1
|
Pavlovič A, Vrobel O, Tarkowski P. Water Cannot Activate Traps of the Carnivorous Sundew Plant Drosera capensis: On the Trail of Darwin's 150-Years-Old Mystery. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091820. [PMID: 37176877 PMCID: PMC10181276 DOI: 10.3390/plants12091820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
In his famous book Insectivorous plants, Charles Darwin observed that the bending response of tentacles in the carnivorous sundew plant Drosera rotundifolia was not triggered by a drop of water, but rather the application of many dissolved chemicals or mechanical stimulation. In this study, we tried to reveal this 150-years-old mystery using methods not available in his time. We measured electrical signals, phytohormone tissue level, enzyme activities and an abundance of digestive enzyme aspartic protease droserasin in response to different stimuli (water drop, ammonia, mechanostimulation, chitin, insect prey) in Cape sundew (Drosera capensis). Drops of water induced the lowest number of action potentials (APs) in the tentacle head, and accumulation of jasmonates in the trap was not significantly different from control plants. On the other hand, all other stimuli significantly increased jasmonate accumulation; the highest was found after the application of insect prey. Drops of water also did not induce proteolytic activity and an abundance of aspartic protease droserasin in contrast to other stimuli. We found that the tentacles of sundew plants are not responsive to water drops due to an inactive jasmonic acid signalling pathway, important for the induction of significant digestive enzyme activities.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Ondřej Vrobel
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, CZ-783 71 Olomouc, Czech Republic
| |
Collapse
|
2
|
Yu M, Arai N, Ochiai T, Ohyama T. Expression and function of an S1-type nuclease in the digestive fluid of a sundew, Drosera adelae. ANNALS OF BOTANY 2023; 131:335-346. [PMID: 36546767 PMCID: PMC9992940 DOI: 10.1093/aob/mcac150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants trap and digest insects and similar-sized animals. Many studies have examined enzymes in the digestive fluids of these plants and have gradually unveiled the origins and gene expression of these enzymes. However, only a few attempts have been made at characterization of nucleases. This study aimed to reveal gene expression and the structural, functional and evolutionary characteristics of an S1-type nuclease (DAN1) in the digestive fluid of an Australian sundew, Drosera adelae, whose trap organ shows unique gene expression and related epigenetic regulation. METHODS Organ-specificity in Dan1 expression was examined using glandular tentacles, laminas, roots and inflorescences, and real-time PCR. The methylation status of the Dan1 promoter in each organ was clarified by bisulphite sequencing. The structural characteristics of DAN1 were studied by a comparison of primary structures of S1-type nucleases of three carnivorous and seven non-carnivorous plants. DAN1 was prepared using a cell-free protein synthesis system. Requirements for metal ions, optimum pH and temperature, and substrate preference were examined using conventional methods. KEY RESULTS Dan1 is exclusively expressed in the glandular tentacles and its promoter is almost completely unmethylated in all organs. This is in contrast to the S-like RNase gene da-I of Dr. adelae, which shows similar organ-specific expression, but is controlled by a promoter that is specifically unmethylated in the glandular tentacles. Comparison of amino acid sequences of S1-type nucleases identifies seven and three positions where amino acid residues are conserved only among the carnivorous plants and only among the non-carnivorous plants, respectively. DAN1 prefers a substrate RNA over DNA in the presence of Zn2+, Mn2+ or Ca2+ at an optimum pH of 4.0. CONCLUSIONS Uptake of phosphates from prey is suggested to be the main function of DAN1, which is very different from the known functions of S1-type nucleases. Evolution has modified the structure and expression of Dan1 to specifically function in the digestive fluid.
