1
|
Fu L, Chen Q, Li Y, Li Y, Pang X, Zhang Z, Fang F. Identification and characterization of a key LcTPS in the biosynthesis of volatile monoterpenes and sesquiterpenes in Litchi fruit. PHYSIOLOGIA PLANTARUM 2024; 176:e14559. [PMID: 39377160 DOI: 10.1111/ppl.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
Litchi (Litchi chinensis Sonn.) has a desirable sweet taste and exotic aroma, making it popular in the markets. However, the biosynthesis of aroma volatiles in litchi fruit has rarely been investigated. In this study, the content and composition of volatile compounds were determined during litchi fruit ripening. In the mature green and mature red stages of litchi, 49 and 45 volatile compounds were detected, respectively. Monoterpenes were found to be the most abundant volatile compounds in mature red fruit, and their contents significantly increased compared to green fruit, mainly including citronellol, geraniol, myrcene, and D-limonene, which contributed to the aroma in litchi fruit. By comparing the expression profiles of the genes involved in the terpene synthesis pathway during fruit development, a terpene synthesis gene (LcTPS1-2) was identified and characterized as a major player in the synthesis of monoterpenes and sesquiterpenes. A subcellular localization analysis found LcTPS1-2 to be present in the plastid and cytoplasm. The recombinant LcTPS1-2 enzyme was able to catalyze the formation of three monoterpenes, myrcene, geraniol and citral, from geranyl pyrophosphate (GPP) and to convert farnesyl diphosphate (FPP) to a sesquiterpene, caryophyllene in vitro. Transgenic Arabidopsis thaliana plants overexpressing LcTPS1-2 exclusively released one monoterpene D-limonene, and three sesquiterpenes cis-thujopsene, (E)-β-famesene and trans-β-ionone. These results indicate that LcTPS1-2 plays an important role in the production of major volatile terpenes in litchi fruit and provides a basis for future investigations of terpenoid biosynthesis in litchi and other horticultural crops.
Collapse
Affiliation(s)
- Liyu Fu
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Qiuzi Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Yawen Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Yanlan Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Xuequn Pang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Zhaoqi Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| | - Fang Fang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Srividya N, Kim H, Simone R, Lange BM. Chemical diversity in angiosperms - monoterpene synthases control complex reactions that provide the precursors for ecologically and commercially important monoterpenoids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:28-55. [PMID: 38565299 DOI: 10.1111/tpj.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Narayanan Srividya
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| | - Hoshin Kim
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Raugei Simone
- Physical and Computational Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Bernd Markus Lange
- Institute of Biological Chemistry and M. J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, 99164-7411, USA
| |
Collapse
|
3
|
Cao Z, Wang L, Huang D, Wu G, Li X, Yue Y, Yu Y, Yu R, Fan Y. Identification and functional analysis of floral terpene synthase genes in Curcuma alismatifolia. PLANTA 2024; 260:26. [PMID: 38861179 DOI: 10.1007/s00425-024-04440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/12/2024] [Indexed: 06/12/2024]
Abstract
MAIN CONCLUSION CaTPS2 and CaTPS3 were significantly expressed in flowers of Curcuma alismatifolia 'Shadow' and demonstrated bifunctional enzyme activity, CaTPS2 generated linalool and nerolidol as products, and CaTPS3 catalyzed β-myrcene and β-farnesene formation. This study presents the discovery and functional characterization of floral terpene synthase (TPS) genes in Curcuma alismatifolia 'Shadow', a cultivar renowned for its unique fragrance. Addressing the gap in understanding the genetic basis of floral scent in this species, we identified eight TPS genes through comprehensive transcriptome sequencing. Among these, CaTPS2 and CaTPS3 were significantly expressed in floral tissues and demonstrated bifunctional enzyme activity corresponding to the major volatile compounds detected in 'Shadow'. Functional analyses, including in vitro assays complemented with rigorous controls and alternative identification methods, elucidated the roles of these TPS genes in terpenoid biosynthesis. In vitro studies were conducted via heterologous expression in E. coli, followed by purification of the recombinant protein using affinity chromatography, enzyme assays were performed with GPP/FPP as the substrate, and volatile products were inserted into the GC-MS for analysis. Partially purified recombinant protein of CaTPS2 catalyzed GPP and FPP to produce linalool and nerolidol, respectively, while partially purified recombinant protein of CaTPS3 generated β-myrcene and β-farnesene with GPP and FPP as substrates, respectively. Real-time quantitative PCR further validated the expression patterns of these genes, correlating with terpenoid accumulation in different plant tissues. Our findings illuminate the molecular mechanisms underpinning floral fragrance in C. alismatifolia and provide a foundation for future genetic enhancements of floral scent in ornamental plants. This study, therefore, contributes to the broader understanding of terpenoid biosynthesis in plant fragrances, paving the way for biotechnological applications in horticulture plant breeding.
Collapse
Affiliation(s)
- Zihan Cao
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Di Huang
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guilan Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Zhao Q, Zhang M, Gu L, Yang Z, Li Y, Luo J, Zhang Y. Transcriptome and volatile compounds analyses of floral development provide insight into floral scent formation in Paeonia lactiflora 'Wu Hua Long Yu'. FRONTIERS IN PLANT SCIENCE 2024; 15:1303156. [PMID: 38434428 PMCID: PMC10904628 DOI: 10.3389/fpls.2024.1303156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Herbaceous peony (Paeonia lactiflora) is a well-known ornamental plant in China, celebrated for its beautiful flowers that can emit fragrances. However, exact molecular mechanisms governing synthesis of floral volatiles within herbaceous peony remain unclear. To address this gap in knowledge, our study focused on analyzing the transcriptome and the levels of floral volatile compounds in P. lactiflora 'Wu Hua Long Yu' at different stages of flower development. Using gas chromatography-mass spectrometry (GC-MS), we obtained eighteen major volatile compounds, with monoterpenes being the dominant components among them. Our transcriptome analysis, based on pooled sequencing data, revealed the most differentially expressed genes (DEGs) existed between stages S1 and S3 of flower development. Among these DEGs, we identified 89 functional genes associated with the synthesis of volatile monoterpenes, with 28 of these genes showing a positive correlation with the release of monoterpenes. Specifically, key regulators of monoterpene synthesis in herbaceous peony appear to be 1-deoxy-D-xylulose 5-phosphate synthase (DXS), geranyl pyrophosphate synthase (GPPS), and terpene synthase (TPS). Additionally, our study identified some transcription factors (TFs) that may be involved in the biosynthesis of monoterpenes. These discoveries offer invaluable illumination into the intricate molecular underpinnings orchestrating the generation of floral fragrances in herbaceous peonies, and they offer a foundation for further research to identify and utilize candidate gene resources for this purpose.
Collapse
Affiliation(s)
- Qian Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Min Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Lina Gu
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Zihan Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Yuqing Li
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Xianyang, China
- National Engineering Research Center for Oil Peony, Northwest A&F University, Xianyang, China
| |
Collapse
|
5
|
Yue Y, Zhang X, Wang L, He J, Yang S, Li X, Yu Y, Yu R, Fan Y. Identification and Characterization of Jasmonic Acid Methyltransferase Involved in the Formation of Floral Methyl Jasmonate in Hedychium coronarium. PLANTS (BASEL, SWITZERLAND) 2023; 13:8. [PMID: 38202316 PMCID: PMC10780636 DOI: 10.3390/plants13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Hedychium coronarium is a popular ornamental flower in tropical and subtropical areas due to its elegant appearance and inviting fragrance. Methyl jasmonate (MeJA) is one of the volatile compounds in the blooming flowers of H. coronarium. However, the molecular mechanism underlying floral MeJA formation is still unclear in H. coronarium. In this study, a total of 12 SABATH family genes were identified in the genome of H. coronarium, and their encoded proteins range from 366 to 387 amino acids. Phylogenetic analysis revealed seven clades in the SABATH family and a JMT ortholog clade, including two HcSABATH members. Combined with expression profiling of HcSABATH members, HcJMT1 was identified as the top candidate gene for floral MeJA biosynthesis. In vitro enzyme assays showed that HcJMT1 can catalyze the production of MeJA from jasmonic acid. Gene expression analysis indicated that HcJMT1 exhibited the highest expression in the labella and lateral petals, the major sites of MeJA emission. During flower development, the two MeJA isomers, major isomers in the products of the HcJMT1 protein, were released after anthesis, in which stage HcJMT1 displayed high expression. Our results indicated that HcJMT1 is involved in the formation of floral MeJA in H. coronarium.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Zhang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Jieling He
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Shengnan Yang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Y.); (X.Z.); (L.W.); (J.H.); (X.L.); (Y.Y.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
7
|
Yue Y, Wang L, Li M, Liu F, Yin J, Huang L, Zhou B, Li X, Yu Y, Chen F, Yu R, Fan Y. A BAHD acyltransferase contributes to the biosynthesis of both ethyl benzoate and methyl benzoate in the flowers of Lilium oriental hybrid 'Siberia'. FRONTIERS IN PLANT SCIENCE 2023; 14:1275960. [PMID: 37841617 PMCID: PMC10570747 DOI: 10.3389/fpls.2023.1275960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Lily is a popular flower worldwide due to its elegant appearance and pleasant fragrance. Floral volatiles of lily are predominated by monoterpenes and benzenoids. While a number of genes for monoterpene biosynthesis have been characterized, the molecular mechanism underlying floral benzenoid formation in lily remains unclear. Here, we report on the identification and characterization of a novel BAHD acyltransferase gene that contributes to the biosynthesis of two related floral scent benzoate esters, ethyl benzoate and methyl benzoate, in the scented Lilium oriental hybrid 'Siberia'. The emission of both methyl benzoate and ethyl benzoate in L. 'Siberia' was found to be tepal-specific, floral development-regulated and rhythmic. Through transcriptome profiling and bioinformatic analysis, a BAHD acyltransferase gene designated LoAAT1 was identified as the top candidate gene for the production of ethyl benzoate. In vitro enzyme assays and substrate feeding assays provide substantial evidence that LoAAT1 is responsible for the biosynthesis of ethyl benzoate. It was interesting to note that in in vitro enzyme assay, LoAAT1 can also catalyze the formation of methyl benzoate, which is typically formed by the action of benzoic acid methyltransferase (BAMT). The lack of an expressed putative BAMT gene in the flower transcriptome of L. 'Siberia', together with biochemical and expression evidence, led us to conclude that LoAAT1 is also responsible for, or at least contributes to, the biosynthesis of the floral scent compound methyl benzoate. This is the first report that a member of the plant BAHD acyltransferase family contributes to the production of both ethyl benzoate and methyl benzoate, presenting a new mechanism for the biosynthesis of benzoate esters.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Manyi Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Fang Liu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Junle Yin
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Lijun Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Bin Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Ma H, Zhang C, Niu T, Chen M, Guo L, Hou X. Identification of Floral Volatile Components and Expression Analysis of Controlling Gene in Paeonia ostii 'Fengdan' under Different Cultivation Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2453. [PMID: 37447013 DOI: 10.3390/plants12132453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
In order to explore the release rule of floral volatile substances and the diurnal variation of different flower development stages of Paeonia ostii 'Fengdan' in potted and ground-planted conditions, dynamic headspace adsorption combined with gas chromatography-mass spectrometry(GC-MS) was used to analyze the dynamic changes in floral volatile components and contents. Quantitative real-time PCR (qRT-PCR) was used to analyze changes in flower fragrance-regulating genes PsPAL, PsTPSs, and PsbHLH at different flower development stages and a daily change process at the full-blooming stage. The results show that there were differences in aroma components and contents of Paeonia ostii 'Fengdan' at different flower development stages and different time quantum of every day. There were 25 and 28 aroma components identified in 7 flower development stages of tree peonies planted in pots and in the field, respectively, and 23 and 22 aroma components identified at different time quantum of the day, of which the largest and highest content was alkanes. The main characteristic aroma substances were (E)-β-ocimene, 1,3,5-trimethoxybenzene, 2,4-di-tert-butylphenol, methyl jasmonate, nerol, and cinnamyl alcohol; released amounts of the abovementioned substances varied depending on the development stage and the time of the day. The expression of flower fragrance-controlling genes (PsPAL, PsTPSs, and PsbHLH) in tree peonies varied greatly in different conditions. The results of this study provide a valuable resource to investigate floral fragrance formation in tree peonies.
