversity, Structural Attributes, and Substrate Specificity of Putative Cyanobacterial Orthocaspases. Front Microbiol 2021; 12:682306. [PMID: 34276616 PMCID: PMC8283722 DOI: 10.3389/fmicb.2021.682306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
The functionality of caspase homologs in prokaryotic cell execution has been perceived, yet the dimensions of their metabolic pertinence are still cryptic. Here, a detailed in silico study on putative cyanobacterial caspase homologs, termed orthocaspases, in a sequenced genome of 132 strains was performed. We observed that 473 putative orthocaspases were distributed among 62% cyanobacterial strains subsumed within all the taxonomical orders. However, high diversity among these orthocaspases was also evident as the conventional histidine–cysteine (HC) dyad was present only in 72.03% of orthocaspases (wild-type), whereas the rest 28.18% were pseudo-variants having substituted the catalytic dyad. Besides, the presence of various accessory functional domains with Peptidase C14 probably suggested the multifunctionality of the orthocaspases. Moreover, the early origin and emergence of wild-type orthocaspases were conferred by their presence in Gloeobacter; however, the complex phylogeny displayed by these caspase-homologs perhaps suggested horizontal a gene transfer for their acquisition. However, morpho-physiological advancements and larger genome size favored the acquisition of orthocaspases. Moreover, the conserved caspase hemoglobinase fold not only in the wild-type but also in the pseudo-orthocaspases in Nostoc sp. PCC 7120 ascertained the least effect of catalytic motifs in the protein tertiary structure. Further, the 100-ns molecular dynamic simulation and molecular mechanics/generalized born surface area exhibited stable binding of arginylarginine dipeptide with wild-type orthocaspase of Nostoc sp. PCC 7120, displaying arginine-P1 specificity of wild-type orthocaspases. This study deciphered the distribution, diversity, domain architecture, structure, and basic substrate specificity of putative cyanobacterial orthocaspases, which may aid in functional investigations in the future.
Collapse
Affiliation(s)
- Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Surbhi Kharwar
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
6
|
Eyssen LEA, Coetzer TH. Validation of ligands targeting metacaspase-2 (MCA2) from Trypanosoma brucei brucei and their application to MCA5 from T. congolense as possible trypanocides. J Mol Graph Model 2020; 97:107579. [PMID: 32197135 DOI: 10.1016/j.jmgm.2020.107579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/29/2022]
Abstract
Metacaspases (MCAs) are ideal drug and diagnostic targets for animal and human African trypanosomiasis, as these cysteine peptidases are absent from the metazoan kingdom and have been implicated in the parasite cell cycle and cell death. Tsetse fly-transmitted trypanosomes that live free in the bloodstream and/or cerebrospinal fluid of the mammalian host cause animal and human African trypanosomiasis (nagana or sleeping sickness respectively). Chemotherapy and chemoprophylaxis are the main forms of control, but in contrast to human trypanocides, the veterinary drugs are old and drug resistance is on the increase. A peptidomimetic library targeting the MCA2 from Trypanosoma brucei brucei has ligands with low IC50 values, some of which were antiparasitic. This study validates the inhibitory activity of these ligands using the protein structure solved by X-ray diffraction after the ligand library was published. Water molecules were shown to be important in substrate binding and strategies to improve the efficacy of these ligands are highlighted. These ligands appear to be pan-specific as they were docked into the active site of the homology modelled MCA5 of animal infective Trypanosoma congolense with similar binding energies and conformations.
Collapse
Affiliation(s)
- L E-A Eyssen
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Theresa Ht Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
7
|
Hander T, Fernández-Fernández ÁD, Kumpf RP, Willems P, Schatowitz H, Rombaut D, Staes A, Nolf J, Pottie R, Yao P, Gonçalves A, Pavie B, Boller T, Gevaert K, Van Breusegem F, Bartels S, Stael S. Damage on plants activates Ca 2+-dependent metacaspases for release of immunomodulatory peptides. Science 2019; 363:363/6433/eaar7486. [PMID: 30898901 DOI: 10.1126/science.aar7486] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/06/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
Physical damage to cells leads to the release of immunomodulatory peptides to elicit a wound defense response in the surrounding tissue. In Arabidopsis thaliana, the plant elicitor peptide 1 (Pep1) is processed from its protein precursor, PRECURSOR OF PEP1 (PROPEP1). We demonstrate that upon damage, both at the tissue and single-cell levels, the cysteine protease METACASPASE4 (MC4) is instantly and spatiotemporally activated by binding high levels of Ca2+ and is necessary and sufficient for Pep1 maturation. Cytosol-localized PROPEP1 and MC4 react only after loss of plasma membrane integrity and prolonged extracellular Ca2+ entry. Our results reveal that a robust mechanism consisting of conserved molecular components links the intracellular and Ca2+-dependent activation of a specific cysteine protease with the maturation of damage-induced wound defense signals.