Collapse
Affiliation(s)
- Meng Yu
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoki Arai
- Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686, Japan
| | - Tadahiro Ochiai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
3
|
Genome-Wide Analysis of the RNase T2 Family and Identification of Interacting Proteins of Four ClS-RNase Genes in ‘XiangShui’ Lemon. Int J Mol Sci 2022; 23:ijms231810431. [PMID: 36142343 PMCID: PMC9499183 DOI: 10.3390/ijms231810431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022] Open
Abstract
S-RNase plays vital roles in the process of self-incompatibility (SI) in Rutaceae plants. Data have shown that the rejection phenomenon during self-pollination is due to the degradation of pollen tube RNA by S-RNase. The cytoskeleton microfilaments of pollen tubes are destroyed, and other components cannot extend downwards from the stigma and, ultimately, cannot reach the ovary to complete fertilisation. In this study, four S-RNase gene sequences were identified from the ‘XiangShui’ lemon genome and ubiquitome. Sequence analysis revealed that the conserved RNase T2 domains within S-RNases in ‘XiangShui’ lemon are the same as those within other species. Expression pattern analysis revealed that S3-RNase and S4-RNase are specifically expressed in the pistils, and spatiotemporal expression analysis showed that the S3-RNase expression levels in the stigmas, styles and ovaries were significantly higher after self-pollination than after cross-pollination. Subcellular localisation analysis showed that the S1-RNase, S2-RNase, S3-RNase and S4-RNase were found to be expressed in the nucleus according to laser confocal microscopy. In addition, yeast two-hybrid (Y2H) assays showed that S3-RNase interacted with F-box, Bifunctional fucokinase/fucose pyrophosphorylase (FKGP), aspartic proteinase A1, RRP46, pectinesterase/pectinesterase inhibitor 51 (PME51), phospholipid:diacylglycerol acyltransferase 1 (PDAT1), gibberellin receptor GID1B, GDT1-like protein 4, putative invertase inhibitor, tRNA ligase, PAP15, PAE8, TIM14-2, PGIP1 and p24beta2. Moreover, S3-RNase interacted with TOPP4. Therefore, S3-RNase may play an important role in the SI of ‘XiangShui’ lemon.
Collapse
|
4
|
Adamec L, Matušíková I, Pavlovič A. Recent ecophysiological, biochemical and evolutional insights into plant carnivory. ANNALS OF BOTANY 2021; 128:241-259. [PMID: 34111238 PMCID: PMC8389183 DOI: 10.1093/aob/mcab071] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Carnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown. SCOPE We provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost-benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake. CONCLUSIONS Utilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.
Collapse
Affiliation(s)
- Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 01 Třeboň, Czech Republic
| | - Ildikó Matušíková
- University of Ss. Cyril and Methodius, Department of Ecochemistry and Radioecology, J. Herdu 2, SK-917 01 Trnava, Slovak Republic
| | - Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
- For correspondence. E-mail
| |
Collapse
|
5
|
Arai N, Ohno Y, Jumyo S, Hamaji Y, Ohyama T. Organ-specific expression and epigenetic traits of genes encoding digestive enzymes in the lance-leaf sundew (Drosera adelae). JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1946-1961. [PMID: 33247920 PMCID: PMC7921302 DOI: 10.1093/jxb/eraa560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/25/2020] [Indexed: 05/16/2023]
Abstract
Over the last two decades, extensive studies have been performed at the molecular level to understand the evolution of carnivorous plants. As fruits, the repertoire of protein components in the digestive fluids of several carnivorous plants have gradually become clear. However, the quantitative aspects of these proteins and the expression mechanisms of the genes that encode them are still poorly understood. In this study, using the Australian sundew Drosera adelae, we identified and quantified the digestive fluid proteins. We examined the expression and methylation status of the genes corresponding to major hydrolytic enzymes in various organs; these included thaumatin-like protein, S-like RNase, cysteine protease, class I chitinase, β-1, 3-glucanase, and hevein-like protein. The genes encoding these proteins were exclusively expressed in the glandular tentacles. Furthermore, the promoters of the β-1, 3-glucanase and cysteine protease genes were demethylated only in the glandular tentacles, similar to the previously reported case of the S-like RNase gene da-I. This phenomenon correlated with high expression of the DNA demethylase DEMETER in the glandular tentacles, strongly suggesting that it performs glandular tentacle-specific demethylation of the genes. The current study strengthens and generalizes the relevance of epigenetics to trap organ-specific gene expression in D. adelae. We also suggest similarities between the trap organs of carnivorous plants and the roots of non-carnivorous plants.