Collapse
Affiliation(s)
- Huili Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Chenjie Zhang
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Tongfei Niu
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Meida Chen
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Lili Guo
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaogai Hou
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
9
|
Abbas F, Guo S, Zhou Y, Wu J, Amanullah S, Wang HC, Shen J. Metabolome and transcriptome analysis of terpene synthase genes and their putative role in floral aroma production in Litchi chinensis. PHYSIOLOGIA PLANTARUM 2022; 174:e13796. [PMID: 36251666 DOI: 10.1111/ppl.13796] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Volatile organic compounds (VOCs) are essential traits of flowers since they attract pollinators, aid in seed distribution, protect the plant from internal and external stimuli, and are involved in plant-plant and plant-environment interactions. Apart from their role in plants, VOCs are used in pharmaceuticals, fragrances, cosmetics, and flavorings. Litchi (Litchi chinensis Sonn.) is a popular fruit due to its enticing red appearance, exotic taste, and high nutritional qualities. Litchi flowers bloom as inflorescences primarily on the shoot terminals. There are three distinct flower types, two male and one female, all of which are produced on the same panicle and rely on insect pollination. Herein, we used a comprehensive metabolomic approach to examine the volatile profile of litchi fruit (green pericarp, yellow pericarp, and red pericarp) as well as male and female flowers (bud stage, half open and full bloom). From a quantitative examination of the volatiles in L. chinensis, a total of 19, 22, and 21 VOCs were discovered from female flowers, male flowers, and fruits, with the majority of them belonging to sesquiterpenes. Multivariate analysis revealed that the volatile profiles of fruits differ from those of male and female flowers. Three VOCs were unique to male flowers and ten to the fruit, while eight VOCs were shared by both male and female flowers and eleven by both male and female flowers and the fruit. Furthermore, for the first time, we identified and comprehensively studied the TERPENE SYNTHASE genes (TPS) using the litchi genome and transcriptome database, which revealed 38 TPS genes unevenly distributed across the 15 chromosomes. A phylogenetic study showed that LcTPS were grouped into TPS-b, TPS-c, TPS-e, TPS-f, and TPS-g subfamilies, with TPS-b having the most genes. The conserved motifs (RRX8 W, NSE/DTE, and DDXX D) were studied in LcTPSs, and significant variation between subfamilies was discovered. Furthermore, after integrating the metabolome and transcriptome datasets, several VOCs were shown to be development-specific and highly linked with distinct LcTPS genes, making them promising biomarkers. Interestingly, LcTPS17/20/23/24/31 were associated with monoterpene edges, while the rest were connected to sesquiterpene edges, indicating their probable participation in the aroma biosynthesis mechanism of certain compounds.
Collapse
Affiliation(s)
- Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shaoying Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yiwei Zhou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jing Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Hui-Cong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiyuan Shen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Effect of Developmental Stages on Genes Involved in Middle and Downstream Pathway of Volatile Terpene Biosynthesis in Rose Petals. Genes (Basel) 2022; 13:genes13071177. [PMID: 35885960 PMCID: PMC9320630 DOI: 10.3390/genes13071177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Terpenoids are economically and ecologically important compounds, and they are vital constituents in rose flower fragrance and rose essential oil. The terpene synthase genes (TPSs), trans-prenyltransferases genes (TPTs), NUDX1 are involved in middle and downstream pathway of volatile terpene biosynthesis in rose flowers. We identified 7 complete RcTPTs, 49 complete RcTPSs, and 9 RcNUDX1 genes in the genome of Rosachinensis. During the flower opening process of butterfly rose (Rosachinensis ‘Mutabilis’, MU), nine RcTPSs expressed in the petals of opening MU flowers exhibited two main expression trends, namely high and low, in old and fresh petals. Five short-chain petal-expressed RcTPTs showed expression patterns corresponding to RcTPSs. Analysis of differential volatile terpenes and differential expressed genes indicated that higher emission of geraniol from old MU petals might be related to the RcGPPS expression. Comprehensive analysis of volatile emission, sequence structure, micro-synteny and gene expression suggested that RcTPS18 may encode (E,E)-α-farnesene synthase. These findings may be useful for elucidating the molecular mechanism of terpenoid metabolism in rose and are vital for future studies on terpene regulation.
Collapse
|
11
|
Transcriptome analysis reveals regulation mechanism of methyl jasmonate-induced terpenes biosynthesis in Curcuma wenyujin. PLoS One 2022; 17:e0270309. [PMID: 35737688 PMCID: PMC9223393 DOI: 10.1371/journal.pone.0270309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Curcuma wenyujin is the source plant of three traditional Chinese medicines, which have been widely used in clinical treatment over 1000 years. The content of terpenes, the major medicinal active ingredients, is relatively low in this plant. Studies have shown that MeJA can promote terpenes biosynthesis in plants. However, the mechanism underlying the effect of MeJA in C. wenyujin remains unclear. In this work, the transcriptome of C. wenyujin leaves with MeJA treatment was analyzed to elucidate the regulation mechanism of MeJA-mediated terpene biosynthesis. Based on the RNA-seq data, 7,246 unigenes were differentially expressed with MeJA treatment. Expression pattern clustering of DEGs revealed that unigenes, related to JA biosynthesis and signal transduction, responded to exogenous MeJA stimulation on the early stage and maintained throughout the process. Subsequently, unigenes related to terpene biosynthesis pathway showed a significant up-regulation with 6 h treatment. The analysis results suggested that MeJA induced the expression of JA biosynthesis genes (such as LOXs, AOSs, AOCs, OPRs, and MFPs) and JA signal transduction core genes (JAZs and MYCs) to activate JA signaling pathway. Meanwhile, downstream JA-responsive genes presented up-regulated expression levels such as AACT, HMGSs, HMGRs, DXSs, DXRs, MCTs, HDSs, and HDRs, thus promoting terpenes biosynthesis. The transcriptional expressions of these genes were validated by qRT-PCR. In addition, six CwTPS genes in response to MeJA were identified. With MeJA treatment, the expression levels of CwTPSs were increased as well as those of the transcription factors MYB, NAC, bZIP, WRKY, AP2/ERF, and HLH. These TFs might potentially regulate terpenes biosynthesis. These results provide insights for regulation mechanism of terpenes biosynthesis.
Collapse
|
12
|
Functional Analysis of Two Terpene Synthase Genes Isolated from the Flowers of Hosta ‘So Sweet’. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The Hosta hybrid cultivar ‘So Sweet’, an important ornamental and widely used horticultural plant, is noted for its rich, fragrant white flowers. The main aroma components of Hosta flowers are terpenoids, mainly monoterpenes. Until now, the terpene synthases responsible for terpene production in Hosta were not described. In this study, two terpene synthase (TPS) genes (HsTPS1 and HsTPS2) were cloned and characterized to further study their function. Furthermore, the volatile terpenes of Hosta ’So Sweet’ in two flower development stages from two in vitro enzyme tests were analyzed by gas chromatography–mass spectrometry (GC–MS). We analyzed the expression levels of two genes at four different developmental stages using quantitative real-time PCR, while localization was analyzed using Nicotina benthamiana leaves. In vitro, the two proteins were identified to mainly produce linalool and nerol. In addition, the active products of the two recombinant proteins were (E,E)-farnesol and (E,E)-farnesal, respectively, using farnesyl pyrophosphate as a substrate. The high expression of HsTPS1 and HsTPS2 was correlated with the release of components of Hosta flowers. To our knowledge, this is the first time that the terpene synthase genes of Hosta species have been isolated and identified, providing an opportunity to study the terpene metabolic pathways in Hosta species.