Collapse
Affiliation(s)
- Tim Hander
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, 4056 Basel, Switzerland
| | - Álvaro D Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Robert P Kumpf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Hendrik Schatowitz
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Debbie Rombaut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - An Staes
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Jonah Nolf
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Panfeng Yao
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Amanda Gonçalves
- VIB BioImaging Core Gent, VIB-UGent Center for Inflammation Research (IRC), 9052 Ghent, Belgium
| | - Benjamin Pavie
- VIB BioImaging Core Gent, VIB-UGent Center for Inflammation Research (IRC), 9052 Ghent, Belgium
| | - Thomas Boller
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, 4056 Basel, Switzerland
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Sebastian Bartels
- Zürich-Basel Plant Science Center, Department of Environmental Sciences, Botany, University of Basel, 4056 Basel, Switzerland.,Department of Medicine II, University Hospital Freiburg-Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium. .,VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
| |
Collapse
|
8
|
Klemenčič M, Funk C. Evolution and structural diversity of metacaspases. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2039-2047. [PMID: 30921456 DOI: 10.1093/jxb/erz082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Caspases are metazoan proteases, best known for their involvement in programmed cell death in animals. In higher plants genetically controlled mechanisms leading to the selective death of individual cells also involve the regulated interplay of various types of proteases. Some of these enzymes are structurally homologous to caspases and have therefore been termed metacaspases. In addition to the two well-studied metacaspase variants found in higher plants, type I and type II, biochemical data have recently become available for metacaspases of type III and metacaspase-like proteases, which are present only in certain algae. Although increasing in vitro and in vivo data suggest the existence of further sub-types, a lack of structural information hampers the interpretation of their distinct functional properties. However, the identification of key amino acid residues involved in the proteolytic mechanism of metacaspases, as well as the increased availability of plant genomic and transcriptomic data, is increasingly enabling in-depth analysis of all metacaspase types found in plastid-containing organisms. Here, we review the structural distribution and diversification of metacaspases and in doing so try to provide comprehensive guidelines for further analyses of this versatile family of proteases in organisms ranging from simple unicellular species to flowering plants.
Collapse
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry, Umeå University, Umeå, Sweden
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot, Ljubljana, Slovenia
| | | |
Collapse
|
9
|
Fortin J, Lam E. Domain swap between two type-II metacaspases defines key elements for their biochemical properties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:921-936. [PMID: 30176090 DOI: 10.1111/tpj.14079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023]
Abstract
Type-II metacaspases are conserved cysteine proteases found in eukaryotes with oxygenic photosynthesis, including green plants and some algae, such as Chlamydomonas and Volvox. Genetic and biochemical studies showed that some members in this protease family could be involved in oxidative stress-induced cell death in higher plants, but their regulatory mechanisms remain unclear. Biochemically, two distinct classes of type-II metacaspases are exemplified by AtMC4 and AtMC9 from Arabidopsis, with AtMC4 activation dependent on calcium under neutral pH, whereas AtMC9 is active only under mildly acidic pH, regardless of the availability of calcium. Here, we constructed all six possible combinations between the p20, linker, and p10 domains from AtMC4 and AtMC9. Our results show that calcium stimulation of AtMC4 activity is associated with essential amino acids located in its p20 domain. In contrast, the acidic pH optimum trait is lost from AtMC9 if one or two of its domains are replaced by that from AtMC4, suggesting that multiple interactions between domains in AtMC9 may be responsible for this property. Consistent with this, we found conserved 'signature' residues in each of the three domains that distinguish AtMC4- and AtMC9-like classes of metacaspases. Tracing the origin of the AtMC9 class, we found evidence for its appearance between lycophytes and gymnosperms, coincident with the evolution of more complex root archetypes in terrestrial plants. Our work suggests that the distinctive properties of the AtMC9-like protease could be associated with special cellular physiology in the roots of gymnosperms and angiosperms that are distinct from lycophytes.