Collapse
Affiliation(s)
- Naoki Arai
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Ohno
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Shinya Jumyo
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Yusuke Hamaji
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Ohyama
- Major in Integrative Bioscience and Biomedical Engineering, Graduate School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Shinjuku-ku, Tokyo, Japan
- Correspondence:
| |
Collapse
|
6
|
Zulkapli MM, Ab Ghani NS, Ting TY, Aizat WM, Goh HH. Transcriptomic and Proteomic Analyses of Nepenthes ampullaria and Nepenthes rafflesiana Reveal Parental Molecular Expression in the Pitchers of Their Hybrid, Nepenthes × hookeriana. FRONTIERS IN PLANT SCIENCE 2020; 11:625507. [PMID: 33552113 PMCID: PMC7855304 DOI: 10.3389/fpls.2020.625507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 05/18/2023]
Abstract
Nepenthes is a genus comprising carnivorous tropical pitcher plants that have evolved trapping organs at the tip of their leaves for nutrient acquisition from insect trapping. Recent studies have applied proteomics approaches to identify proteins in the pitcher fluids for better understanding the carnivory mechanism, but protein identification is hindered by limited species-specific transcriptomes for Nepenthes. In this study, the proteomics informed by transcriptomics (PIT) approach was utilized to identify and compare proteins in the pitcher fluids of Nepenthes ampullaria, Nepenthes rafflesiana, and their hybrid Nepenthes × hookeriana through PacBio isoform sequencing (Iso-Seq) and liquid chromatography-mass spectrometry (LC-MS) proteomic profiling. We generated full-length transcriptomes from all three species of 80,791 consensus isoforms with an average length of 1,692 bp as a reference for protein identification. The comparative analysis found that transcripts and proteins identified in the hybrid N. × hookeriana were more resembling N. rafflesiana, both of which are insectivorous compared with omnivorous N. ampullaria that can derive nutrients from leaf litters. Previously reported hydrolytic proteins were detected, including proteases, glucanases, chitinases, phosphatases, nucleases, peroxidases, lipid transfer protein, thaumatin-like protein, pathogenesis-related protein, and disease resistance proteins. Many new proteins with diverse predicted functions were also identified, such as amylase, invertase, catalase, kinases, ligases, synthases, esterases, transferases, transporters, and transcription factors. Despite the discovery of a few unique enzymes in N. ampullaria, we found no strong evidence of adaptive evolution to produce endogenous enzymes for the breakdown of leaf litter. A more complete picture of digestive fluid protein composition in this study provides important insights on the molecular physiology of pitchers and carnivory mechanism of Nepenthes species with distinct dietary habits.
Collapse
|
7
|
Kim K, Yadav D, Cho M. Multi-phased internalization of murine norovirus (MNV) in Arabidopsis seedlings and its potential correlation with plant defensive responses. Microb Pathog 2019; 135:103648. [PMID: 31356928 DOI: 10.1016/j.micpath.2019.103648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022]
Abstract
Norovirus is a highly infectious human pathogen that causes acute foodborne diseases worldwide. As global diet patterns have begun to incorporate a higher consumption of fresh agricultural products, the internalization of norovirus into plants has emerged as a potential threat to human health. Here, we demonstrated that murine norovirus (MNV1) was internalized into Arabidopsis in multiple phases, and this internalization was correlated with Arabidopsis innate immunity responses. Under hydroponic conditions, continuous treatment of MNV1 retarded root growth and facilitated flower development of Arabidopsis without causing necrotic lesions. Examination of viral titers and RNA levels revealed that MNV1 was internalized into Arabidopsis in at least three different phases. In response to MNV1 treatment, the Arabidopsis defensive marker PR1 (a salicylic acid signaling marker) was transiently up-regulated at the early stage. PDF1.2, a jasmonic acid signaling marker, exhibited a gradual induction over time. Noticeably, Arabidopsis RNS1 (T2 ribonuclease) was rapidly induced by MNV1 and exhibited anti-correlation with the internalization of MNV1. Exposure to recombinant Arabidopsis RNS1 protein reduced the viral titers and degraded MNV1 RNA in vitro. In conclusion, the internalization of MNV1 into Arabidopsis was fluctuated by mutual interactions that were potentially regulated by Arabidopsis immune systems containing RNS1.
Collapse
Affiliation(s)
- Kangmin Kim
- SELS Center, Division of Biotechnology, College of Environmental & Bioresource Sciences, Chonbuk National University, Iksan, 54596, Republic of Korea.