Collapse
|
13
|
Zhou Y, Yin M, Abbas F, Sun Y, Gao T, Yan F, Li X, Yu Y, Yue Y, Yu R, Fan Y. Classification and Association Analysis of Gerbera ( Gerbera hybrida) Flower Color Traits. FRONTIERS IN PLANT SCIENCE 2022; 12:779288. [PMID: 35145530 PMCID: PMC8824200 DOI: 10.3389/fpls.2021.779288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 05/17/2023]
Abstract
Floral color plays a crucial role in plant life such as plant-pollinator interactions and modifying the abiotic environment of reproductive structures. In the current study, 123 gerbera accessions were divided into six color groups (white, yellow, orange, pink, red, and purple), based on Royal Horticultural Society Color Chart calibration and colorimeter measurement. Partial least squares discriminant analysis showed that the white group was mainly affected by L* value, a* value, C value, and total anthocyanin contents, while the yellow group was positively correlated with L* value, b* value, and total anthocyanin contents. Similarly, the orange group was mainly affected by b* value and total carotenoid contents, whereas the pink group was positively correlated with L* and h values. Furthermore, the red group was affected by L* value, a* value, C value, and total anthocyanin contents, whilst the purple group was mainly distributed by L* value, a* value, b* value, and total anthocyanin contents. Based on 'Jin Xiang' transcriptome data, 14,106 expressed sequence tag (EST)-SSR markers were identified and 48 pairs of primers (19 newly developed primers) were screened. Population genetic structure, neighbor-joining clustering, and principal coordinate analysis showed that 123 gerbera accessions could be divided into two groups. EST-SSR-based association analysis showed that 1, 1, 2, 1, 1, 2, and 1 significant loci were related to L*, a*, b*, C, and h, total carotenoid, and total anthocyanin contents, respectively. These results provide an important reference for flower color classification and genetic improvement of gerbera.
Collapse
Affiliation(s)
- Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Mao Yin
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yue Sun
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ting Gao
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Fulong Yan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Li P, Bai G, He J, Liu B, Long J, Morcol T, Peng W, Quan F, Luan X, Wang Z, Zhao Y, Cha Y, Liu Y, He J, Wu L, Yang Y, Kennelly EJ, Yang Q, Sun L, Chen Z, Qian W, Hu J, Yan J. Chromosome-level genome assembly of Amomum tsao-ko provides insights into the biosynthesis of flavor compounds. HORTICULTURE RESEARCH 2022; 9:uhac211. [PMID: 36479578 PMCID: PMC9719038 DOI: 10.1093/hr/uhac211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/14/2022] [Indexed: 05/19/2023]
Abstract
Amomum tsao-ko is an economically important spice plant in the ginger family (Zingiberaceae). The dried ripe fruit has been widely used as spice and medicine in Southeast Asia due to its distinct flavor metabolites. However, there is little genomic information available to understand the biosynthesis of its characteristic flavor compounds. Here, we present a high-quality chromosome-level genome of A. tsao-ko with a total length of 2.08 Gb assembled into 24 chromosomes. Potential relationships between genetic variation and chemical constituents were analyzed by a genome-wide association study of 119 representative A. tsao-ko specimens in China. Metabolome and transcriptome correlation analysis of different plant organs and fruit developmental stages revealed the proposed biosynthesis of the characteristic bicyclononane aldehydes and aromatic metabolites in A. tsao-ko fruit. Transcription factors of 20 families may be involved in the regulatory network of terpenoids. This study provides genomic and chemical insights into the biosynthesis of characteristic aroma and flavor constituents, which can be used to improve the quality of A. tsao-ko as food and medicine.
Collapse
Affiliation(s)
| | | | | | | | | | - Taylan Morcol
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, New York, 10468, USA
| | - Weiyao Peng
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Fan Quan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xinbo Luan
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenzhen Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangdong Engineering Research Centre for Modern Eco-Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yi Zhao
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, New York, 10468, USA
| | - Yunsheng Cha
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673100, China
| | - Yuanyuan Liu
- Key lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture and Rural Affairs ,Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Juncai He
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673100, China
| | - Lianzhang Wu
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673100, China
| | - Yi Yang
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673100, China
| | - Edward J Kennelly
- Department of Biological Sciences, Lehman College and The Graduate Center, City University of New York, Bronx, New York, 10468, USA
| | - Quan Yang
- Corresponding authors. E-mail: , , , ,
| | | | - Zepeng Chen
- Guangdong Provincial Tobacco Shaoguan Co. Ltd, Shaoguan, Guangdong, 512000, China
| | | | - Jian Hu
- Corresponding authors. E-mail: , , , ,
| | - Jian Yan
- Corresponding authors. E-mail: , , , ,
| |
Collapse
|
15
|
Abbas F, Ke Y, Zhou Y, Yu R, Imran M, Amanullah S, Rothenberg DO, Wang Q, Wang L, Fan Y. Functional Characterization of Hedychium coronarium J. Koenig MYB132 Confers the Potential Role in Floral Aroma Synthesis. PLANTS (BASEL, SWITZERLAND) 2021; 10:2014. [PMID: 34685822 PMCID: PMC8541032 DOI: 10.3390/plants10102014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
The R2R3-MYB transcription factors (TFs) play several key roles in numerous plant biological processes. Hedychium coronarium is an important ornamental plant well-known for its elegant flower shape and abundant aroma type. The floral aroma of H. coronarium is due to the presence of a large amount of terpenes and benzenoids. However, less is known about the role of R2R3-MYB TFs in the regulatory mechanism of floral aroma production in this breed. Herein, we isolate and functionally characterize the R2R3-MYB TF HcMYB132, which is potentially involved in regulating floral aroma synthesis. Sequence alignment analysis revealed that it includes a nuclear localization signal NLS(s) and a 2R, 3R motif signature in the sequences. A subcellular localization assay revealed that HcMYB132 protein localizes to the nucleus. Real-time qPCR assays showed that HcMYB132 is specifically expressed in flowers and its expression pattern correlates with the emission of floral volatile compounds. In HcMYB132-silenced flowers, the levels of floral volatile compounds were significantly reduced, and the expression of key structural volatile synthesis genes was downregulated compared to control. Collectively, these results suggest that HcMYB132 might play a significant role in the regulation of terpenoid biosynthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
- College of Economics and Management, Kunming University, Kunming 650214, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | | | - Qin Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (F.A.); (Y.K.); (Y.Z.); (Q.W.); (L.W.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
16
|
Zhou Y, Abbas F, Wang Z, Yu Y, Yue Y, Li X, Yu R, Fan Y. HS-SPME-GC-MS and Electronic Nose Reveal Differences in the Volatile Profiles of Hedychium Flowers. Molecules 2021; 26:5425. [PMID: 34500858 PMCID: PMC8433901 DOI: 10.3390/molecules26175425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Floral fragrance is one of the most important characteristics of ornamental plants and plays a pivotal role in plant lifespan such as pollinator attraction, pest repelling, and protection against abiotic and biotic stresses. However, the precise determination of floral fragrance is limited. In the present study, the floral volatile compounds of six Hedychium accessions exhibiting from faint to highly fragrant were comparatively analyzed via gas chromatography-mass spectrometry (GC-MS) and Electronic nose (E-nose). A total of 42 volatile compounds were identified through GC-MS analysis, including monoterpenoids (18 compounds), sesquiterpenoids (12), benzenoids/phenylpropanoids (8), fatty acid derivatives (2), and others (2). In Hedychium coronarium 'ZS', H. forrestii 'Gaoling', H. 'Jin', H. 'Caixia', and H. 'Zhaoxia', monoterpenoids were abundant, while sesquiterpenoids were found in large quantities in H. coccineum 'KMH'. Hierarchical clustering analysis (HCA) divided the 42 volatile compounds into four different groups (I, II, III, IV), and Spearman correlation analysis showed these compounds to have different degrees of correlation. The E-nose was able to group the different accessions in the principal component analysis (PCA) corresponding to scent intensity. Furthermore, the pattern-recognition findings confirmed that the E-nose data validated the GC-MS results. The partial least squares (PLS) analysis between floral volatile compounds and sensors suggested that specific sensors were highly sensitive to terpenoids. In short, the E-nose is proficient in discriminating Hedychium accessions of different volatile profiles in both quantitative and qualitative aspects, offering an accurate and rapid reference technique for future applications.
Collapse
Affiliation(s)
- Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Zhidong Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.Z.); (F.A.); (Z.W.); (Y.Y.); (Y.Y.); (X.L.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Ashaari NS, Ab Rahim MH, Sabri S, Lai KS, Song AAL, Abdul Rahim R, Ong Abdullah J. Kinetic studies and homology modeling of a dual-substrate linalool/nerolidol synthase from Plectranthus amboinicus. Sci Rep 2021; 11:17094. [PMID: 34429465 PMCID: PMC8385045 DOI: 10.1038/s41598-021-96524-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Linalool and nerolidol are terpene alcohols that occur naturally in many aromatic plants and are commonly used in food and cosmetic industries as flavors and fragrances. In plants, linalool and nerolidol are biosynthesized as a result of respective linalool synthase and nerolidol synthase, or a single linalool/nerolidol synthase. In our previous work, we have isolated a linalool/nerolidol synthase (designated as PamTps1) from a local herbal plant, Plectranthus amboinicus, and successfully demonstrated the production of linalool and nerolidol in an Escherichia coli system. In this work, the biochemical properties of PamTps1 were analyzed, and its 3D homology model with the docking positions of its substrates, geranyl pyrophosphate (C10) and farnesyl pyrophosphate (C15) in the active site were constructed. PamTps1 exhibited the highest enzymatic activity at an optimal pH and temperature of 6.5 and 30 °C, respectively, and in the presence of 20 mM magnesium as a cofactor. The Michaelis-Menten constant (Km) and catalytic efficiency (kcat/Km) values of 16.72 ± 1.32 µM and 9.57 × 10-3 µM-1 s-1, respectively, showed that PamTps1 had a higher binding affinity and specificity for GPP instead of FPP as expected for a monoterpene synthase. The PamTps1 exhibits feature of a class I terpene synthase fold that made up of α-helices architecture with N-terminal domain and catalytic C-terminal domain. Nine aromatic residues (W268, Y272, Y299, F371, Y378, Y379, F447, Y517 and Y523) outlined the hydrophobic walls of the active site cavity, whilst residues from the RRx8W motif, RxR motif, H-α1 and J-K loops formed the active site lid that shielded the highly reactive carbocationic intermediates from the solvents. The dual substrates use by PamTps1 was hypothesized to be possible due to the architecture and residues lining the catalytic site that can accommodate larger substrate (FPP) as demonstrated by the protein modelling and docking analysis. This model serves as a first glimpse into the structural insights of the PamTps1 catalytic active site as a multi-substrate linalool/nerolidol synthase.