Collapse
Affiliation(s)
- Jianqiao Fortin
- Department of Plant Biology, Rutgers,The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers,The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
10
|
Wang C, Lü P, Zhong S, Chen H, Zhou B. LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis. PLANT CELL REPORTS 2017; 36:89-102. [PMID: 27682163 DOI: 10.1007/s00299-016-2059-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
KEY MESSAGE LcMCII - 1 is a type II metacaspase. Over-expression of LcMCII- 1 in Arabidopsis promoted ROS-dependent and natural senescence. Virus-induced LcMCII- 1 silencing delayed the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis . Litchi is an evergreen woody fruit tree that is widely cultivated in subtropical and tropical regions. Its floral buds are mixed with axillary or apical panicle primordia, leaf primordia and rudimentary leaves. A low spring temperature is vital for litchi production as it promotes the abscission of the rudimentary leaves, which could otherwise prevent panicle development. Hence, climate change could present additional challenges for litchi production. We previously reported that reactive oxygen species (ROS) can substitute low-temperature treatment to induce the senescence of rudimentary leaves. We have now identified from RNA-Seq data a litchi type II metacaspase gene, LcMCII-1, that is responsive to ROS. Silencing LcMCII-1 by virus-induced gene silencing delayed ROS-dependent senescence. The ectopic over-expression of LcMCII-1 in transgenic Arabidopsis promoted ROS-dependent and natural senescence. Consistently, the transient expression of LcMCII-1 in tobacco leaf by agroinfiltration resulted in leaf yellowing. Our findings demonstrate that LcMCII-1 is positively involved in the regulation of rudimentary leaf senescence in litchi and provide a new target for the future molecular breeding of new cultivars that can set fruit in warmer climates.
Collapse
Affiliation(s)
- Congcong Wang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Peitao Lü
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Houbin Chen
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Biyan Zhou
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Zamyatnin AA. Plant Proteases Involved in Regulated Cell Death. BIOCHEMISTRY (MOSCOW) 2016; 80:1701-15. [PMID: 26878575 DOI: 10.1134/s0006297915130064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Each plant genome encodes hundreds of proteolytic enzymes. These enzymes can be divided into five distinct classes: cysteine-, serine-, aspartic-, threonine-, and metalloproteinases. Despite the differences in their structural properties and activities, members of all of these classes in plants are involved in the processes of regulated cell death - a basic feature of eukaryotic organisms. Regulated cell death in plants is an indispensable mechanism supporting plant development, survival, stress responses, and defense against pathogens. This review summarizes recent advances in studies of plant proteolytic enzymes functioning in the initiation and execution of distinct types of regulated cell death.
Collapse
Affiliation(s)
- A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
12
|
Stress-Responsive Expression, Subcellular Localization and Protein-Protein Interactions of the Rice Metacaspase Family. Int J Mol Sci 2015; 16:16216-41. [PMID: 26193260 PMCID: PMC4519946 DOI: 10.3390/ijms160716216] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 06/17/2015] [Accepted: 07/03/2015] [Indexed: 02/01/2023] Open
Abstract
Metacaspases, a class of cysteine-dependent proteases like caspases in animals, are important regulators of programmed cell death (PCD) during development and stress responses in plants. The present study was focused on comprehensive analyses of expression patterns of the rice metacaspase (OsMC) genes in response to abiotic and biotic stresses and stress-related hormones. Results indicate that members of the OsMC family displayed differential expression patterns in response to abiotic (e.g., drought, salt, cold, and heat) and biotic (e.g., infection by Magnaporthe oryzae, Xanthomonas oryzae pv. oryzae and Rhizoctonia solani) stresses and stress-related hormones such as abscisic acid, salicylic acid, jasmonic acid, and 1-amino cyclopropane-1-carboxylic acid (a precursor of ethylene), although the responsiveness to these stresses or hormones varies to some extent. Subcellular localization analyses revealed that OsMC1 was solely localized and OsMC2 was mainly localized in the nucleus. Whereas OsMC3, OsMC4, and OsMC7 were evenly distributed in the cells, OsMC5, OsMC6, and OsMC8 were localized in cytoplasm. OsMC1 interacted with OsLSD1 and OsLSD3 while OsMC3 only interacted with OsLSD1 and that the zinc finger domain in OsMC1 is responsible for the interaction activity. The systematic expression and biochemical analyses of the OsMC family provide valuable information for further functional studies on the biological roles of OsMCs in PCD that is related to abiotic and biotic stress responses.
Collapse
|
13
|
Klemenčič M, Novinec M, Dolinar M. Orthocaspases are proteolytically active prokaryotic caspase homologues: the case of
M
icrocystis aeruginosa. Mol Microbiol 2015; 98:142-50. [DOI: 10.1111/mmi.13110] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2015] [Indexed: 01/29/2023]
Affiliation(s)
- Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 SI‐1000 Ljubljana Slovenia
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 SI‐1000 Ljubljana Slovenia
| | - Marko Dolinar
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology University of Ljubljana Večna pot 113 SI‐1000 Ljubljana Slovenia
| |
Collapse
|