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Min Cho
- SELS Center, Division of Biotechnology, College of Environmental & Bioresource Sciences, Chonbuk National University, Iksan, 54596, Republic of Korea.
| |
Collapse
|
8
|
Pavlovič A, Jakšová J, Novák O. Triggering a false alarm: wounding mimics prey capture in the carnivorous Venus flytrap (Dionaea muscipula). THE NEW PHYTOLOGIST 2017; 216:927-938. [PMID: 28850713 DOI: 10.1111/nph.14747] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
In the carnivorous plant Venus flytrap (Dionaea muscipula), the sequence of events after prey capture resembles the well-known plant defence signalling pathway in response to pathogen or herbivore attack. Here, we used wounding to mimic prey capture to show the similarities and differences between botanical carnivory and plant defence mechanisms. We monitored movement, electrical signalling, jasmonate accumulation and digestive enzyme secretion in local and distal (systemic) traps in response to prey capture, the mechanical stimulation of trigger hairs and wounding. The Venus flytrap cannot discriminate between wounding and mechanical trigger hair stimulation. Both induced the same action potentials, rapid trap closure, hermetic trap sealing, the accumulation of jasmonic acid (JA) and its isoleucine conjugate (JA-Ile), and the secretion of proteases (aspartic and cysteine proteases), phosphatases and type I chitinase. The jasmonate accumulation and enzyme secretion were confined to the local traps, to which the stimulus was applied, which correlates with the propagation of electrical signals and the absence of a systemic response in the Venus flytrap. In contrast to plant defence mechanisms, the absence of a systemic response in carnivorous plant may represent a resource-saving strategy. During prey capture, it could be quite expensive to produce digestive enzymes in the traps on the plant without prey.
Collapse
Affiliation(s)
- Andrej Pavlovič
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Jana Jakšová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-783 71, Olomouc, Czech Republic
| |
Collapse
|
9
|
Yilamujiang A, Zhu A, Ligabue-Braun R, Bartram S, Witte CP, Hedrich R, Hasabe M, Schöner CR, Schöner MG, Kerth G, Carlini CR, Mithöfer A. Coprophagous features in carnivorous Nepenthes plants: a task for ureases. Sci Rep 2017; 7:11647. [PMID: 28912541 PMCID: PMC5599630 DOI: 10.1038/s41598-017-11999-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/25/2017] [Indexed: 11/09/2022] Open
Abstract
Most terrestrial carnivorous plants are specialized on insect prey digestion to obtain additional nutrients. Few species of the genus Nepenthes developed mutualistic relationships with mammals for nitrogen supplementation. Whether dietary changes require certain enzymatic composition to utilize new sources of nutrients has rarely been tested. Here, we investigated the role of urease for Nepenthes hemsleyana that gains nitrogen from the bat Kerivoula hardwickii while it roosts inside the pitchers. We hypothesized that N. hemsleyana is able to use urea from the bats’ excrements. In fact, we demonstrate that 15N-enriched urea provided to Nepenthes pitchers is metabolized and its nitrogen is distributed within the plant. As ureases are necessary to degrade urea, these hydrolytic enzymes should be involved. We proved the presence and enzymatic activity of a urease for Nepenthes plant tissues. The corresponding urease cDNA from N. hemsleyana was isolated and functionally expressed. A comprehensive phylogenetic analysis for eukaryotic ureases, including Nepenthes and five other carnivorous plants’ taxa, identified them as canonical ureases and reflects the plant phylogeny. Hence, this study reveals ureases as an emblematic example for an efficient, low-cost but high adaptive plasticity in plants while developing a further specialized lifestyle from carnivory to coprophagy.
Collapse
Affiliation(s)
- Ayufu Yilamujiang
- Department of Bioorganic Chemistry, Max Plank Institute for Chemical Ecology, 07745, Jena, Germany
| | - Anting Zhu
- Institute of Plant Nutrition, Leibniz University Hannover, 30419, Hannover, Germany
| | - Rodrigo Ligabue-Braun
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil
| | - Stefan Bartram
- Department of Bioorganic Chemistry, Max Plank Institute for Chemical Ecology, 07745, Jena, Germany
| | - Claus-Peter Witte
- Institute of Plant Nutrition, Leibniz University Hannover, 30419, Hannover, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, University of Würzburg, 97082, Würzburg, Germany
| | | | - Caroline R Schöner
- Zoological Institute and Museum, Ernst-Moritz-Arndt-Universität Greifswald, 17489, Greifswald, Germany
| | - Michael G Schöner
- Zoological Institute and Museum, Ernst-Moritz-Arndt-Universität Greifswald, 17489, Greifswald, Germany
| | - Gerald Kerth
- Zoological Institute and Museum, Ernst-Moritz-Arndt-Universität Greifswald, 17489, Greifswald, Germany
| | - Célia R Carlini
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Brazil.,Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, 90610-000, Porto Alegre, Brazil
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Plank Institute for Chemical Ecology, 07745, Jena, Germany.