Collapse
Affiliation(s)
- Nur Suhanawati Ashaari
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Mohd Hairul Ab Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Gambang, Kuantan, Pahang, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Kok Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012, Abu Dhabi, United Arab Emirates
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
18
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Li X, Yu R, Fan Y. Genome-wide analysis of ARF transcription factors reveals HcARF5 expression profile associated with the biosynthesis of β-ocimene synthase in Hedychium coronarium. PLANT CELL REPORTS 2021; 40:1269-1284. [PMID: 34052884 DOI: 10.1007/s00299-021-02709-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 05/19/2023]
Abstract
Herein, 37 ARF genes were identified and analyzed in Hedychium coronarium and HcARF5 showed a potential role in the regulation of HcTPS3. Auxin is an important plant hormone, implicated in various aspects of plant growth and development processes especially in the biosynthesis of various secondary metabolites. Auxin response factors (ARF) belong to the transcription factors (TFs) gene family and play a crucial role in transcriptional activation/repression of auxin-responsive genes by directly binding to their promoter region. Nevertheless, whether ARF genes are involved in the regulatory mechanism of volatile compounds in flowering plants is largely unknown. β-ocimene is a key floral volatile compound synthesized by terpene synthase 3 (HcTPS3) in Hedychium coronarium. A comprehensive analysis of H. coronarium genome reveals 37 candidate ARF genes in the whole genome. Tissue-specific expression patterns of HcARFs family members were assessed using available transcriptome data. Among them, HcARF5 showed a higher expression level in flowers, and significantly correlated with the key structural β-ocimene synthesis gene (HcTPS3). Furthermore, transcript levels of both genes were associated with the flower development. Under hormone treatments, the response of HcARF5 and HcTPS3, and the emission level of β-ocimene contents were evaluated. Subcellular and transcriptional activity assay showed that HcARF5 localizes to the nucleus and possesses transcriptional activity. Yeast one-hybrid (Y1H) and dual-luciferase assays revealed that HcARF5 directly regulates the transcriptional activity of HcTPS3. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that HcARF5 interacts with scent-related HcIAA4, HcIAA6, and HcMYB1 in vivo. Overall, these results indicate that HcARF5 is potentially involved in the regulation of β-ocimene synthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- College of Economics and Management, Kunming University, Kunming, 650214, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Profiling of Volatile Compounds and Associated Gene Expression in Two Anthurium Cultivars and Their F1 Hybrid Progenies. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102902. [PMID: 34068329 PMCID: PMC8153298 DOI: 10.3390/molecules26102902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
Anthurium is an important ornamental crop in the world market and its floral scent can enhance its ornamental value. To date, studies of the components and formation mechanism of the floral scent of Anthurium are relatively few. In this study, the scent profiles of two Anthurium varieties were measured by gas chromatograph-mass spectrometer (GC-MS). There were 32 volatile organic compounds (VOCs) identified in Anthurium ‘Mystral’, and the most abundant compound was eucalyptol (57.5%). Extremely small amounts of VOCs were detected in Anthurium ‘Alabama’. Compared with A. ‘Alabama’, most genes related to floral scent synthesis exhibited a higher expression in A.‘Mystral’, including AaDXS, AaDXR, AaMDS, AaHDS, AaTPS, AaDAHPS, AaADT2, AaPAL1, and AaPAL2. In order to produce new varieties of Anthurium with fragrance, 454 progenies of two crossbred combinations of A. ‘Mystral’ and A. ‘Alabama’ were obtained. Four F1 generation plants with different floral scent intensities were selected for further study. The major components of floral scent in the progenies were similar to that of the parental A.‘Mystral’ plant. The expression patterns of genes related to floral scent synthesis were consistent with the relative contents of different types of VOCs. This study revealed the profiles of volatile compounds and associated gene expression in two Anthurium cultivars and their F1 hybrids, which provided a basis for the floral scent inheritance of Anthurium andraeanum.
Collapse
|
20
|
Wang C, Abbas F, Zhou Y, Ke Y, Li X, Yue Y, Yu Y, Yu R, Fan Y. Genome-wide identification and expression pattern of SnRK gene family under several hormone treatments and its role in floral scent emission in Hedychium coronarium. PeerJ 2021; 9:e10883. [PMID: 33854831 PMCID: PMC7955670 DOI: 10.7717/peerj.10883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022] Open
Abstract
The SnRK (Snf1-Related protein Kinase) gene family plays crucial roles in various plant signaling pathways and stress-adaptive responses including biotic and abiotic stresses via activating protein phosphorylation pathways. However, there is no information available on the role of the SnRK gene family in Hedychium coronarium. H. coronarium is an important crop widely cultivated as an ornamental plant, herb, spice, or condiment. In this study, 60 HcSnRK genes were identified from the H. coronarium genomic and transcriptome data. Phylogenetic and gene structure analysis showed that the HcSnRK genes were divided into three groups (HcSnRK1, HcSnRK2 and HcSnRK3) and among them HcSnRK3 subfamily was further subdivided into two clades according to the number of introns. Chromosome localization analysis showed that HcSnRK genes were unevenly mapped onto all chromosomes, and the Ka/Ks ratio of 24 paralogues includes four tandems and 20 segmental duplications indicated that the HcSnRK gene family underwent a purifying selection. Cis-regulatory elements analysis suggested that the HcSnRK genes respond to multiple hormones and other stresses. The responsiveness of HcSnRK genes to several hormones was analyzed by quantitative real-time PCR. Based on the different transcriptome data, two candidates HcSnRK genes (HcSnRK2.2 and HcSnRK2.9) were screened out for further characterization . The subcellular localization experiment revealed that both genes were located in the nucleus and cytoplasm. Moreover, virus-induced gene silencing (VIGS) of HcSnRK2.2 and HcSnRK2.9 significantly reduced the floral volatile contents by suppressing the expression of terpene synthase genes (HcTPS1, HcTPS3, and HcTPS5), indicating that HcSnRK2.2 and HcSnRK2.9 genes play an important role in the regulatory mechanism of floral aroma. These results will provide novel insights into the functional dissection of H. coronarium SnRK gene family.
Collapse
Affiliation(s)
- Chutian Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
- College of Economics and Management, Kunming university, Kunming, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangdong, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangdong, China
| |
Collapse
|
21
|
Zhang X, Teixeira da Silva JA, Niu M, Zhang T, Liu H, Zheng F, Yuan Y, Li Y, Fang L, Zeng S, Ma G. Functional characterization of an Indian sandalwood (Santalum album L.) dual-localized bifunctional nerolidol/linalool synthase gene involved in stress response. PHYTOCHEMISTRY 2021; 183:112610. [PMID: 33383368 DOI: 10.1016/j.phytochem.2020.112610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Essential oils extracted from the heartwood of Indian sandalwood (Santalum album L.) contain linalool and nerolidol as minor components. However, nerolidol/linalool synthase (NES/LIS), which produce linalool and nerolidol, have yet to be characterized in sandalwood. Using a transcriptomic-based approach, a terpene synthase gene was screened from unigenes of transcriptome data derived from S. album seedlings exposed to low temperature (4 °C). The enzyme encoded by these complementary DNAs belongs to the TPS-b clade. Recombinant SaNES/LIS is a bifunctional enzyme that can catalyze the formation of (E)-nerolidol from farnesyl diphosphate and linalool from geranyl diphosphate, respectively. Whereas SaNES/LIS was primarily localized in chloroplastids, both as granular fluorescence and as diffuse fluorescence, it was also detected in the cytosol of a limited number of cells. Agrobacterium tumefaciens-mediated transient gene expression in planta produced the same terpene products as those obtained in vitro. Real-time PCR analysis showed the highest expression of SaNES/LIS in fruits, with about a three-fold higher level than in leaves, followed by flowers, heartwood and roots. SaNES/LIS transcripts were differentially activated in different tissues in response to methyl jasmonate, cold, high temperature, strong illumination, and drought stress. Our results provide novel insight into the role of sandalwood terpenoids in response to various environmental stresses.