| |
Collapse
|
10
|
Ramanauskas K, Igić B. The evolutionary history of plant T2/S-type ribonucleases. PeerJ 2017; 5:e3790. [PMID: 28924504 PMCID: PMC5598434 DOI: 10.7717/peerj.3790] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022] Open
Abstract
A growing number of T2/S-RNases are being discovered in plant genomes. Members of this protein family have a variety of known functions, but the vast majority are still uncharacterized. We present data and analyses of phylogenetic relationships among T2/S-RNases, and pay special attention to the group that contains the female component of the most widespread system of self-incompatibility in flowering plants. The returned emphasis on the initially identified component of this mechanism yields important conjectures about its evolutionary context. First, we find that the clade involved in self-rejection (class III) is found exclusively in core eudicots, while the remaining clades contain members from other vascular plants. Second, certain features, such as intron patterns, isoelectric point, and conserved amino acid regions, help differentiate S-RNases, which are necessary for expression of self-incompatibility, from other T2/S-RNase family members. Third, we devise and present a set of approaches to clarify new S-RNase candidates from existing genome assemblies. We use genomic features to identify putative functional and relictual S-loci in genomes of plants with unknown mechanisms of self-incompatibility. The widespread occurrence of possible relicts suggests that the loss of functional self-incompatibility may leave traces long after the fact, and that this manner of molecular fossil-like data could be an important source of information about the history and distribution of both RNase-based and other mechanisms of self-incompatibility. Finally, we release a public resource intended to aid the search for S-locus RNases, and help provide increasingly detailed information about their taxonomic distribution.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
11
|
Krausko M, Perutka Z, Šebela M, Šamajová O, Šamaj J, Novák O, Pavlovič A. The role of electrical and jasmonate signalling in the recognition of captured prey in the carnivorous sundew plant Drosera capensis. THE NEW PHYTOLOGIST 2017; 213:1818-1835. [PMID: 27933609 DOI: 10.1111/nph.14352] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/17/2016] [Indexed: 05/28/2023]
Abstract
The carnivorous sundew plant (Drosera capensis) captures prey using sticky tentacles. We investigated the tentacle and trap reactions in response to the electrical and jasmonate signalling evoked by different stimuli to reveal how carnivorous sundews recognize digestible captured prey in their traps. We measured the electrical signals, phytohormone concentration, enzyme activities and Chla fluorescence in response to mechanical stimulation, wounding or insect feeding in local and systemic traps. Seven new proteins in the digestive fluid were identified using mass spectrometry. Mechanical stimuli and live prey induced a fast, localized tentacle-bending reaction and enzyme secretion at the place of application. By contrast, repeated wounding induced a nonlocalized convulsive tentacle movement and enzyme secretion in local but also in distant systemic traps. These differences can be explained in terms of the electrical signal propagation and jasmonate accumulation, which also had a significant impact on the photosynthesis in the traps. The electrical signals generated in response to wounding could partially mimic a mechanical stimulation of struggling prey and might trigger a false alarm, confirming that the botanical carnivory and plant defence mechanisms are related. To trigger the full enzyme activity, the traps must detect chemical stimuli from the captured prey.
Collapse
Affiliation(s)
- Miroslav Krausko
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
| | - Zdeněk Perutka
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Andrej Pavlovič
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B2, Ilkovi?ova 6, Bratislava, SK-842 15, Slovakia
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University , Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| |
Collapse
|
12
|
Ihsan MZ, Ahmad SJN, Shah ZH, Rehman HM, Aslam Z, Ahuja I, Bones AM, Ahmad JN. Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:233. [PMID: 28289422 PMCID: PMC5326801 DOI: 10.3389/fpls.2017.00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/07/2017] [Indexed: 05/29/2023]
Abstract
The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana.
Collapse
Affiliation(s)
- Muhammad Z. Ihsan
- Cholistan Institute of Desert Studies, The Islamia University BahawalpurBahawalpur, Pakistan
| | - Samina J. N. Ahmad
- Plant Stress Physiology and Molecular Biology Lab, Department of Botany, University of Agriculture FaisalabadFaisalabad, Pakistan
- Integrated Genomics Cellular Developmental and Biotechnology Lab, Department of Entomology, University of Agriculture FaisalabadFaisalabad, Pakistan
| | - Zahid Hussain Shah
- Department of Arid Land Agriculture, Faculty of Meteorology, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Hafiz M. Rehman
- Department of Electronic and Biomedical Engineering, Chonnam National UniversityGwangju, South Korea
| | - Zubair Aslam
- Department of Agronomy, University of Agriculture FaisalabadFaisalabad, Pakistan
| | - Ishita Ahuja
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Jam N. Ahmad
- Plant Stress Physiology and Molecular Biology Lab, Department of Botany, University of Agriculture FaisalabadFaisalabad, Pakistan
- Integrated Genomics Cellular Developmental and Biotechnology Lab, Department of Entomology, University of Agriculture FaisalabadFaisalabad, Pakistan
| |
Collapse
|
13
|
Liang M, Yang W, Su S, Fu L, Yi H, Chen C, Deng X, Chai L. Genome-wide identification and functional analysis of S-RNase involved in the self-incompatibility of citrus. Mol Genet Genomics 2016; 292:325-341. [PMID: 27933381 DOI: 10.1007/s00438-016-1279-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 12/03/2016] [Indexed: 11/25/2022]
Abstract
S-RNase-based self-incompatibility is found in Solanaceae, Rosaceae, and Scrophulariaceae, and is the most widespread mechanism that prevents self-fertilization in plants. Although 'Shatian' pummelo (Citrus grandis), a traditional cultivated variety, possesses the self-incompatible trait, the role of S-RNases in the self-incompatibility of 'Shatian' pummelo is poorly understood. To identify genes associated with self-incompatibility in citrus, we identified 16 genes encoding homologs of ribonucleases in the genomes of sweet orange (Citrus sinensis) and clementine mandarin (Citrus clementine). We preliminarily distinguished S-RNases from S-like RNases with a phylogenetic analysis that classified these homologs into three groups, which is consistent with the previous reports. Expression analysis provided evidence that CsRNS1 and CsRNS6 are S-like RNase genes. The expression level of CsRNS1 was increased during fruit development. The expression of CsRNS6 was increased during the formation of embryogenic callus. In contrast, we found that CsRNS3 possessed several common characteristics of the pistil determinant of self-incompatibility: it has an alkaline isoelectric point (pI), harbors only one intron, and is specifically expressed in style. We obtained a cDNA encoding CgRNS3 from 'Shatian' pummelo and found that it is homolog to CsRNS3 and that CgRNS3 exhibited the same expression pattern as CsRNS3. In an in vitro culture system, the CgRNS3 protein significantly inhibited the growth of self-pollen tubes from 'Shatian' pummelo, but after a heat treatment, this protein did not significantly inhibit the elongation of self- or non-self-pollen tubes. In conclusion, an S-RNase gene, CgRNS3, was obtained by searching the genomes of sweet orange and clementine for genes exhibiting sequence similarity to ribonucleases followed by expression analyses. Using this approach, we identified a protein that significantly inhibited the growth of self-pollen tubes, which is the defining property of an S-RNase.
Collapse
Affiliation(s)
- Mei Liang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wei Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Shiying Su
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lili Fu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops, Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, 541004, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region), MOA, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
14
|
Lee L, Zhang Y, Ozar B, Sensen CW, Schriemer DC. Carnivorous Nutrition in Pitcher Plants (Nepenthes spp.) via an Unusual Complement of Endogenous Enzymes. J Proteome Res 2016; 15:3108-17. [PMID: 27436081 DOI: 10.1021/acs.jproteome.6b00224] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plants belonging to the genus Nepenthes are carnivorous, using specialized pitfall traps called "pitchers" that attract, capture, and digest insects as a primary source of nutrients. We have used RNA sequencing to generate a cDNA library from the Nepenthes pitchers and applied it to mass spectrometry-based identification of the enzymes secreted into the pitcher fluid using a nonspecific digestion strategy superior to trypsin in this application. This first complete catalog of the pitcher fluid subproteome includes enzymes across a variety of functional classes. The most abundant proteins present in the secreted fluid are proteases, nucleases, peroxidases, chitinases, a phosphatase, and a glucanase. Nitrogen recovery involves a particularly rich complement of proteases. In addition to the two expected aspartic proteases, we discovered three novel nepenthensins, two prolyl endopeptidases that we name neprosins, and a putative serine carboxypeptidase. Additional proteins identified are relevant to pathogen-defense and secretion mechanisms. The full complement of acid-stable enzymes discovered in this study suggests that carnivory in the genus Nepenthes can be sustained by plant-based mechanisms alone and does not absolutely require bacterial symbiosis.