Collapse
Affiliation(s)
- Xinhua Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Jaime A Teixeira da Silva
- Independent Researcher, P. O. Box 7, Miki Cho Post Office, Ikenobe 3011-2, Kagawa-Ken, 761-0799, Japan
| | - Meiyun Niu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ting Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Huanfang Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Feng Zheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yunfei Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuan Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Guohua Ma
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
22
|
Yue Y, Wang L, Yu R, Chen F, He J, Li X, Yu Y, Fan Y. Coordinated and High-Level Expression of Biosynthetic Pathway Genes Is Responsible for the Production of a Major Floral Scent Compound Methyl Benzoate in Hedychium coronarium. FRONTIERS IN PLANT SCIENCE 2021; 12:650582. [PMID: 33897740 PMCID: PMC8058416 DOI: 10.3389/fpls.2021.650582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/22/2021] [Indexed: 05/04/2023]
Abstract
Methyl benzoate is a constituent of floral scent profile of many flowering plants. However, its biosynthesis, particularly in monocots, is scarcely reported. The monocot Hedychium coronarium is a popular ornamental plant in tropical and subtropical regions partly for its intense and inviting fragrance, which is mainly determined by methyl benzoate and monoterpenes. Interestingly, several related Hedychium species lack floral scent. Here, we studied the molecular mechanism of methyl benzoate biosynthesis in H. coronarium. The emission of methyl benzoate in H. coronarium was found to be flower-specific and developmentally regulated. As such, seven candidate genes associated with methyl benzoate biosynthesis were identified from flower transcriptome of H. coronarium and isolated. Among them, HcBSMT1 and HcBSMT2 were demonstrated to catalyze the methylation of benzoic acid and salicylic acid to form methyl benzoate and methyl salicylate, respectively. Methyl salicylate is a minor constituent of H. coronarium floral scent. Kinetic analysis revealed that HcBSMT2 exhibits a 16.6-fold lower Km value for benzoic acid than HcBSMT1, indicating its dominant role for floral methyl benzoate formation. The seven genes associated with methyl benzoate biosynthesis exhibited flower-specific or flower-preferential expression that was developmentally regulated. The gene expression and correlation analysis suggests that HcCNL and HcBSMT2 play critical roles in the regulation of methyl benzoate biosynthesis. Comparison of emission and gene expression among four Hedychium species suggested that coordinated and high-level expression of biosynthetic pathway genes is responsible for the massive emission of floral methyl benzoate in H. coronarium. Our results provide new insights into the molecular mechanism for methyl benzoate biosynthesis in monocots and identify useful molecular targets for genetic modification of scent-related traits in Hedychium.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Lan Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jieling He
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- *Correspondence: Yanping Fan
| |
Collapse
|
23
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Wang C, Wang X, Li X, Yue Y, Yu R, Fan Y. Genome-Wide Analysis Reveals the Potential Role of MYB Transcription Factors in Floral Scent Formation in Hedychium coronarium. FRONTIERS IN PLANT SCIENCE 2021; 12:623742. [PMID: 33719296 PMCID: PMC7952619 DOI: 10.3389/fpls.2021.623742] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 05/19/2023]
Abstract
The MYB gene family is one of the largest groups of transcription factors (TFs) playing diverse roles in several biological processes. Hedychium coronarium (white ginger lily) is a renowned ornamental plant both in tropical and subtropical regions due to its flower shape and strong floral scent mainly composed of terpenes and benzenoids. However, there is no information available regarding the role of the MYB gene family in H. coronarium. In the current study, the MYB gene family was identified and extensively analyzed. The identified 253 HcMYB genes were unevenly mapped on 17 chromosomes at a different density. Promoter sequence analysis showed numerous phytohormones related to cis-regulatory elements. The majority of HcMYB genes contain two to three introns and motif composition analysis showed their functional conservation. Phylogenetic analysis revealed that HcMYBs could be classified into 15 distinct clades, and the segmental duplication events played an essential role in the expansion of the HcMYB gene family. Tissue-specific expression patterns of HcMYB genes displayed spatial and temporal expression. Furthermore, seven HcMYB (HcMYB7/8/75/79/145/238/248) were selected for further investigation. Through RT-qPCR, the response of candidates HcMYB genes toward jasmonic acid methyl ester (MeJA), abscisic acid (ABA), ethylene, and auxin was examined. Yeast one-hybrid (Y1H) assays revealed that candidate genes directly bind to the promoter of bottom structural volatile synthesis genes (HcTPS1, HcTPS3, HcTPS10, and HcBSMT2). Moreover, yeast two-hybrid (Y2H) assay showed that HcMYB7/8/75/145/248 interact with HcJAZ1 protein. In HcMYB7/8/79/145/248-silenced flowers, the floral volatile contents were decreased and downregulated the expression of key structural genes, suggesting that these genes might play crucial roles in floral scent formation in H. coronarium by regulating the expression of floral scent biosynthesis genes. Collectively, these findings indicate that HcMYB genes might be involved in the regulatory mechanism of terpenoids and benzenoid biosynthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Chutian Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- *Correspondence: Yanping Fan,
| |
Collapse
|
24
|
Abbas F, Zhou Y, He J, Ke Y, Qin W, Yu R, Fan Y. Metabolite and Transcriptome Profiling Analysis Revealed That Melatonin Positively Regulates Floral Scent Production in Hedychium coronarium. FRONTIERS IN PLANT SCIENCE 2021; 12:808899. [PMID: 34975998 PMCID: PMC8719004 DOI: 10.3389/fpls.2021.808899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 05/19/2023]
Abstract
Melatonin is a pleiotropic molecule that regulates a variety of developmental processes. Floral volatiles are important features of flowers that facilitate flower-visitor interactions by attracting pollinators, structure flower-visitor communities, and play defensive roles against plant and flower antagonists. Aside from their role in plants, floral volatiles are an essential ingredient in cosmetics, perfumes, pharmaceuticals, and flavorings. Herein, integrated metabolomic and transcriptomic approaches were carried out to analyze the changes triggered by melatonin exposure during the Hedychium coronarium flower development stages. Quantitative analysis of the volatiles of H. coronarium flowers revealed that volatile organic compound emission was significantly enhanced after melatonin exposure during the half bloom (HS), full bloom (FB) and fade stage (FS). Under the melatonin treatment, the emission of volatile contents was highest during the full bloom stage of the flower. Variable importance in projection (VIP) analysis and partial least-squares discriminant analysis (PLS-DA) identified 15 volatile compounds with VIP > 1 that were prominently altered by the melatonin treatments. According to the transcriptome sequencing data of the HS, FB, and FS of the flowers, 1,372, 1,510, and 1,488 differentially expressed genes were identified between CK-HS and 100MT-HS, CK-FB and 100MT-FB, and CK-FS and 100MT-FS, respectively. Among the significant differentially expressed genes (DEGs), 76 were significantly upregulated and directly involved in the floral scent biosynthesis process. In addition, certain volatile organic compounds were substantially linked with various DEGs after combining the metabolome and transcriptome datasets. Moreover, some transcription factors, such as MYB and bHLH, were also significantly upregulated in the comparison, which might be related to the floral aroma mechanism. Our results suggested that melatonin increased floral aroma production in H. coronarium flowers by modifying the expression level of genes involved in the floral scent biosynthesis pathway. These findings serve as a foundation for future research into the molecular mechanisms underlying the dynamic changes in volatile contents induced by melatonin treatment in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yiwei Zhou
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jingjuan He
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yanguo Ke
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Wang Qin
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- *Correspondence: Yanping Fan,
| |
Collapse
|
25
|
Bao T, Shadrack K, Yang S, Xue X, Li S, Wang N, Wang Q, Wang L, Gao X, Cronk Q. Functional Characterization of Terpene Synthases Accounting for the Volatilized-Terpene Heterogeneity in Lathyrus odoratus Cultivar Flowers. PLANT & CELL PHYSIOLOGY 2020; 61:1733-1749. [PMID: 32726442 DOI: 10.1093/pcp/pcaa100] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lathyrus odoratus (sweet pea) is an ornamental plant with exceptional floral scent, previously used as an experimental organism in the early development of Mendelian genetics. However, its terpene synthases (TPSs), which act as metabolic gatekeepers in the biosynthesis of volatile terpenoids, remain to be characterized. Auto-Headspace Solid-phase Microextraction/Gas chromatography-mass spectrometry analysis of floral volatile terpene constituents from seven sweet pea cultivars identified α-bergamotene, linalool, (-)-α-cubebene, geraniol, β-caryophyllene and β-sesquiphellandrene as the dominant compounds. RNA sequencing was performed to profile the transcriptome of L. odoratus flowers. Bioinformatic analysis identified eight TPS genes (acronymed as LoTPS) that were successfully cloned, heterologously expressed and functionally analyzed. LoTPS4 and LoTPS7, belonging to the TPS-b clade, biochemically catalyzed the formation of monoterpenes and sesquiterpenes. LoTPS3 and LoTPS8, placed in the TPS-a clade, also generated monoterpenes and sesquiterpenes, while LoTPS12 belonging to the TPS-g clade showed linalool/nerolidol synthase activity. Notably, biochemical assays of the recombinant LoTPS proteins revealed their catalytic promiscuity, and the enzymatic products were basically consistent with major volatile compounds released from sweet pea flowers. The data from our study lay the foundation for the chemical ecology, molecular genetics and biotechnological improvement of sweet pea and other legumes (Fabaceae).
Collapse
Affiliation(s)
- Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Kimani Shadrack
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Department of Biological and Physical Sciences, Karatina University, Karatina, Kenya
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xinxin Xue
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Shuying Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Ning Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Qiuyue Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Quentin Cronk
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
26
|
Zhao C, Yu Z, da Silva JAT, He C, Wang H, Si C, Zhang M, Zeng D, Duan J. Functional Characterization of a Dendrobium officinale Geraniol Synthase DoGES1 Involved in Floral Scent Formation. Int J Mol Sci 2020; 21:E7005. [PMID: 32977586 PMCID: PMC7582308 DOI: 10.3390/ijms21197005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/01/2023] Open
Abstract
Floral scent is a key ornamental trait that determines the quality and commercial value of orchids. Geraniol, an important volatile monoterpene in orchids that attracts pollinators, is also involved in responses to stresses but the geraniol synthase (GES) responsible for its synthesis in the medicinal orchid Dendrobium officinale has not yet been identified. In this study, three potential geraniol synthases were mined from the D. officinale genome. DoGES1, which was localized in chloroplasts, was characterized as a geraniol synthase. DoGES1 was highly expressed in flowers, especially in petals. DoGES1 transcript levels were high in the budding stage of D. officinale flowers at 11:00 a.m. DoGES1 catalyzed geraniol in vitro, and transient expression of DoGES1 in Nicotiana benthamiana leaves resulted in the accumulation of geraniol in vivo. These findings on DoGES1 advance our understanding of geraniol biosynthesis in orchids, and lay the basis for genetic modification of floral scent in D. officinale or in other ornamental orchids.
Collapse
Affiliation(s)
- Conghui Zhao
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (C.Z.); (Z.Y.); (C.H.); (H.W.); (C.S.); (M.Z.); (D.Z.)
- College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhenming Yu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (C.Z.); (Z.Y.); (C.H.); (H.W.); (C.S.); (M.Z.); (D.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | - Chunmei He
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (C.Z.); (Z.Y.); (C.H.); (H.W.); (C.S.); (M.Z.); (D.Z.)
| | - Haobin Wang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (C.Z.); (Z.Y.); (C.H.); (H.W.); (C.S.); (M.Z.); (D.Z.)
| | - Can Si
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (C.Z.); (Z.Y.); (C.H.); (H.W.); (C.S.); (M.Z.); (D.Z.)
| | - Mingze Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (C.Z.); (Z.Y.); (C.H.); (H.W.); (C.S.); (M.Z.); (D.Z.)
| | - Danqi Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (C.Z.); (Z.Y.); (C.H.); (H.W.); (C.S.); (M.Z.); (D.Z.)
| | - Jun Duan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (C.Z.); (Z.Y.); (C.H.); (H.W.); (C.S.); (M.Z.); (D.Z.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
27
|
Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, Yang S, Bao T, Gao X, Wang L. MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia hybrida and Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4140-4158. [PMID: 32275056 DOI: 10.1093/jxb/eraa184] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/09/2020] [Indexed: 05/09/2023]
Abstract
Previously, linalool was found to be the most abundant component among the cocktail of volatiles released from flowers of Freesia hybrida. Linalool formation is catalysed by monoterpene synthase TPS1. However, the regulatory network developmentally modulating the expression of the TPS1 gene in Freesia hybrida remains unexplored. In this study, three regulatory genes, FhMYB21L1, FhMYB21L2, and FhMYC2, were screened from 52 candidates. Two MYB transcription factor genes were synchronously expressed with FhTPS1 and could activate its expression significantly when overexpressed, and the binding of FhMYB21L2 to the MYBCORE sites in the FhTPS1 promoter was further confirmed, indicating a direct role in activation. FhMYC2 showed an inverse expression pattern compared with FhTPS1; its expression led to a decreased binding of FhMYB21 to the FhTPS1 promoter to reduce its activation capacity when co-expressed, suggesting a role for an MYB-bHLH complex in the regulation of the FhTPS1 gene. In Arabidopsis, both MYB21 and MYC2 regulators were shown to activate the expression of sesquiterpene synthase genes, and the regulatory roles of AtMYB21 and AtMYC2 in the expression of the linalool synthase gene were also confirmed, implying conserved functions of the MYB-bHLH complex in these two evolutionarily divergent plants. Moreover, the expression ratio between MYB21 and MYC2 orthologues might be a determinant factor in floral linalool emission.
Collapse
Affiliation(s)
- Zhongzhou Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Yueqing Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Fengzhan Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Wei Jin
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shuying Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Shadrack Kimani
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Department of Biological and Physical Sciences, Karatina University, Karatina, Kenya
| | - Song Yang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Tingting Bao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- National Demonstration Center for Experimental Biology Education, Northeast Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
28
|
Ashaari NS, Ab. Rahim MH, Sabri S, Lai KS, Song AAL, Abdul Rahim R, Wan Abdullah WMAN, Ong Abdullah J. Functional characterization of a new terpene synthase from Plectranthus amboinicus. PLoS One 2020; 15:e0235416. [PMID: 32614884 PMCID: PMC7332032 DOI: 10.1371/journal.pone.0235416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Plectranthus amboinicus (Lour.) Spreng is an aromatic medicinal herb known for its therapeutic and nutritional properties attributed by the presence of monoterpene and sesquiterpene compounds. Up until now, research on terpenoid biosynthesis has focused on a few mint species with economic importance such as thyme and oregano, yet the terpene synthases responsible for monoterpene production in P. amboinicus have not been described. Here we report the isolation, heterologous expression and functional characterization of a terpene synthase involved in P. amboinicus terpenoid biosynthesis. A putative monoterpene synthase gene (PamTps1) from P. amboinicus was isolated with an open reading frame of 1797 bp encoding a predicted protein of 598 amino acids with molecular weight of 69.6 kDa. PamTps1 shares 60–70% amino acid sequence similarity with other known terpene synthases of Lamiaceae. The in vitro enzymatic activity of PamTps1 demonstrated the conversion of geranyl pyrophosphate and farnesyl pyrophosphate exclusively into linalool and nerolidol, respectively, and thus PamTps1 was classified as a linalool/nerolidol synthase. In vivo activity of PamTps1 in a recombinant Escherichia coli strain revealed production of linalool and nerolidol which correlated with its in vitro activity. This outcome validated the multi-substrate usage of this enzyme in producing linalool and nerolidol both in in vivo and in vitro systems. The transcript level of PamTps1 was prominent in the leaf during daytime as compared to the stem. Gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analyses showed that maximal linalool level was released during the daytime and lower at night following a diurnal circadian pattern which correlated with the PamTps1 expression pattern. The PamTps1 cloned herein provides a molecular basis for the terpenoid biosynthesis in this local herb that could be exploited for valuable production using metabolic engineering in both microbial and plant systems.
Collapse
Affiliation(s)
- Nur Suhanawati Ashaari
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Mohd Hairul Ab. Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Suriana Sabri
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kok Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi, United Arab of Emirates
| | - Adelene Ai-Lian Song
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
29
|
Zhang T, Guo Y, Shi X, Yang Y, Chen J, Zhang Q, Sun M. Overexpression of LiTPS2 from a cultivar of lily (Lilium 'Siberia') enhances the monoterpenoids content in tobacco flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:391-399. [PMID: 32278293 DOI: 10.1016/j.plaphy.2020.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 05/17/2023]
Abstract
Lily, a famous cut flower with highly fragrance, has high ornamental and economic values. Monoterpenes are the main components contributing to its fragrance, and terpene synthase (TPS) genes play critical roles in the biosynthesis of monoterpenoids. To understand the function of TPS and to explore the molecular mechanism of floral scent in cultivar Lilium 'Siberia', transcriptomes of petal at different flowering stages and leaf were obtained by RNA sequencing and three unigenes related to TPS genes were selected for further validation. Quantitative real-time PCR showed that the expression level of LiTPS2 was greater than that of the other two TPS genes. Phylogenetic analysis indicated that LiTPS2 belonged to the TPSb subfamily, which was responsible for monoterpenes synthesis. Subcellular localization demonstrated that LiTPS2 was located in the chloroplasts. Furthermore, functional characterization showed that LiTPS2 utilized both geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP) to produce monoterpenoids such as linalool and sesquiterpenes like trans-nerolidol, respectively. Ectopic expression in transgenic tobacco plants suggested that the amount of linalool from the flowers of transgenic plants was 2-3 fold higher than that of wild-type plants. And the emissions of myrcene and (E)-β-ocimene were also accumulated from the flowers of LiTPS2 transgenic lines. Surprisingly, these three compounds were the main fragrance components of oriental lily hybrids. Our results indicated that LiTPS2 contributed to the production of monoterpenes and could effectively regulate the aroma of Lilium cultivars, laying the foundation for biotechnological modification of floral scent profiles.