Collapse
Affiliation(s)
- Linda Lee
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| | - Ye Zhang
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| | - Brittany Ozar
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| | - Christoph W Sensen
- Institute of Molecular Biotechnology, Graz University of Technology , Graz 8010, Austria
| | - David C Schriemer
- Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary , Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
15
|
Rottloff S, Miguel S, Biteau F, Nisse E, Hammann P, Kuhn L, Chicher J, Bazile V, Gaume L, Mignard B, Hehn A, Bourgaud F. Proteome analysis of digestive fluids in Nepenthes pitchers. ANNALS OF BOTANY 2016; 117:479-95. [PMID: 26912512 PMCID: PMC4765550 DOI: 10.1093/aob/mcw001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Carnivorous plants have developed strategies to enable growth in nutrient-poor soils. For the genus Nepenthes, this strategy represents producing pitcher-modified leaves that can trap and digest various prey. These pitchers produce a digestive fluid composed of proteins, including hydrolytic enzymes. The focus of this study was on the identification of these proteins. METHODS In order to better characterize and have an overview of these proteins, digestive fluid was sampled from pitchers at different stages of maturity from five species of Nepenthes (N. mirabilis, N. alata, N. sanguinea, N. bicalcarata and N. albomarginata) that vary in their ecological niches and grew under different conditions. Three complementary approaches based on transcriptomic resources, mass spectrometry and in silico analysis were used. KEY RESULTS This study permitted the identification of 29 proteins excreted in the pitchers. Twenty of these proteins were never reported in Nepenthes previously and included serine carboxypeptidases, α- and β-galactosidases, lipid transfer proteins and esterases/lipases. These 20 proteins display sequence signals allowing their secretion into the pitcher fluid. CONCLUSIONS Nepenthes pitcher plants have evolved an arsenal of enzymes to digest prey caught in their traps. The panel of new proteins identified in this study provides new insights into the digestive process of these carnivorous plants.
Collapse
Affiliation(s)
- Sandy Rottloff
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Aura Optik GmbH, Hans-Knöll-Str. 6, D-07745 Jena, Germany
| | - Sissi Miguel
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Flore Biteau
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France
| | - Estelle Nisse
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Philippe Hammann
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Lauriane Kuhn
- Proteomic Platform, Institut de Biologie Moléculaire et Cellulaire, CNRS, FRC 1589, 15 rue Descartes, F-67084 Strasbourg cedex, France and
| | - Johana Chicher
- Proteomic Platform, Institut de Biologie Moléculaire et Cellulaire, CNRS, FRC 1589, 15 rue Descartes, F-67084 Strasbourg cedex, France and
| | - Vincent Bazile
- Université Montpellier II and CNRS, UMR AMAP: Botanique et bioinformatique de l'architecture des plantes, TA A51/PS2, Bd de la Lironde, F-34398 Montpellier cedex 5, France
| | - Laurence Gaume
- Université Montpellier II and CNRS, UMR AMAP: Botanique et bioinformatique de l'architecture des plantes, TA A51/PS2, Bd de la Lironde, F-34398 Montpellier cedex 5, France
| | - Benoit Mignard
- Plant Advanced Technologies SA, 13 Rue du bois de la Champelle, F-54500 Vandœuvre-lès-Nancy, France
| | - Alain Hehn
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France,
| | - Frédéric Bourgaud
- INRA UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France, Université de Lorraine UMR 1121, Laboratoire Agronomie et Environnement, 2 avenue de la forêt de Haye TSA 40602, F-54518 Vandœuvre-lès-Nancy, France
| |
Collapse
|
16
|
Arai N, Nishimura E, Kikuchi Y, Ohyama T. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases. Biochem Biophys Res Commun 2015; 465:108-12. [DOI: 10.1016/j.bbrc.2015.07.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
|