Collapse
Affiliation(s)
- Tengxun Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yanhong Guo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xuejun Shi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yongjuan Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Juntong Chen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
30
|
Abbas F, Ke Y, Zhou Y, Ashraf U, Li X, Yu Y, Yue Y, Ahmad KW, Yu R, Fan Y. Molecular cloning, characterization and expression analysis of LoTPS2 and LoTPS4 involved in floral scent formation in oriental hybrid Lilium variety 'Siberia'. PHYTOCHEMISTRY 2020; 173:112294. [PMID: 32058861 DOI: 10.1016/j.phytochem.2020.112294] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Lilies are a commercially significant cut flower worldwide due not only to their elegant shape but also to their appealing scent. Among Lilium varieties, Lilium 'Siberia' is a cultivar that is prominent and highly favored by consumers due to its snowy white color and strong floral scent. Here, two terpene synthase genes (LoTPS2 and LoTPS4) that are responsible for floral scent production in Lilium 'Siberia' were cloned and functionally characterized. Recombinant LoTPS2 specifically catalyzed the formation of (E, E)-α-farnesene from FPP. Recombinant LoTPS4 is a multiproduct enzyme that produces D-limonene and β-myrcene as major volatile compounds and β-phellandrene, (+)-4-carene and 3-carene as minor products from GPP. Furthermore, LoTPS4 generates trans-α-bergamotene as a major product and di-epi-α-cedrene, α-cubebene and (E)-β-farnesene as minor compounds from FPP. Subcellular localization analysis using GFP fusion constructs revealed that LoTPS2 was localized in the cytosol, whereas LoTPS4 was localized in plastids. Real-time PCR analysis showed that LoTPS2 was highly expressed in the petals and sepals of the flower, while LoTPS4 was highly expressed in the filament of the flower. Moreover, mechanical wounding of flowers revealed that LoTPS2 showed a strong response to wounding via a rapid increase in its mRNA transcript level. Our results will assist scientists in exploring the molecular mechanisms of terpene biosynthesis in this species and will provide new insight into the biotechnological modification of the floral bouquet in Lilium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Kanwar Waqas Ahmad
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
31
|
Chen H, Yue Y, Yu R, Fan Y. A Hedychium coronarium short chain alcohol dehydrogenase is a player in allo-ocimene biosynthesis. PLANT MOLECULAR BIOLOGY 2019; 101:297-313. [PMID: 31368003 DOI: 10.1007/s11103-019-00904-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/23/2019] [Indexed: 05/13/2023]
Abstract
An enzyme is crucial for the formation of Hedychium coronarium scent and defense responses, which may be responsible for the biosynthesis of allo-ocimene in H. coronarium. Hedychium coronarium can emit a strong scent as its main scent constituents are monoterpenes and their derivatives. Among these derivatives, allo-ocimene is not only a very important volatile substance in flower aroma, but is also crucial to plant defense. However, the molecular mechanism of allo-ocimene biosynthesis has not been characterized in plants. In this study, a new alcohol dehydrogenase gene, HcADH, was cloned. The amino acid sequences encoded by HcADH contained the most conserved motifs of short chain alcohol dehydrogenase/reductases (SDRs), which included NAD+ binding domain, TGxxx[AG]xG and active site YxxxK. Real-time PCR analyses showed that the HcADH was highly expressed in the outer labellum but was almost undetectable in vegetative organs. The change in its expression level in petals was positively correlated with the emission pattern of allo-ocimene during flower development. HcADH expression coincides also the release level of allo-ocimene among different Hedychium species. Although HcADH is not expressed in the leaves, HcADH expression and allo-ocimene release in leaves can be induced by mechanical wounding or methyl jasmonate (MeJA) treatment. In addition, the expression of HcADH induced by mechanical wounding can be prevented by acetylsalicylic acid, a jasmonic acid biosynthesis inhibitor, suggesting that jasmonic acid might participate in the transmission of wounding signals. Using the Barley stripe mosaic virus (BSMV)-VIGS method, it was found that BSMV:HcADH335 inoculation was able to down-regulate HcADH expression, decreasing only the release of allo-ocimene in flowers while the content of other volatile substances did not decrese. In vitro characterization showed that recombinant HcADH can catalyze geraniol into citral, and citral is an intermediate of allo-ocimene biosynthesis. HcADH may be responsible for the biosynthesis of allo-ocimene in H. coronarium, which is crucial for the formation of H. coronarium scent and defense function.
Collapse
Affiliation(s)
- Hua Chen
- Department of Landscape Architecture, College of Life Science, Zhaoqing University, Zhaoqing Avenue, Duanzhou District, Zhaoqing, 526061, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Rangcai Yu
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Horticulture, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Ke Y, Abbas F, Zhou Y, Yu R, Yue Y, Li X, Yu Y, Fan Y. Genome-Wide Analysis and Characterization of the Aux/IAA Family Genes Related to Floral Scent Formation in Hedychium coronarium. Int J Mol Sci 2019; 20:E3235. [PMID: 31266179 PMCID: PMC6651449 DOI: 10.3390/ijms20133235] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/28/2019] [Accepted: 06/28/2019] [Indexed: 01/14/2023] Open
Abstract
Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic analysis showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence analysis of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in H. coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in H. coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.
Collapse
Affiliation(s)
- Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
33
|
Yue Y, Liu J, Shi T, Chen M, Li Y, Du J, Jiang H, Yang X, Hu H, Wang L. Integrating Transcriptomic and GC-MS Metabolomic Analysis to Characterize Color and Aroma Formation during Tepal Development in Lycoris longituba. PLANTS 2019; 8:plants8030053. [PMID: 30823447 PMCID: PMC6473938 DOI: 10.3390/plants8030053] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 01/18/2023]
Abstract
Lycoris longituba, belonging to the Amaryllidaceae family, is a perennial bulb bearing flowers with diverse colors and fragrance. Selection of cultivars with excellent colored and scented flowers has always been the breeding aim for ornamental plants. However, the molecular mechanisms underlying color fading and aroma production during flower expansion in L. longituba remain unclear. Therefore, to systematically investigate these important biological phenomena, the tepals of L. longituba from different developmental stages were used to screen and analyze the metabolic components and relevant genes. Utilizing the Illumina platform, a total of 144,922 unigenes were obtained from the RNA-Seq libraries. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the phenylpropanoid biosynthesis and flavonoid biosynthesis pathways might play important roles during color and aroma changes. Metabolomic analysis identified 29 volatile organic components (VOCs) from different developmental stages of L. longituba tepals, and orthogonal partial least-squares discriminate analysis (OPLS-DA) revealed that trans-β-ocimene—a terpene—was the most important aroma compound. Meanwhile, we found the content of anthocyanin was significantly reduced during the tepal color fading process. Then, we identified two dihydroflavonol-4-reductase (DFR) and three terpene synthase (TPS) genes, for which expression changes coincided with the production patterns of anthocyanins and trans-β-ocimene, respectively. Furthermore, a number of MYB and bHLH transcription factors (TFs) which might be involved in color- and aroma-formation were also identified in L. longituba tepal transcriptomes. Taken together, this is the first comprehensive report of the color and fragrance in tepals of L. longituba and these results could be helpful in understanding these characteristics and their regulation networks.
Collapse
Affiliation(s)
- Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiawei Liu
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Tingting Shi
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Min Chen
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Ya Li
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Juhua Du
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Haiyan Jiang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
| | - Huirong Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
34
|
Abbas F, Ke Y, Yu R, Fan Y. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium 'Siberia'. PLANTA 2019; 249:71-93. [PMID: 30218384 DOI: 10.1007/s00425-018-3006-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/06/2018] [Indexed: 05/22/2023]
Abstract
Floral scent formation in Lilium 'Siberia' is mainly due to monoterpene presence in the floral profile. LoTPS1 and LoTPS3 are responsible for the formation of (±)-linalool and β-ocimene in Lilium 'Siberia'. Lilium 'Siberia' is a perennial herbaceous plant belonging to Liliaceae family, cultivated both as a cut flower and garden plant. The snowy white flower emits a pleasant aroma which is mainly caused by monoterpenes present in the floral volatile profile. Previously terpene synthase (TPS) genes have been isolated and characterized from various plant species but less have been identified from Liliaceae family. Here, two terpene synthase genes (LoTPS1 and LoTPS3), which are highly expressed in sepals and petals of Lilium 'Siberia' flower were functionally characterized recombinant LoTPS1 specifically catalyzes the formation of (Z)-β-ocimene and (±)-linalool as its main volatile compounds from geranyl pyrophosphate (GPP), whereas LoTPS3 is a promiscuous monoterpene synthase which utilizes both GPP and farnesyl pyrophosphate (FPP) as a substrate to generate (±)-linalool and cis-nerolidol, respectively. Transcript levels of both genes were prominent in flowering parts, especially in sepals and petals which are the main source of floral scent production. The gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analysis revealed that the compounds were emitted throughout the day, prominently during the daytime and lower levels at night following a strong circadian rhythm in their emission pattern. Regarding mechanical wounding, both genes showed considerable involvement in floral defense by inducing the emission of (Z)-β-ocimene and (±)-linalool, elevating the transcript accumulation of LoTPS1 and LoTPS3. Furthermore, the subcellular localization experiment revealed that LoTPS1 was localized in plastids, whilst LoTPS3 in mitochondria. Our findings on these two TPSs characterized from Lilium 'Siberia' provide new insights into molecular mechanisms of terpene biosynthesis in this species and also provide an opportunity for biotechnological modification of floral scent profile of Lilium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Department of Horticulture, College of Agriculture, University of Sargodha, Punjab, Pakistan
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
35
|
Nazari M, Zarinkamar F, Mohammad Soltani B, Niknam V. Manganese-induced changes in glandular trichomes density and essential oils production of Mentha aquatica L. at different growth stages. J Trace Elem Med Biol 2018; 50:57-66. [PMID: 30262317 DOI: 10.1016/j.jtemb.2018.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/24/2023]
Abstract
Production and accumulation of essential oils in plants are influenced by intrinsic and environmental factors. Here, we attempted to elucidate the effect of manganese (Mn) supply on the density of glandular trichomes and the production of essential oils in Mentha aquatica (water mint; syn. Mentha hirsuta Huds.) at the different growth stages. To this aim, plants were treated with 100 μM of Mn (supplied as MnSO4·H2O) at early and late vegetative stages of growth. Then, the control and treated plants were harvested, and biochemical, morphological and molecular analyses indicated that Mn supply has affected M. aquatica at the different growth stages. The biomass, Mn accumulation, glandular trichomes density, essential oils yield and expression levels of the genes encoding enzymes involved in terpenoid biosynthesis pathway (1-Deoxy d-xylulose-5-phosphate synthase (Dxs), geranyl diphosphate synthase (Gpps), isopentenyl diphosphate isomerase (Ippi), β-caryophyllene synthase (Cps), limonene synthase (Ls) and menthofuran synthase (Mfs)) were increased by Mn supply at both growth stages. However, the increased rates of the assayed parameters were varied between the early and late vegetative stages. Moreover, the content and chemical composition of terpenoid components were affected by Mn supply and plant growth stage. There were positive and weak correlations among the study variables under the Mn supply at the different growth stages. Given these findings, we propose that the application of Mn supply at both early and late vegetative stages elevates the growth, density of glandular trichomes and production of essential oils in M. aquatica.
Collapse
Affiliation(s)
- Mehrdad Nazari
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Zarinkamar
- Department of Plant Biology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahram Mohammad Soltani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University Tehran, Iran
| | - Vahid Niknam
- Department of Plant Biology, School of Biology and Center of Excellence in Phylogeny of living Organisms, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
36
|
Gao F, Liu B, Li M, Gao X, Fang Q, Liu C, Ding H, Wang L, Gao X. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia x hybrida. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4249-4265. [PMID: 29901784 PMCID: PMC6093421 DOI: 10.1093/jxb/ery224] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/06/2017] [Indexed: 05/19/2023]
Abstract
The development of flower scents was a crucial event in biological evolution, providing olfactory signals by which plants can attract pollinators. In this study, bioinformatics, metabolomics, and biochemical and molecular methodologies were integrated to investigate the candidate genes involved in the biosynthesis of volatile components in two cultivars of Freesia x hybrida, Red River® and Ambiance, which release different categories of compounds. We found that terpene synthase (TPS) genes were the pivotal genes determining spatiotemporal release of volatile compounds in both cultivars. Eight FhTPS genes were isolated and six were found to be functional: FhTPS1 was a single-product enzyme catalyzing the formation of linalool, whereas the other four FhTPS proteins were multi-product enzymes, among which FhTPS4, FhTPS6, and FhTPS7 could recognize geranyl diphosphate and farnesyl diphosphate simultaneously. The FhTPS enzymatic products closely matched the volatile terpenes emitted from flowers, and significant correlations were found between release of volatile terpenes and FhTPS gene expression. Graphical models based on these results are proposed that summarize the biosynthesis of Freesia floral volatile terpenes. The characterization of FhTPS genes paves the way to decipher their roles in the speciation and fitness of Freesia, and this knowledge could also be used to introduce or enhance scent in other plants.
Collapse
Affiliation(s)
- Fengzhan Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Baofeng Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Min Li
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Xiaoyan Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Qiang Fang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Chang Liu
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Hui Ding
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
| | - Li Wang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Correspondence: or
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun, China
- Correspondence: or
| |
Collapse
|
37
|
Biosynthesis and production of sabinene: current state and perspectives. Appl Microbiol Biotechnol 2017; 102:1535-1544. [DOI: 10.1007/s00253-017-8695-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 01/10/2023]
|
38
|
Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. PLANTA 2017; 246:803-816. [PMID: 28803364 DOI: 10.1007/s00425-017-2749-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/22/2017] [Indexed: 05/18/2023]
Abstract
Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | | | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
39
|
Zheng R, Liu C, Wang Y, Luo J, Zeng X, Ding H, Xiao W, Gan J, Wang C. Expression of MEP Pathway Genes and Non-volatile Sequestration Are Associated with Circadian Rhythm of Dominant Terpenoids Emission in Osmanthus fragrans Lour. Flowers. FRONTIERS IN PLANT SCIENCE 2017; 8:1869. [PMID: 29163594 PMCID: PMC5670350 DOI: 10.3389/fpls.2017.01869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/13/2017] [Indexed: 05/30/2023]
Abstract
Osmanthus fragrans Lour. is one of the top 10 traditional ornamental flowers in China famous for its unique fragrance. Preliminary study proved that the terpenoids including ionone, linalool, and ocimene and their derivatives are the dominant aroma-active compounds that contribute greatly to the scent bouquet. Pollination observation implies the emission of aromatic terpenoids may follow a circadian rhythm. In this study, we investigated the variation of volatile terpenoids and its potential regulators. The results showed that both volatile and non-volatile terpenoids presented circadian oscillation with high emission or accumulation during the day and low emission or accumulation during the night. The volatile terpenoids always increased to reach their maximum values at 12:00 h, while free and glycosylated compounds continued increasing throughout the day. The depletion of non-volatile pool might provide the substrates for volatile emission at 0:00-6:00, suggesting the sequestration of non-volatile compounds acted like a buffer regulating emission of terpenoids. Further detection of MEP pathway genes demonstrated that their expressions increased significantly in parallel with the evident increase of both volatile and non-volatile terpenoids during the day, indicating that the gene expressions were also closely associated with terpenoid formation. Thus, the expression of MEP pathway genes and internal sequestration both played crucial roles in modulating circadian rhythm of terpenoid emission in O. fragrans.
Collapse
Affiliation(s)
- Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, China
| | - Cai Liu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yanli Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Xiangling Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Haiqin Ding
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Wei Xiao
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jianping Gan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, Wuhan, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
40
|
Dhandapani S, Jin J, Sridhar V, Sarojam R, Chua NH, Jang IC. Integrated metabolome and transcriptome analysis of Magnolia champaca identifies biosynthetic pathways for floral volatile organic compounds. BMC Genomics 2017; 18:463. [PMID: 28615048 PMCID: PMC5471912 DOI: 10.1186/s12864-017-3846-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/06/2017] [Indexed: 12/02/2022] Open
Abstract
Background Magnolia champaca, commonly known as champak is a well-known tree due to its highly fragrant flowers. Champak floral scent is attributed to a complex mix of volatile organic compounds (VOCs). These aromatic flowers are widely used in flavors and fragrances industry. Despite its commercial importance, the VOC biosynthesis pathways in these flowers are largely unknown. Here, we combine metabolite and RNA sequencing (RNA-seq) analyses of fully opened champak flowers to discover the active VOC biosynthesis pathways as well as floral scent-related genes. Results Volatile collection by headspace method and analysis by gas chromatography-mass spectrometry (GC-MS) identified a total of 43 VOCs from fully opened champak flowers, of which 46.9% were terpenoids, 38.9% were volatile esters and 5.2% belonged to phenylpropanoids/benzenoids. Sequencing and de novo assembly of champak flower transcriptome yielded 47,688 non-redundant unigenes. Transcriptome assembly was validated using standard polymerase chain reaction (PCR) based approach for randomly selected unigenes. The detailed profiles of VOCs led to the discovery of pathways and genes involved in floral scent biosynthesis from RNA-seq data. Analysis of expression levels of many floral-scent biosynthesis-related unigenes in flowers and leaves showed that most of them were expressed higher in flowers than in leaf tissues. Moreover, our metabolite-guided transcriptomics, in vitro and in vivo enzyme assays and transgenic studies identified (R)-linalool synthase that is essential for the production of major VOCs of champak flowers, (R)-linalool and linalool oxides. Conclusion As our study is the first report on transcriptome analysis of Magnolia champaca, this transcriptome dataset that serves as an important public information for functional genomics will not only facilitate better understanding of ecological functions of champak floral VOCs, but also provide biotechnological targets for sustainable production of champak floral scent. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3846-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Savitha Dhandapani
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jingjing Jin
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Vishweshwaran Sridhar
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. .,Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
41
|
Transcriptomic insight into terpenoid and carbazole alkaloid biosynthesis, and functional characterization of two terpene synthases in curry tree (Murraya koenigii). Sci Rep 2017; 7:44126. [PMID: 28272514 PMCID: PMC5341033 DOI: 10.1038/srep44126] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/03/2017] [Indexed: 02/07/2023] Open
Abstract
Curry tree (Murraya koenigii L.) is a rich source of aromatic terpenes and pharmacologically important carbazole alkaloids. Here, M. koenigii leaf transcriptome was generated to gain insight into terpenoid and alkaloid biosynthesis. Analysis of de novo assembled contigs yielded genes for terpene backbone biosynthesis and terpene synthases. Also, gene families possibly involved in carbazole alkaloid formation were identified that included polyketide synthases, prenyltransferases, methyltransferases and cytochrome P450s. Further, two genes encoding terpene synthases (MkTPS1 and MkTPS2) with highest in silico transcript abundance were cloned and functionally characterized to determine their involvement in leaf volatile formation. Subcellular localization using GFP fusions revealed the plastidial and cytosolic localization of MkTPS1 and MkTPS2, respectively. Enzymatic characterization demonstrated the monoterpene synthase activity of recombinant MkTPS1, which produced primarily (−)-sabinene from geranyl diphosphate (GPP). Recombinant MkTPS2 exhibited sesquiterpene synthase activity and formed (E,E)-α-farnesene as the major product from farnesyl diphosphate (FPP). Moreover, mRNA expression and leaf volatile analyses indicated that MkTPS1 accounts for (−)-sabinene emitted by M. koenigii leaves. Overall, the transcriptome data generated in this study will be a great resource and the start point for characterizing genes involved in the biosynthetic pathway of medicinally important carbazole alkaloids.
Collapse
|
42
|
Yue Y, Yu R, Fan Y. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genomics 2015; 16:470. [PMID: 26084652 PMCID: PMC4472261 DOI: 10.1186/s12864-015-1653-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hedychium coronarium is a popular ornamental plant in tropical and subtropical regions because its flowers not only possess intense and inviting fragrance but also enjoy elegant shape. The fragrance results from volatile terpenes and benzenoids presented in the floral scent profile. However, in this species, even in monocots, little is known about the underlying molecular mechanism of floral scent production. RESULTS Using Illumina platform, approximately 81 million high-quality reads were obtained from a pooled cDNA library. The de novo assembly resulted in a transcriptome with 65,591 unigenes, 50.90% of which were annotated using public databases. Digital gene expression (DGE) profiling analysis revealed 7,796 differential expression genes (DEGs) during petal development. GO term classification and KEGG pathway analysis indicated that the levels of transcripts changed significantly in "metabolic process", including "terpenoid biosynthetic process". Through a systematic analysis, 35 and 33 candidate genes might be involved in the biosynthesis of floral volatile terpenes and benzenoids, respectively. Among them, flower-specific HcDXS2A, HcGPPS, HcTPSs, HcCNL and HcBCMT1 might play critical roles in regulating the formation of floral fragrance through DGE profiling coupled with floral volatile profiling analyses. In vitro characterization showed that HcTPS6 was capable of generating β-farnesene as its main product. In the transcriptome, 1,741 transcription factors (TFs) were identified and 474 TFs showed differential expression during petal development. It is supposed that two R2R3-MYBs with flower-specific and developmental expression might be involved in the scent production. CONCLUSIONS The novel transcriptome and DGE profiling provide an important resource for functional genomics studies and give us a dynamic view of biological process during petal development in H. coronarium. These data lay the basis for elucidating the molecular mechanism of floral scent formation and regulation in monocot. The results also provide the opportunities for genetic modification of floral scent profile in Hedychium.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|